
A Compacting Incremental Collector and its Performance in a Production

Quality Compiler

Martin Larose and Marc Feeley

{larosem,feeley}@iro.umontreal.ca
Département d’informatique et recherche opérationnelle

Université de Montréal

Abstract

We present a new near-real-time compacting collector and
its implementation in a production quality Scheme com-
piler (Gambit-C). Our goal is to use this system as a base
for an implementation of Erlang for writing soft real-time
telecommunication applications. We start with a descrip-
tion of Gambit-C’s memory organisation and its blocking
collector. The design and integration of the incremental
collector within Gambit-C are then explained. Finally we
measure the performance of the incremental collector and
compare it to the original blocking collector. We found that
the overhead of the incremental collector is high (a factor
of 1.3 to 8.1, with a median of 2.24) but nevertheless the
collection pauses are compatible with typical soft real-time
requirements (we get an average pause of 3.25 milliseconds
and a maximum pause of 18 milliseconds on a 133Mhz DEC
Alpha 21064).

1 Introduction

This is a revised version of the paper published
in: Proceedings of the 1998 International
Symposium on Memory Management. The results
have been updated after we fixed a bug in the
measurement software which slightly undervalued
the pause time.

Garbage collection (GC) frees the programmer from the te-
dious and error-prone task of memory management, thus
making the programming language higher-level. On unipro-
cessors the work of the collector is interleaved with that of
the main program (the mutator). If each parcel of GC is too
long, the collector may adversely interfere with the execu-
tion of the mutator which becomes unresponsive while the
collector is working. This problem is especially important
in real-time applications (e.g. animations, real-time simula-
tions and reactive systems) where the mutator is expected
to progress at a steady rate.

Incremental collectors aim to diminish the disruptiveness
of GC by spreading out the GC work into more uniformly
distributed parcels of smaller and bounded size. Because in-
cremental GC requires extra coordination between mutator
and collector and higher conservatism, it is more expensive
than blocking GC (where all of the dead objects are re-
claimed every time the collector is run). There is a wide
space of tradeoffs between GC overhead and predictability
in the design of an incremental collector but unfortunately
it is hard to pick the best tradeoffs for a given application

because there have been few experimental studies on which
to base a decision. We have designed a near-real-time incre-
mental compacting collector and implemented it in a pro-
duction quality Scheme compiler. This paper reports on
the various tradeoffs we made and the performance of the
collector on a wide range of benchmarks.

2 Context

The work reported in this paper is part of a larger effort
to implement a compiler for Erlang [AVWW96], a con-
current mostly functional programming language for real-
time telecommunication applications developed at Erics-
son. Our compiler, called Etos [FL98], first compiles Erlang
to Scheme and then uses the Gambit-C Scheme compiler
[FM90, FMRW97] to compile the result into C. This ap-
proach is reasonable and efficient because Scheme and Er-
lang share many similarities (e.g. use of functional style,
dynamic typing, data types).

The telecommunication applications targeted here are
not hard real-time applications; it is permissible for an ap-
plication to be unresponsive for short periods of time (say
10-50 milliseconds) as long as this is infrequent. An applica-
tion will not fail if it is unresponsive for longer than this, its
quality of service will simply degrade (for example connect-
ing a telephone call to a destination must seem to be close
to instantaneous to the human caller but if it takes a few
seconds all it will cause is a small amount of frustration).
The average pause should be in the range 2-5 milliseconds
and at least 50% of the run time should be spent execut-
ing the mutator (assuming the code is reasonably efficient,
i.e. generated by an optimizing compiler). These constraints
are sufficient to write in Erlang the control software of an
ATM switch (such as the AXD301 [AXD98] which aims to
process each transaction within 7 milliseconds).

To improve responsiveness we designed an incremental
compacting collector for Gambit-C to replace the blocking
collector in the standard distribution. Given the applica-
tion domain and use of a functional programming style,
we anticipated high allocation rates. Our incremental col-
lector is a refinement of Dubé’s collector [Dub96, DFS96],
an incremental collector developed for a small footprint
interpreter-based Scheme implementation for embedded 8
bit controllers.

3 Gambit-C’s Blocking Collector

Gambit-C was designed to be a very portable compiler (the
code generated sticks to ANSI-C and uses few OS specific
features) and to allow Scheme and C code to be mixed in
one application (Scheme objects can be accessed and allo-
cated from C code and control can jump from C to Scheme
arbitrarily). The compiler uses an RTL-style virtual ma-
chine code (GVM [FM90]) as an intermediate representation
and then translates each virtual instruction into the corre-
sponding C code (the concept of virtual machine registers
is important here because they are roots of the collector).
For portability, the Scheme heap (which contains all the re-
claimable Scheme objects) is allocated from the C heap by
using the malloc C library routine.

