
Macros That Work

William Clinger

Department of Computer Science

University of Oregon

Jonathan Rees

Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract

This paper describes a modified form of Kohlbecker’s algo-
rithm for reliably hygienic (capture-free) macro expansion
in block-structured languages, where macros are source-to-
source transformations specified using a high-level pattern
language. Unlike previous algorithms, the modified algo-
rithm runs in linear instead of quadratic time, copies few
constants, does not assume that syntactic keywords (e.g. if)
are reserved words, and allows local (scoped) macros to refer
to lexical variables in a referentially transparent manner.

Syntactic closures have been advanced as an alternative
to hygienic macro expansion. The problem with syntactic
closures is that they are inherently low-level and therefore
difficult to use correctly, especially when syntactic keywords
are not reserved. It is impossible to construct a pattern-
based, automatically hygienic macro system on top of syn-
tactic closures because the pattern interpreter must be able
to determine the syntactic role of an identifier (in order to
close it in the correct syntactic environment) before macro
expansion has made that role apparent.

Kohlbecker’s algorithm may be viewed as a book-keeping
technique for deferring such decisions until macro expansion
is locally complete. Building on that insight, this paper uni-
fies and extends the competing paradigms of hygienic macro
expansion and syntactic closures to obtain an algorithm that
combines the benefits of both.

Several prototypes of a complete macro system for
Scheme have been based on the algorithm presented here.

1 Introduction

A macro is a source-to-source program transformation spec-
ified by programmers using a high-level pattern language.
Macros add a useful degree of syntactic extensibility to a
programming language, and provide a convenient way to
abbreviate common programming idioms.

Macros are a prominent component of several popular
programming languages, including C [7] and Common Lisp
[11]. The macro systems provided by these languages suf-
fer from various problems that make it difficult and in many
cases impossible to write macros that work correctly regard-
less of the context in which the macros are used. It is widely
believed that these problems result from the very nature of
macro processing, so that macros are an inherently unreli-
able feature of programming languages [2].

That is not so. A macro system based upon the algo-
rithm described in this paper allows reliable macros to be

written, and is simple to use. The algorithm is nearly as
fast as algorithms in current use.

This introduction illustrates several problems common
to existing macro systems, using examples written in C and
Scheme [10]. With one exception, all of these problems are
solved automatically and reliably by the algorithm presented
in this paper.

The original preprocessor for C allowed the body of a
macro definition to be an arbitrary sequence of characters.
It was therefore possible for a macro to expand into part of
a token. For example,

#define foo "salad
printf(foo bar");

would expand into printf("salad bar");. We may say
that this macro processor failed to respect the integrity of
lexical tokens. This behavior caused so many problems that
it has been banished from ANSI C except when special op-
erators are used for the specific purpose of violating the
integrity of lexical tokens.

Similar problems arise in macro systems that allow the
body of a macro to expand into an arbitrary sequence of
tokens. For example,

#define discriminant(a,b,c) b*b-4*a*c
2*discriminant(x-y,x+y,x-y)*5

expands into 2*x+y*x+y-4*x-y*x-y*5, which is then parsed
as

(2*x)+(y*x)+y-(4*x)-(y*x)-(y*5)

instead of the more plausible

2*(x+y)*(x+y)-4*(x-y)*(x-y)*5.

We may say that systems such as the ANSI C preprocessor
fail to respect the structure of expressions. Experienced C
programmers know they must defend against this problem
by placing parentheses around the macro body and around
all uses of macro parameters, as in

#define discriminant(a,b,c) ((b)*(b)-4*(a)*(c))

This convention is not enforced by the C language, however,
so the author of a macro who neglects this precaution is
likely to create subtle bugs in programs that use the macro.

Another problem with the discriminant macro occurs
when the actual parameter for b is an expression that has a
side effect, as in discriminant(3,x--,2). Of the problems
listed in this introduction, the inappropriate duplication of

1

side effects is the only one that is not solved automatically
by our algorithm.

One can argue that actual parameter expressions should
not have side effects, but this argument runs counter to
the C culture. In a fully block-structured language such
as Scheme, the author of a macro can defend against actual
parameters with side effects by introducing a local variable
that is initialized to the value obtained by referencing the
macro parameter. In the syntax we adopt for this paper,
which differs slightly from syntax that has been proposed
for Scheme [3], a correct version of the discriminant macro
can be defined by

(define-syntax discriminant
(syntax-rules

((discriminant ?a ?b ?c)
=> (let ((temp ?b))

(- (* temp temp) (* 4 ?a ?c))))))

Unfortunately there is no equivalent to this macro in C, since
blocks are not permitted as expressions.

From the above example we see that macros must be able
to introduce local variables. Local variables, however, make
macros vulnerable to accidental conflicts of names, as in

#define swap(v,w) {int temp=(v); \
(v) = (w); (w) = temp;}

int temp = thermometer();
if (temp < lo_temp) swap(temp, lo_temp);

Here the if statement never exchanges the values of temp
and lo temp, because of an accidental name clash. The
macro writer’s usual defense is to use an obscure name and
hope that it will not be used by a client of the macro:

#define swap(v,w) {int __temp_obscure_name=(v); \
(v) = (w); (w) = __temp_obscure_name;}

Even if the macro writer is careful to choose an obscure
name, this defense is less than reliable. For example, the
macro may be used within some other use of a macro whose
author happened to choose the same obscure name. This
problem can be especially perplexing to authors of recursive
macros.

The most troublesome name clashes arise not from vari-
ables local to a macro, but from the very common case of a
macro that needs to refer to a global variable or procedure:

#define complain(msg) print_error(msg);
if (printer_broken()) {

char *print_error = "The printer is broken";
complain(print_error);
}

Here the name given to the error message conflicts with the
name of the procedure that prints the message. In this ex-
ample the compiler will report a type error, but program-
mers are not always so lucky.

In most macro systems there is no good way to work
around this problem. Programs would become less readable
if obscure names were chosen for global variables and pro-
cedures, and the author of a macro probably does not have
the right to choose those names anyway. Requiring the client
of each macro to be aware of the names that occur free in
the macro would defeat the purpose of macros as syntactic
abstractions.

The examples above show that at least two classes of in-
advertent name conflicts can be created by macro processors

that fail to respect the correlation between bindings and uses
of names. One class involves macros that introduce bound
(local) variables. Another class involves macros that contain
free references to variables or procedures.

Hygienic macro expansion [8] is a technology that main-
tains the correlation between bindings and uses of names,
while respecting the structure of tokens and expressions.
The main problem with hygienic macro expansion has been
that the algorithms have required O(n2) time, where n is the
time required by naive macro expansion as in C or Common
Lisp. Although this is the worst case, it sometimes occurs
in practice.

The purpose of this paper is to build on Kohlbecker’s
algorithm for hygienic macro expansion by incorporating
ideas developed within the framework of syntactic closures
[1]. Our result is an efficient and more complete solution
to the problems of macro processing. Our algorithm runs
in O(n) time and solves several additional problems associ-
ated with local (scoped) macros that had not been addressed
by hygienic macro expansion. In particular, our algorithm
supports referentially transparent local macros as described
below.

If macros can be declared within the scope of lexical vari-
ables, as in Common Lisp, then a seemingly new set of prob-
lems arises. We would like for free variables that occur on
the right hand side of a rewriting rule for a macro to be
resolved in the lexical environment of the macro definition
instead of being resolved in the lexical environment of the
use of the macro. Using let-syntax to declare local macros,
for example, it would be nice if

(let-syntax ((first
(syntax-rules
((first ?x) => (car ?x))))

(second
(syntax-rules
((second ?x) => (car (cdr ?x))))))

(let ((car "duesenberg"))
(let-syntax ((classic

(syntax-rules
((classic) => car))))

(let ((car "yugo"))
(let-syntax ((affordable

(syntax-rules
((affordable) => car))))

(let ((cars (list (classic)
(affordable))))

(list (second cars)
(first cars))))))))

could be made to evaluate to ("yugo" "duesenberg"). This
would be the case if the references to car that are introduced
by the first, second, classic, and affordable macros re-
ferred in each case to the car variable within whose scope
the macro was defined. In other words, this example would
evaluate to ("yugo" "duesenberg") if local macros were ref-
erentially transparent.

Our algorithm supports referentially transparent local
macros. We should note that these macros may not be refer-
entially transparent in the traditional sense because of side
effects and other problems caused by the programming lan-
guage whose syntax they extend, but we blame the language
for this and say that the macros themselves are referentially
transparent.