3.1 The Stack-Cache

In order to properly handle tail-calls (see [FMRW97] for
details) and to provide efficient first-class continuations,
Gambit-C allocates continuation frames in a 36 Kbyte stack-
cache which is separate from the C stack. When a deep
recursion causes an overflow of the stack-cache, the con-
tinuation frames it contains are transfered to the Scheme
heap thus allowing the recursion to continue. A contin-
uation frame is copied from the heap back to the stack-
cache when the stack-cache is emptied after a function
return. When a continuation is captured with a call to
call-with-current-continuation the base of the stack-
cache is temporarily moved up so that any return to one of
the captured continuation frames will cause it to be copied
to the top of the stack-cache. This technique is basically the
same as [HDB90] but of a finer granularity.

3.2 Memory Partitioning

There are three allocation classes for Scheme objects:

1. Movable: the object may be moved by the collector

2. Still: the object is never moved

3. Permanent: the object is never moved or reclaimed

The allure of still objects is that C code can easily manip-
ulate them without worrying about their address suddenly
becoming invalid after the collector is run (a conservative
GC approach such as [BW88] is not an acceptable solution
because it is not portable). Still objects have a reference
count field which indicates how many references from the
“C world” exist to this object (to prevent the collector
from reclaiming them if they are not reachable from the
“Scheme world”). Permanent objects are useful for program
constants (which are nonmutable) and symbols (including
dynamically created ones). Most objects dynamically allo-
cated by Scheme code are movable objects. Movable ob-
jects are allocated efficiently by incrementing a free pointer.
Within a basic block, allocations of movable objects are co-
alesced and a single heap limit check is performed. Most
constant-size allocation primitives (cons, list and vector
but not make-vector) are inlined by the compiler. The com-
piler also keeps floating point numbers in an unboxed state
within each basic block, which greatly reduces the need for
allocating flonums (boxed floating point numbers) on some
floating-point intensive programs [HFA+96].

Gambit-C allows the Scheme heap to grow and shrink dy-
namically as the program’s needs change. For this reason,
we opted not to implement the Scheme heap as one large
block because this would cause severe fragmentation given
that C code also allocates objects in the C heap. Instead,
a collection of fixed size (512 Kbytes) noncontiguous sec-
tions is used to hold movable objects. Each movable object
section is divided into equal size from-space and to-space.
Still objects are allocated directly off of the C heap using
malloc. Large objects (> 16 Kbytes) are always allocated
as still objects to avoid fragmenting the movable object sec-
tions. Permanent objects are allocated statically if they are
program constants or on the C heap if they are symbols.

movable object sections

still objects

from to from to

free
pointer

limit
pointer

C heap

Figure 1: Allocation of movable and still objects in the C
heap.

Figure 1 shows how the C heap is partitionned. When an
allocation of a movable object pushes the free pointer past
the limit pointer, the free pointer is advanced to the next
movable object section if one is free otherwise the collector is
run. Note that there is a “fudge” space (16 Kbytes) between
the limit pointer and the end of the from-space. This is to
accomodate the runtime library which sometimes needs to
blindly allocate a bounded number of movable objects with-
out checking the limit pointer until all objects are allocated.
The stack-cache also has a fudge space (20 Kbytes).

3.3 Object Representation

Figure 2 shows how movable objects are represented. Ob-
jects are aligned on a 4 byte boundary except for flonums
which are aligned on an 8 byte boundary. The two lower
bits of a pointer are used to encode a primary type infor-
mation: 00 for fixnums (small exact integers), 10 for other
immediates (characters, booleans, empty-list, etc.), 11 for
pairs, 01 for other memory allocated objects. The body of
all memory allocated objects is prefixed with a single word
header which contains the following fields: 24 bits for length
of body in bytes, 5 bits for secondary type information (pair,
vector, string, etc.), 3 bits for an allocation class tag (per-
manent, still, movable-but-not-forwarded, and movable-and-
forwarded which counts for 2 tags because in this case the
header contains the forwarding pointer). Still objects prefix
the header with extra fields to accomodate the collector (a
reference count and 2 links as explained below).

24 5 3
e
p
yt lass

length in bytes
c

header body (aligned on 4 or 8 byte boundary)

Figure 2: Movable object representation.

3.4 The Blocking Collector

Gambit-C’s blocking collector combines the stop-and-copy
technique (for movable objects) and the mark-and-sweep
technique (for still objects). Permanent objects are not
scanned by the collector because they do not need to be
reclaimed and can only contain references to permanent ob-
jects.

Still objects are placed on a linked list when allocated.
This list is used at the start of the collection to mark all the
still objects which have a nonzero reference count, and at the
end of the collection to reclaim all unmarked still objects (by
a call to the free C library routine). A list of all marked
but not yet scanned still objects is also maintained by the
collector (this explains why still objects have 2 link fields).

The movable objects are handled by a Cheney-style copy-
ing algorithm [Che70] which overwrites the header with the
forwarding pointer. Control alternates between the stop-
and-copy and mark-and-sweep algorithms until the list of all
marked but not yet scanned still objects is empty and there
are no remaining movable objects that have been copied to
to-space but have not yet been scanned.

The roots used by the collector are:

• the nonzero reference count still objects,

• the Scheme global variables,

• the virtual machine registers,

• the top part of the stack-cache (i.e. the con-
tinuation frames in the current continuation
that have not been captured by a call to
call-with-current-continuation)

At the end of the collection, the Scheme heap is resized
by allocating or reclaiming some movable object sections.
The default policy currently used is to make the heap twice
the size of the space occupied by live objects (for movable
objects the space occupied is multiplied by two because there
is space needed for the actual object and its copy). The user
can configure the resizing ratio, as well as the minimum and
maximum heap size, when the program is launched.

4 Integrating the Collector Into Gambit-C

In replacing Gambit-C’s blocking collector with Dubé’s col-
lector [DFS96] we had two goals: adapt the collector to a
production quality compiler and measure the performance
of the collector in a realistic setting. This section describes
how Dubé’s collector was modified.

Dubé’s collector is a mark-and-compact collector which
compacts by sliding objects (the ordering of objects in mem-
ory is preserved). Dubé’s central idea is the use of a non-
movable handle which points to a movable part. Thus a
reference to a Scheme object is encoded as a tagged pointer
to a one word handle which contains a pointer to the body of
the movable object. Because of this indirection it is possible
to avoid an “update” pass to update all object references to
the new location of the objects. This operation is a problem
in a real-time setting because the number of references to
update for a given object is not bounded and therefore can
not be done atomically. However, an overhead is added to
the mutator for every access to the object. The overhead we
measured is reported in Section 5.

Because Gambit-C handles interrupts through polling
[Fee93] and that polling points and heap limit checks can

only occur at the end of basic-blocs, it is possible to main-
tain direct pointers to the movable part of objects temporar-
ily (for the duration of a basic-bloc). This allows the indi-
rection cost to be amortized over multiple accesses to the
same object, even in a multi-threaded context. However,
the Gambit-C compiler does not currently exploit this pos-
sibility.

4.1 Memory Partitioning

Dubé’s collector assumes a fixed size heap and that all ob-
jects are movable. This simplifies the memory partitioning
because each memory section can be preallocated. Gambit-
C however allows the Scheme heap to grow and shrink on
demand so a different approach is needed.

The memory partitioning is only slightly different from
the blocking collector. The three allocation classes are main-
tained and the movable object sections are the same size.
Because compaction is done by sliding objects, the complete
size of each movable object section is used for allocation, not
just half.

The allocation limit pointer is handled differently. In-
stead of pointing close to the end of the current movable ob-
ject section, it initially points a constant amount (G words)
further than the allocation pointer. The mutator passes con-
trol to the collector when the allocation pointer crosses this
limit. When the collector is done, it sets the limit pointer
to G plus the allocation pointer, unless there isn’t enough
space in the current movable object section in which case
the next section is used. The value of G can be adjusted
to control the granularity (and thus overhead) of the con-
text switches between mutator and collector and also the
collector pause time (which is roughly proportional to G as
explained below). A setting of G = 4096 words offers a good
compromise between pause time and overhead, and is used
in our experiments.

Handles are nonmovable and are thus allocated outside
the movable object sections in handle sections. Each handle
section contains the (worst-case) number of handles needed
for the objects in one movable object section, i.e. 1/3 the
size of a movable object section. When a handle section
is allocated off the C heap the handles in that section are
linked together and added to the free handle list. This list
shrinks and grows with the allocation and deallocation of the
movable objects. Handle sections are never freed since they
are not tied directly to a specific movable object section but
individually to movable objects. So there will be N handle
sections if the maximum number of movable sections in the
past execution is N . The Scheme heap size accounts for the
handle sections.

4.2 The Marked Object List

Dubé’s collector uses a main heap (which is one contiguous
section) for two purposes. Objects are allocated at one end
and a marking stack is maintained at the other end. This
stack holds pointers to all the objects that have been marked
but not yet scanned. Marking an object adds it to the stack
and scanning an object removes it from the top of the stack.
The space for one pointer is reserved on the stack on every
allocation (by incrementing the marking stack limit which
separates the area reserved for objects from the area reserved
for the marking stack).

We have implemented the marking stack by linking all
objects that have been marked but not yet scanned into the

“marking list”. This required adding a field (the mark field)
to movable objects which is also used to encode the color of
the object. When the collector has not yet determined that
an object is reachable its mark field is set to 0 (white). After
being marked, the mark field contains the address of the next
object in the marking list or a special end of list marker
(gray). Finally, when the object is scanned, it is detached
from the marking list and its field is set to -1 (black). Note
that still objects already have a mark field, so an extra field
is not needed for them. The mark field is also used for
handling object mutation (details below).