Now consider the following Scheme code:

2

(define-syntax push
(syntax-rules

((push ?v ?x) => (set! ?x (cons ?v ?x)))))

(let ((pros (list "cheap" "fast"))
(cons (list)))

(push "unreliable" cons))

It is easy to see that the cons procedure referred to within
the macro body is different from the cons variable within
whose scope the macro is used. Through its reliance on the
meaning of the syntactic keyword set!, the push macro also
illustrates yet a third class of inadvertent name conflicts. If
syntactic keywords are not reserved, then the push macro
might be used within the scope of a local variable or macro
named set!.

We can now identify four classes of capturing problems.
The first class involves inadvertent capturing by bound vari-
ables introduced by a macro. The second class involves the
inadvertent capture of free variable references introduced
by a macro. The third is like the first, but involves inadver-
tent capturing by bindings of syntactic keywords (i.e. local
macros) introduced by a macro. The fourth is like the sec-
ond, but involves the inadvertent capture of references to
syntactic keywords introduced by a macro.

Syntactic closures [1] have been advanced as an alterna-
tive to hygienic macro expansion. Syntactic closures can be
used to eliminate all four classes of capturing problems, and
can support referentially transparent local macros as well.
Why then have we bothered to develop a new algorithm for
hygienic macro expansion, when syntactic closures also run
in linear time and solve all the problems that are solved by
our algorithm?

The problem with syntactic closures is that they do not
permit macros to be defined using the kind of high-level pat-
tern language that is used in C and is proposed for Scheme
[6]. The difficulty is that a pattern interpreter that uses syn-
tactic closures must be able to determine the syntactic role
of an identifier (to know whether to close over it, and if so
to know the correct syntactic environment) before macro ex-
pansion has made that role apparent. Consider a simplified
form of the let macro, which introduces local variables:

(define-syntax let
(syntax-rules

((let ((?name ?val)) ?body)
=> ((lambda (?name) ?body) ?val))))

When this macro is used, the ?val expression must be closed
in the syntactic environment of the use, but the ?body can-
not simply be closed in the syntactic environment of the use
because its references to ?name must be left free. The pat-
tern interpreter cannot make this distinction unaided until
the lambda expression is expanded, and even then it must
somehow remember that the bound variable of the lambda
expression came from the original source code and must
therefore be permitted to capture the references that oc-
cur in ?body. Recall from the swap example that a reliable
macro system must not permit bound variables introduced
by macro expansion to capture such references.

Kohlbecker’s algorithm can be viewed as a book-keeping
technique for deferring all such decisions about the syntactic
roles of identifiers until macro expansion is locally complete
and has made those roles evident. Our algorithm is therefore
based on Kohlbecker’s but incorporates the idea of syntactic

env = identifier → denotation

denotation = special + macro + identifier

special = {lambda, let-syntax}

macro = (pattern × rewrite)+ × env

ident ∈ env

lookup ∈ env × identifier → denotation

bind ∈ env × identifier × denotation → env

divert ∈ env × env → env

lookup (ident, x) = x

lookup (bind (e, x, v), x) = v

lookup (bind (e, x, v), y) = lookup (e, y) if x 6= y

divert (e, ident) = e

divert (e, bind (e′, x, v)) = bind (divert (e, e′), x, v)

Figure 1: Syntactic environments.

environments, taken from the work on syntactic closures, in
order to achieve referentially transparent local macros.

The question arises: Don’t the capturing problems occur
simply because we use names instead of pointers, and trees
instead of dags? If we first parsed completely before do-
ing macro expansion, could we not replace all occurrences
of names by pointers to symbol table entries and thereby
eliminate the capturing problems?

The answer is no. One of the most important uses of
macros is to provide syntactically convenient binding ab-
stractions. The distinction between binding occurrences and
other uses of identifiers should be determined by a particu-
lar syntactic abstraction, not predetermined by the parser.
Therefore, even if we were to parse actual parameters into
expression trees before macro expansion, the macro proces-
sor still could not reliably distinguish bindings from uses and
correlate them until macro expansion is performed.

Consider an analogy from lambda calculus. In reducing
an expression to normal form by textual substitution, it is
sometimes necessary to rename variables as part of a beta
reduction. It doesn’t work to perform all the (naive) beta re-
ductions first, without renaming, and then to perform all the
necessary alpha conversions; by then it is too late. Nor does
it work to do all the alpha conversions first, because beta re-
ductions introduce new opportunities for name clashes. The
renamings must be interleaved with the (naive) beta reduc-
tions, which is the reason why the notion of substitution
required by the non-naive beta rule is so complicated.