4.3 New Object Representation

In order to access objects in the same way regardless of their
allocation class, all objects are represented uniformly with
a handle. For permanent objects a space for the handle is
reserved before the header as in Figure 3. There is no need
for a mark field.

header

aligned bodyreference
object

handle

Figure 3: Permanent object representation

For still objects several fields come before the header as
shown in Figure 4: the mark field which links still objects,
the handle, a reference count, a link to the next still object,
and a length (which is only needed for memory account-
ing purposes and because Gambit-C supports operations to
shrink the size of an object which is useful for implementing
bignums and string ports).

header

aligned body

count
reference

reference
object

handle marklength link

Figure 4: Still object representation

The allocation of a movable object requires an allocation
of a nonmovable handle from the free handle list and an
allocation of the movable part in the current movable object
section. Note that there is always enough handles for all the
movable sections, so it is not necessary to check exhaustion
of the free handle list. As shown in Figure 5, the movable
part has two more fields than for the blocking collector:

• Back pointer: points back to the corresponding han-
dle. Needed in the compacting phase of the collector
to update or free the handle.

• Mark: this links gray objects, as explained above.

The representation of movable objects may seem space
inefficient but it compares advantageously to the blocking
collector which has a hidden factor of two for the space re-
served in to-space. For a n word body, the representation
for the blocking collector is more space efficient for n < 2
(which is rare) and less space efficient for n > 2. For the fre-
quent case of pairs (n = 2), the representations are equally
space efficient.

header

aligned body

handle

object
reference

in movable object sectionin handle section

pointer
back

mark

Figure 5: Movable object representation

Note that this object representation allows testing the
color of any class of object by reading the field just before
the header. In the case of a permanent object, the color will
appear gray because the handle is neither 0 or -1.

4.4 The Collector

The collector is called on two types of events, when the allo-
cation limit is reached and when the stack-cache overflows.

The collector can be in one of 4 states corresponding
to each phase of the collection (mark roots, marking, pre-
compaction, compaction). A collection cycle begins when
the collector enters the mark roots phase. The time allotted
to the collector for the next parcel of collection is kept in a
global variable of the collector called the word bank (details
below). When this time is up, control returns to the mutator
and the next time the collector is called it will resume in the
same phase.

1. Mark roots phase. This phase is performed atomi-
cally (even though it doesn’t need to be). It initializes
some global variables of the collector and marks the
roots. The roots are the same as the blocking collector,
except for the stack-cache. We observed that even for
big applications the time needed for marking the roots
is small enough not to exceed our real-time constraints.
This is due to a limited number of global variables (the
Scheme runtime library which is present in all applica-
tions contains 1500 global variables and the Gambit-C
compiler, our largest Scheme benchmark at 20000 lines,
adds another 1500 variables to that).

2. Marking phase. In this phase, the still object and
movable object marking lists are scanned.

3. Pre-compaction phase. This phase is performed
atomically. Each time it is entered the roots and
the stack-cache are scanned again because the muta-
tor might have stored references to white objects into
them while the collector was in the marking phase. The
use of a fixed size stack-cache bounds the amount of
work to be done (on our test machine this phase takes
up to 3 milliseconds for the compiler benchmark, and
roughly 1 millisecond for the other benchmarks). If
this marks new objects the collector goes back to the
marking phase, otherwise the collector will:

(a) free the unmarked still objects,

(b) save a copy of the movable object allocation
pointer such that all movable objects allocated
between now and the end of the compaction phase
will be considered black regardless of their mark
field (movable objects are always allocated with 0
(white) in the mark field)

4. Compaction phase. The last phase compacts the
heap. A copying pointer and a scanning pointer are set
to the base of the first movable object section. Each
object in the movable object sections is processed in
turn using the scanning pointer. Unmarked objects
are collected by transfering the corresponding handle
to the free handle list. Marked objects are copied to
the address indicated by the copying pointer and the
corresponding handle is updated.

When the compaction ends, the allocation pointer is
set to the value of the copying pointer and the heap is
resized (all the movable objects retained are considered
live).

If the collector was called due to a stack-cache overflow,
a stack collection routine is first called. Every frame in the
stack-cache is copied to the Scheme heap, the word bank is
updated according to the size of the frames, the stack-cache
is emptied and the collector is called to continue normal
processing as explained above.

4.5 Write Barrier

When a reference to object X is stored in object Y , the
system must ensure that the collector will not neglect to
mark X if Y ends up marked when the compaction phase is
started (unless of course the reference to X in Y is overwrit-
ten). This will not happen automatically if X is white and
Y is black. We have experimented with two write barriers
to handle this case.

1. Gray X. Here the white object X is grayed by putting
it in the marking list. This is the original barrier
proposed by Dubé and is similar to Dijkstra’s barrier
[DLM+78].

2. Gray Y . Here the black object Y is grayed by putting
it back in the marking list. This is similar to Steele’s
barrier [Ste75]. This is less conservative than graying X

(i.e. X will possibly be reclaimed if the reference to X in
Y is overwritten). We rejected a more precise barrier
method that only grays the location of the mutation
using a store list because we want to keep a strict bound
on heap size. This is a reasonable compromise given
that there are no mutation primitives in Erlang and
Scheme programs are often mostly functional.