The same situation holds for macro expansions. It does
not work to simply expand all macro calls and then rename
variables, nor can the renamings be performed before ex-
pansion. The two processes must be interleaved in an ap-
propriate manner. A correct and efficient realization of this
interleaving is our primary contribution.

2 The algorithm

Our algorithm avoids inadvertent captures by guaranteeing
the following hygiene condition:

3

lookup (e,x) ∈ identifier

e ⊢ x → lookup (e,x)
[variable references]

lookup (e,k0) = lambda

bind (e,x,x
′) ⊢ E → E

′ (where x′ is a fresh identifier)

e ⊢ (k0 (x) E) → (lambda (x′) E′)
[procedure abstractions]

e ⊢ E0 → E′

0, e ⊢ E1 → E′

1

e ⊢ (E0 E1) → (E′

0 E′

1)
[procedure calls]

lookup (e,k0) = let-syntax

bind (e,k, 〈τ, e〉) ⊢ E → E
′

e ⊢ (k0 ((k τ)) E) → E′
[macro abstractions]

lookup (e,k) = 〈τ, e
′〉

transcribe ((k . . .), τ, e, e
′) = 〈E, e

′′〉
e
′′ ⊢ E → E

′

e ⊢ (k . . .) → E′
[macro calls]

Figure 2: The modified Kohlbecker algorithm.

match (E, π, euse , edef) = nomatch

transcribe (E, τ
′

, euse , edef) = 〈E′

, e
′〉

transcribe (E, 〈〈π, ρ〉, τ ′〉, euse , edef) = 〈E′, e′〉

match (E, π, euse , edef) = σ

rewrite (ρ, σ, edef) = 〈E′

, enew 〉

transcribe (E, 〈〈π, ρ〉, τ ′〉, euse , edef) = 〈E′, divert (euse , enew)〉

transcribe (E, 〈 〉, euse , edef) is an error.

Figure 3: Definition of transcribe (E, τ, euse , edef).

1. It is impossible to write a high-level macro that inserts
a binding that can capture references other than those
inserted by the macro.

2. It is impossible to write a high-level macro that inserts
a reference that can be captured by bindings other than
those inserted by the macro.

These two properties can be taken as the defining prop-
erties of hygienic macro expansion. The hygiene condition
is quite strong, and it is sometimes necessary to write non-
hygienic macros; for example, the while construct in C im-
plicitly binds break, so if while were implemented as a
macro then it would have to be allowed to capture refer-
ences to break that it did not insert. We here ignore the oc-
casional need to escape from hygiene; we have implemented
a compatible low-level macro system in which non-hygienic
macros can be written.

The reason that previous algorithms for hygienic macro
expansion are quadratic in time is that they expand each
use of a macro by performing a naive expansion followed by
an extra scan of the expanded code to find and paint (i.e.
rename, or time-stamp) the newly introduced identifiers. If
macros expand into uses of still other macros with more or
less the same actual parameters, which often happens, then
large fragments of code may be scanned anew each time

a macro is expanded. Naive macro expansion would scan
each fragment of code only once, when the fragment is itself
expanded.

Our algorithm runs in linear time because it finds the
newly introduced identifiers by scanning the rewrite rules,
and paints these identifiers as they are introduced during
macro expansion. The algorithm therefore scans the ex-
panded code but once, for the purpose of completing the
recursive expansion of the code tree, just as in the naive
macro expansion algorithm. The newly introduced identi-
fiers can in fact be determined by scanning the rewrite rules
at macro definition time, but this does not affect the asymp-
totic complexity of the algorithm.

The more fundamental difference between our algorithm
and previous algorithms lies in the book-keeping needed to
support referentially transparent local macros. The syn-
tactic environments manipulated by this book-keeping are
shown in Figure 1. These are essentially the same as the en-
vironments used by syntactic closures, but the book-keeping
performed by our algorithm allows it to defer decisions that
involve the syntactic roles of identifiers.

The overall structure of the algorithm is shown formally
in Figure 2 for the lambda calculus subset of Scheme, ex-
tended by macro calls and a restricted form of let-syntax.
The notation “ e ⊢ E → E′ ” indicates that E′ is the
completely macro-expanded expression that results from ex-

4

panding E in the syntactic environment e. For this simple
language the initial syntactic environment einit is

bind (bind (ident, lambda, lambda), let-syntax, let-syntax).