The write barrier is only used on heap allocated objects
by the primitives: vector-set!, set-car!, set-cdr! and
cell-set! (which is used for assignments to local variables).
There is no barrier on the roots (the virtual registers, the
stack-cache and the global variables) which are scanned in
the pre-compaction phase of the collector. This eliminates
the need for protecting Scheme’s set! operation on global
variables.

The pseudocode for the vector-set! primitive, includ-
ing a “gray X” write barrier, is shown in Figure 6 (the other
mutation primitives are similar). The procedure gray(val)
adds object val to the head of the marking list.

Long objects are scanned incrementally to bound collec-
tor pauses. In the marking phase, the collector scans long
objects in small segments and a pointer to the unscanned
region is saved when control returns to the mutator. Con-
sequently, when the “gray Y ” barrier is used, mutation of
a still vector object must check if the mutation is in the

vector_set(vect, index, val):
if memory_allocated(val) and gc_phase!=compaction

and black(vect) and white(val) then gray(val)
vect[index] = val

Figure 6: Pseudocode for the vector-set! primitive and
write barrier.

scanned region, in which case the collector must rescan it
from the beginning in the next parcel of collection. This is
not a perfect solution in general because the collector could
get stalled on marking vector V if the mutator repeatedly
mutates the beginning of V (this could lead to the heap
overflowing). Fortunately, in the context of an Erlang sys-
tem this is not a problem because we can write the runtime
system in such a way that mutations are always performed
on small vectors.

4.6 Parceling Out Collection Work

The following analysis applies to the “gray X” write barrier
and to the “gray Y ” write barrier with no mutation to long
objects. We will make use of the following definitions:

• H is the size of the heap (in words).

• Ri is the proportion of the heap occupied by objects
retained by the collector at the end of collection cycle
number i.

• Wtotal is the total amount of work for one collection
cycle in number of words to mark and to compact.

• W is the amount of work in a parcel of collection.

• B is the value of the word bank.

The marking phase will touch at most HRi words worth
of objects and the compacting phase H words, so Wtotal ≤

H(1+Ri). This work is spread over the allocation of H(1−
RiΓ1) words by the mutator. So, if the collector touches C

words per word allocated by the mutator, then the collection
cycle will end before the mutator exhausts the free space as
long as C ≥

Wtotal

H(1ΓRi−1)
≤

1+Ri

1ΓRi−1

.

We use the setting C = 5+3L

2(1ΓL)
, where L is chosen at

program launch and is an upper bound on the proportion of
the heap occupied by live objects. Figure 7 gives a plot of
this function.

0
2
4
6
8

10
12
14
16
18
20

0 0.2 0.4 0.6 0.8 1

C

L

Figure 7: Value of C as a function of L.

This setting of C ensures that the collection cycle will
end before the mutator exhausts the free space when RiΓ1 ≤
1+L

2
. Moreover, it guarantees that Ri ≤

1+L

2
. This is easy to

prove by induction (see [DFS96] for a proof). An interesting
corollary is that the collector can stay idle at the start of
the collection cycle until the mutator has allocated enough
objects to make the heap occupied to 1+L

2
. By staying idle

in this way, the collector will be less conservative and thus
more efficient at reclaiming garbage.

The word bank is used in parceling the collection work.
At the start of collection cycle i, B is set to the negative
value −H(1+L

2
− RiΓ1) so that the collector will stay idle

at the start of the collection cycle. When the heap limit is
crossed and when the stack-cache overflows, the number of
words allocated (still and movable objects) is added to B.
Thus, in the typical case (heap limit reached) B increases
in steps of G.

If B is negative, the collector returns immediately to
the mutator. Otherwise, the amount of collection work is
calculated based on B and C (i.e. W = BC), the collector
performs W words worth of collection, sets B to 0 and then
returns to the mutator.

5 Results

To measure the performance of our incremental collector we
used a set of 20 Scheme benchmarks. In all cases the pro-
grams were compiled with the Gambit-C 2.7 compiler using
the declarations which gave the fastest execution (inlining of
primitives, fixnum or flonum specific arithmetic, no runtime
type checks). The short running programs were modified
to repeat the computation several times so that the total
execution time would be at least 5 seconds.

A first group of programs comes from the Gabriel bench-
mark suite [Gab85]. These programs are mostly kernels
which stress specific features of the system (fixnum arith-
metic, allocation, traversal, mutation, recursion, iteration).
Some of these benchmarks don’t perform any allocation so
we ignored them (tak, takl, triangle, and the traversal
phase of traverse). The second group consists of floating-
point intensive programs: fibfp, sumfp, mbrot, fft, and
simplex. The third group contains larger applications which
mix various types of symbolic processing, including lots of al-
locations, object mutations and traversal of data-structures:
conform (type checker, 700 lines), peval (partial evalua-
tor, 800 lines), earley (parser, 800 lines), maze (construct
a maze, 900 lines), and compiler (Gambit-C Scheme com-
piler, 20000 lines).

All benchmarks were run on an unloaded 160Mbyte
133Mhz DEC Alpha 21064 running Digital UNIX V4.0.
CPU time statistics were measured with the C library rou-
tine getrusage which has a 1 millisecond resolution. We
considered using the gettimeofday routine to measure time
down to the microsecond but since it measures real-time
some of the short duration statistics measured (such as the
maximum collector pause) are too easily perturbed by OS
context switches over which we have no control. Each bench-
mark was run once. All times are given in seconds.

To reduce the importance of differences in the memory
partitioning of the different collectors, all programs were
run with a fixed-size heap of 12Mbytes. This also avoided
unexpectedly long collector pauses when resizing the heap (it
seems that calls to malloc/free for large blocks sometimes
takes over 10 milliseconds!).

5.1 Overhead of Incremental Collection

Our first goal is to measure the total overhead of using an in-
cremental collector rather than a blocking collector in a pro-
duction quality compiler such as Gambit-C. Also, we wish
to find the overhead associated with performing the collec-
tion incrementally. For this purpose the programs were run
with three different collectors:

1. S&C: this is the blocking collector in the standard
Gambit-C distribution.

2. M&C: this is our collector when run as a blocking
collector (i.e. the collection is done completely when
the heap is full and there is no write barrier). A stack-
cache overflow causes a full collection (which is what is
done by S&C).

3. M&C R-T: this is the full incremental collector de-
scribed in this paper, using a value of L = 50%.

The results are reported in Figure 8. The first column
gives the allocation rate of the program in Mbytes per second
when run with S&C. The second column gives the execution
time in seconds for S&C. The execution time for the other
collectors is expressed relative to the time for S&C so that
the overhead with respect to S&C stands out more clearly.
The M&C R-T collector was run with each type of write
barrier. Note that the results are ordered according to the
overhead of M&C R-T with the “gray X” barrier.

Alloc S&C M&C M&C R-T

MB/sec gray X gray Y

boyer 3.14 16.46 .91 .92 .96
puzzle .92 21.88 1.20 1.30 1.41
compiler .91 49.99 1.19 1.31 2.52
fft 12.58 5.05 1.53 1.56 1.58
traverse 5.61 10.93 1.37 1.67 2.01
browse 3.95 33.36 1.25 1.73 2.46
peval 5.86 35.40 1.52 1.81 3.16
conform 2.88 25.52 1.29 1.85 2.60
simplex 15.34 10.91 1.70 2.10 2.32
earley 8.42 36.13 1.87 2.24 3.02
cpstak 46.94 13.95 2.41 2.44 2.46
maze 16.18 11.58 1.65 2.46 2.53
destruc 19.35 15.29 2.11 2.78 3.70
deriv 27.43 32.69 2.50 2.92 4.08
fibfp 47.05 11.80 2.43 2.94 2.96
dderiv 22.76 39.39 2.04 2.98 4.17
mbrot 60.20 13.03 2.87 3.62 3.64
divrec 54.92 16.66 3.15 3.83 3.77
sumfp 71.12 85.82 3.21 4.24 4.26
diviter 123.03 7.44 6.51 8.09 8.04

Figure 8: Execution time with each collector (S&C in sec-
onds and others relative to S&C).

For the M&C collector the overhead includes: allocation
of handles, indirection cost when accessing a memory allo-
cated object and difference in collection algorithms. If we
ignore boyer, the overheads range from 1.19 to 6.51, with
a median of 1.7. We can see that the overhead is roughly
correlated to the allocation rate. This is reasonable because
object allocation is significantly more expensive than the

simple pointer increment performed for S&C and all ob-
jects allocated including dead ones need to be processed in
the compaction phase. The highest overhead is for diviter
which spends most of its time in a tight loop performing 3 ac-
cesses to pairs and 1 allocation of a pair which is soon dead.
An anomaly exists for boyer which is slowest of all when
using S&C because the mutator and collector are in synch
(the profile of live objects is like a sawtooth, going from
50Kbytes to 1400Kbytes, and with a 12Mbyte heap S&C
always collects at moments of peak live objects whereas the
other collectors do it at uniformly distributed levels, which
is more efficient).

When the allocation rate is low the overhead depends
more on the handle indirection cost and the difference in
collection algorithms. It is interesting to see that a complex
application like compiler has a low overhead of 1.19. We
attribute this to the fact that its modular design causes a lot
of time to be spent in procedure calls and returns between
modules (which is unaffected by the collector but is rather
slow in Gambit-C due to the tail-call support), that it was
designed to minimize the creation of garbage and that it
performs I/O.

The M&C R-T collector with “gray X” barrier has over-
heads in the range 1.3 to 8.09, with a median of 2.24. The
overheads follow the same trend as the blocking M&C collec-
tor, and are a median factor of 1.21 higher with a maximum
of 1.5 times higher for maze. So the transition from M&C
to M&C R-T has a lower overhead than the transition from
S&C to M&C (in other words most of the overhead of our in-
cremental collector is not in the “incrementality” but rather
in the use of a compacting collector with handles).