The variables bound by a procedure abstraction are re-
named to avoid shadowing outer variables. Identifiers that
denote variable references must therefore be renamed as
well. Procedure calls are straightforward (but would be
less so if expressions were allowed to expand into syntactic
keywords; we have implemented this both ways). The rule
for macro abstractions is also straightforward: the body is
macro-expanded in a syntactic environment in which the
syntactic keyword bound by the abstraction denotes the
macro obtained from the transformation function τ (a set
of rewrite rules) by closing τ in the syntactic environment
of the macro definition.

The rule for macro calls is subtle. The macro call is tran-
scribed using the transformation function τ obtained from
the macro being called, the syntactic environment of the
call, and the syntactic environment in which the macro was
defined. This transcription yields not only a new expression
E but a new syntactic environment e′′ in which to complete
the macro expansion. The key fact about algorithms for
hygienic macro expansion is that any identifiers introduced
by the macro are renamed, so the macro can only intro-
duce fresh identifiers. The new syntactic environment binds
these fresh identifiers to the denotations of the correspond-
ing original identifiers in the syntactic environment of the
macro definition. These will be the ultimate denotations of
the fresh identifiers unless subsequent macro expansion ex-
poses an intervening procedure abstraction that binds them.
Since the identifiers were fresh, any such binding must have
been introduced by the same macro call that introduced the
references. Hence the hygiene condition will be satisfied.

Figure 3 defines the transcribe function in terms of match
and rewrite. The transcribe function simply loops through
each rewrite rule π => ρ until it finds one whose pattern
π matches the macro call. It then rewrites the macro call
according to ρ and adds new bindings for any identifiers
introduced by the rewrite to the syntactic environment of
the use.

Actually, rather than matching the entire macro call to
the pattern, it is sufficient to match only the tail (or “actual
parameters”) of the call against the tail (“formal parame-
ters”) of the pattern. This complication is not reflected in
Figure 3.

The match function (Figure 4) delivers a substitution σ
mapping pattern variables to components of the input ex-
pression. It is quite conventional except for one important
wrinkle: Matching an identifier x in the macro use against
a literal identifier y in the pattern succeeds if and only if
lookup (euse , x) = lookup (edef , y). This implies that identi-
fiers in patterns are lexically scoped: bindings that intervene
between the definition and use of a macro may cause match
failure.

For simplicity, the definition of match in Figure 4 as-
sumes that no pattern variable is duplicated.

The rewrite function (Figure 5) rewrites the macro call
using the substitution σ generated by the matcher. It is
also responsible for choosing the fresh identifiers that replace
those that appear in the output pattern and establishing
their proper denotations. transcribe uses divert to add these
new bindings to the environment in which the macro output
is expanded.

match (E, ?v, euse , edef) = {?v 7→ E}

lookup (edef ,x
′) = lookup (euse ,x)

match (x,x′, euse , edef) = {}

match (Ei, πi, euse , edef) = σi, i = 1, . . . , n
σi 6= nomatch, i = 1, . . . , n

match ((E1 . . .En), (π1 . . . πn), euse , edef) = σ1 ∪ . . . ∪ σn

match (E, π, euse , edef) = nomatch,

if the other rules are not applicable

Figure 4: Definition of match (E, π, euse , edef).

rewrite (ρ, σ, edef) = 〈rewrite
′(ρ, σ

′), enew 〉,

where

σ′ = σ ∪ {x1 7→ x′

1, . . . , xn 7→ x′

n},
x1, . . . , xn are all the identifiers that occur in ρ,
x′

1, . . . x
′

n are fresh identifiers,
enew = bind (. . . bind (ident, x′

1, d1) . . . , x′

n, dn),
and di = lookup(edef , xi) for i = 1, . . . , n.

rewrite
′(?v, σ) = σ(?v)

rewrite
′(x, σ) = σ(x)

rewrite
′((π1 . . . πn), σ) = (E

′

1 . . .E
′

n),

where E′

i = rewrite′(πi, σ), i = 1, . . . , n.

Figure 5: Definition of rewrite (ρ, σ, edef).

Given constant-time operations on environments, this al-
gorithm takes O(n) time, where n is the time required by
naive macro expansion.

3 Examples

To make the examples easier to follow, we’ll assume that let
is understood primitively by the expansion algorithm, in a
manner similar to lambda. The initial environment einit thus
has a nontrivial binding for the identifier let in addition to
lambda and let-syntax.