If we only consider the benchmarks which perform muta-
tions on objects, the “gray X” barrier is always faster than
the “gray Y ” barrier, by a median factor of 1.35 and a max-
imum of 1.9 times faster for compiler. Our explanation is
that the “gray Y ” barrier may cause objects to be marked
multiple times and this extra cost outweighs the benefit of
lower conservatism.

5.2 Collection Pauses

Another important aspect to measure is the duration of the
pauses of the incremental collector. The average pause is
of course interesting but given the context of soft real-time
applications, it is also important to know what is the maxi-
mum pause and also the percentage of total execution time
spent in the collector (%GC). Figure 9 gives these measure-
ments ordered according to %GC when using the “gray X”
barrier.

The average pause is in the range 2.42 to 4.37 millisec-
onds, with a median of 3.25 milliseconds. The maximum
pause is in the range 6 to 18 milliseconds, with a median of
8 milliseconds. The %GC is in the range 4% to 57%, with
a median of 22%. These measurements are compatible with
our real-time constraints.

The programs with the highest %GC are those which
have high allocation rates and few live objects (the top 3
are floating point intensive programs which strictly allocate
flonums). In this situation the collector will spend a large
fraction of its time compacting black objects that are in fact
garbage. So for most objects allocated there are two asso-
ciated compactions needed (because during the compaction
phase objects are allocated black).

Finally, Figure 10 shows the distribution of pause times.
The X axis gives pause time in seconds and the extent of

Avg Max %GC
compiler .00437 .012 4
puzzle .00242 .010 4
conform .00325 .010 5
peval .00299 .008 8
browse .00319 .010 10
boyer .00364 .009 12
trav1 .00397 .014 15
simplex .00336 .008 20
destruc .00319 .007 21
earley .00394 .012 22
dderiv .00321 .007 24
fft .00370 .008 24
deriv .00318 .007 29
maze .00371 .018 35
cpstak .00266 .006 40
divrec .00323 .007 45
diviter .00323 .007 48
fibfp .00370 .008 52
mbrot .00375 .007 55
sumfp .00385 .007 57

Figure 9: Average and maximum collector pause in seconds
and percent of time spent in collector.

the X axis indicates the maximum collector pause. As can
be seen, the distribution is compact around the average and
there are no distant outliers.

5.3 Discussion

At first glance the overhead of the incremental collector
seems too high for practical use. However this overhead
must be put in perspective. Erlang programs compiled with
Etos and Gambit-C 2.7 with the S&C collector are roughly
15 times faster than with the JAM 4.4.1 bytecode imple-
mentation of Erlang [FL98]. Even if a program using the
incremental collector is slowed down by a factor of 2.24 com-
pared to the S&C collector, the program is still over 6 times
faster than when using JAM.

Of course the overhead and pause time that is tolera-
ble depends on the application. However, it is reassuring
that the measurements we have made on our collector fit
very closely with the requirements of soft real-time telecom-
munication applications (2-5 millisecond average pause and
10-50 millisecond maximum pause). Note also that our test
machine (133Mhz DEC Alpha 21064) is more than 5 years
old at this writing and that much faster microprocessors are
readily available. When executed on a now current 500Mhz
DEC Alpha 21164A the compiler benchmark ran 6.7 times
faster and the collector was about 3.5 times faster (collec-
tion pauses were 1 millisecond on average with a maximum
pause of 3 milliseconds).

6 Future Work and Conclusion

Because of the way the word bank is handled, the collec-
tor only starts collecting after the mutator has allocated a
fair amount (i.e. until the word bank becomes positive). It
would be interesting to investigate if by starting the collector
earlier we could reduce the collection overhead and length
of pauses (it isn’t clear that this is good because the collec-
tor will be more conservative, retaining some objects that

boyer

.000 .005

.00364

55%
browse

.000 .005 .010

.00319

74%
compiler

.000 .005 .010

.00437

39%
conform

.000 .005 .010

.00325

72%

cpstak

.000 .005

.00266

43%
dderiv

.000 .005

.00321

70%
deriv

.000 .005

.00318

71%
destruc

.000 .005

.00319

74%

diviter

.000 .005

.00323

71%
divrec

.000 .005

.00323

72%
earley

.000 .005 .010

.00394

39%
fft

.000 .005

.0037

45%

fibfp

.000 .005

.0037

50%

maze

.000 .005 .010 .015

.00371

53%
mbrot

.000 .005

.00375

52%
peval

.000 .005

.00299

65%

puzzle

.000 .005 .010

.00242

43%

simplex

.000 .005

.00336

59%

sumfp

.000 .005

.00385

60%
traverse

.000 .005 .010

.00397

47%

Figure 10: Distribution of collector pauses.

would have died). A dynamic calculation of L also seems
necessary, since it would allow the collector to adapt to the
behavior of the application.

There is also a need for testing the collector with soft
real-time Erlang applications. This will have to wait until
Etos is complete and robust.

Once Dubé’s collector is fully integrated into Gambit-
C, we plan to integrate other near real-time collectors (in
particular [NO93] which seems well suited to our context)
and compare their performance.

As our experimental results show, the incremental col-
lector is able to meet the maximum and average pause time
constraints needed by telecommunication applications. The
overhead of the incremental collector with respect to a block-
ing collector is rather high (a factor of 1.3 to 8.1) but, given
that we are working in the context of an optimizing compiler,
the compute power left for the mutator compares favorably
with a bytecode implementation of Erlang.

Acknowledgements

This work was supported in part by grants from Ericsson
Telecom Ab, the Natural Sciences and Engineering Research
Council of Canada and the Fonds pour la formation de
chercheurs et l’aide à la recherche.

References

[AVWW96] J. L. Armstrong, S. R. Virding, C. Wikström,
and M. C. Williams. Concurrent Programming
in Erlang. Prentice Hall, second edition, 1996.

[AXD98] AXD 301 High-performance ATM switching
system. Ericsson Telecom AB, 1998.

[BW88] Hans-Juergen Boehm and Mark Weiser.
Garbage collection in an uncooperative envi-
ronment. Software Practice and Experience,
18(9):807–820, 1988.

[Che70] C. J. Cheney. A non-recursive list compact-
ing algorithm. Communications of the ACM,
13(11):677–8, November 1970.

[DFS96] Danny Dubé, Marc Feeley, and Manuel Ser-
rano. Un GC temps réel semi-compactant.
In Guy Lapalme and Christian Queinnec, edi-
tors, Journées Francophones des Langages Ap-
plicatifs, volume 7, pages 165–181, Val-Morin,
Québec, Janvier 1996. INRIA.

[DLM+78] Edsgar W. Dijkstra, Leslie Lamport, A. J. Mar-
tin, C. S. Scholten, and E. F. M. Steffens.
On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM,
21(11):965–975, November 1978.

[Dub96] Danny Dubé. Un système de programmation
Scheme pour micro-contrôleur. Master’s thesis,
Département d’Informatique et de Recherche
Opérationnelle, Université de Montréal, April
1996.

[Fee93] Marc Feeley. Polling efficiently on stock hard-
ware. In Proceedings of the Functional Pro-
gramming and Computer Architecture, pages
179–187, Copenhagen, June 1993.

[FL98] Marc Feeley and Martin Larose. Compiling Er-
lang to Scheme. In Proceedings of the 1998 Pro-
gramming Languages, Implementations, Logics
and Programs Conference, September 1998.

[FM90] Marc Feeley and James S. Miller. A parallel vir-
tual machine for efficient Scheme compilation.
In Conference Record of the 1990 ACM Sym-
posium on Lisp and Functional Programming,
pages 119–130, Nice, France, June 1990. ACM
Press.

[FMRW97] M. Feeley, J. Miller, G. Rozas, and J. Wil-
son. Compiling Higher-Order Languages into
Fully Tail-Recursive Portable C. Technical
Report 1078, Département d’Informatique et
de Recherche Opérationnelle, Université de
Montréal, Août 1997.

[Gab85] Richard P. Gabriel. Performance and Evalua-
tion of Lisp Systems. MIT Press Series in Com-
puter Science. MIT Press, Cambridge, MA,
1985.

[HDB90] R. Hieb, R. K. Dybvig, and C. Bruggeman.
Representing control in the presence of first-
class continuations. ACM SIGPLAN Notices,
25(6):66–77, 1990.

[HFA+96] Pieter H. Hartel, Marc Feeley, Martin Alt,
Lennart Augustsson, Peter Baumann, Mar-
cel Beemster, Emmanuel Chailloux, Chris-
tine H. Flood, Wolfgang Grieskamp, John
H. G. van Groningen, Kevin Hammond,
Bogumi lHausman, Melody Y. Ivory, Richard
Jones, Peter Lee, Xavier Leroy, Rafael Lins,
Sandra Loosemore, Niklas Röjemo, Manuel
Serrano, Jean-Pierre Talpin, Jon Thackray,
Stephen Thomas, Pierre Weis, and Peter Went-
worth. Benchmarking implementations of func-
tional languages with ”pseudoknot”, a float-
intensive benchmark. Journal of Functional
Programming, 6(4), 1996.

[NO93] Scott Nettles and James O’Toole. Real-time
replication garbage collection. In Proceedings
of the 1993 SIGPLAN Conference on Program-
ming Language Design and Implementation.
Published in SIGPLAN Notices, volume 28,
pages 217–226, Albuquerque, New Mexico,
June 1993. ACM Press.

[Ste75] Guy L. Steele, Jr. Multiprocessing compactify-
ing garbage collection. Communications of the
ACM, 18(9):495–508, September 1975.