Example 1. Consider the problem of expanding the following
expression in the initial syntactic environment:

(let-syntax ((push (syntax-rules
((push ?v ?x)
=> (set! ?x (cons ?v ?x))))))

(let ((pros (list "cheap" "fast"))
(cons (list)))

(push "unreliable" cons)))

The rule for macro abstractions applies, because

lookup (einit , let-syntax) = let-syntax.

5

The next step is to expand the body of the let-syntax
expression in an augmented syntactic environment

e1 = bind(einit , push, 〈τ, einit 〉)

where

τ = 〈〈(?v ?x), (set! ?x (cons ?v ?x))〉〉

The pattern is (?v ?x), rather than (push ?v ?x), be-
cause the rule will only be examined when the fact that the
head of the form denotes the push macro is already appar-
ent. Thus there is never a need to match the head of the
pattern with the head of the expression to be expanded.

The initializers in the let expression expand to them-
selves, because e1 ⊢ list → list. (Recall that einit , and
therefore e1 as well, is based on the identity environment
ident.)

Next we expand the body of the let expression in the
augmented environment

e2 = bind (bind (e1, cons, cons.1), pros, pros.1)

where pros.1 and cons.1 are fresh identifiers. In e2, the
identifier push denotes the macro 〈τ, einit 〉, so the rule for
macro calls applies to the push expression. We now compute

transcribe ((push "unreliable" cons), τ, e2, einit)

τ consists of only one rule, which matches the input:

match (("unreliable" cons), (?v ?x), e2, einit)
= {?v 7→ "unreliable", ?x 7→ cons}

Note that match made no use of its two environment ar-
guments, because the pattern (?v ?x) didn’t contain any
identifiers. The cond example below gives a situation in
which these environments are used.

Now we compute the replacement expression:

rewrite ((set! ?x (cons ?v ?x)),
{?v 7→ "unreliable", ?x 7→ cons},
einit)

= 〈(set!.2 cons (cons.2 "unreliable" cons)), e3〉

where

e3 = bind (bind (ident, set!.2, set!), cons.2, cons)

and set!.2 and cons.2 are fresh identifiers. transcribe now
delivers the rewritten expression together with an environ-
ment

e4 = divert (e2, e3)
= bind (bind (e2, set!.2, set!), cons.2, cons)

that gives bindings to use in expanding the replacement ex-
pression. The environment e4 takes set!.2 to set!, cons.2
to cons, and cons to cons.1, so

e4 ⊢ (set!.2 cons (cons.2 "unreliable" cons))
→ (set! cons.1 (cons "unreliable" cons.1))

The final result is

(let ((pros.1 (list "cheap" "fast"))
(cons.1 (list)))

(set! cons.1 (cons "unreliable" cons.1)))

Example 2. This example illustrates reliable reference to
local variables that are in scope where the macro is defined.

(let ((x "outer"))
(let-syntax ((m (syntax-rules

((m) => x))))
(let ((x "inner"))

(m))))

To expand this expression in einit , a fresh identifier x.1 is
chosen to replace the outer x, and the let-syntax expression
is expanded in the syntactic environment

e1 = bind (einit , x, x.1)

This leads to expanding the inner let expression in the syn-
tactic environment

e2 = bind (e1, m, 〈〈〈(), x〉〉, e1〉)

Finally a fresh identifer x.2 is chosen to replace the inner x,
and (m) is expanded in the syntactic environment

e3 = bind (e2, x, x.2)

Now

transcribe ((m), 〈〈〈()〉, x〉〉, e3, e1) = 〈x.3, bind (e3, x.3, x.1)〉

where x.3 is a fresh identifer introduced for the right-hand
side of the rewrite rule for the macro m. The denotation of
x.3 is the denotation of x in the environment of m’s defini-
tion, which is x.1. The final expansion is

(let ((x.1 "outer"))
(let ((x.2 "inner"))
x.1))

Example 3. This example illustrates lexical scoping of con-
stant identifiers that occur in the left-hand side of rewrite
rules. Following [9], we adopt the use of an ellipsis token ...
as part of the syntax of patterns, not as a meta-notation in-
dicating that something has been elided from this example.

(define-syntax cond
(syntax-rules
((cond) => #f)
((cond (else ?result ...) ?clause ...)
=> (begin ?result ...))

((cond (?test) ?clause ...)
=> (or ?test (cond ?clause ...)))

((cond (?test ?result ...) ?clause ...)
=> (if ?test

(begin ?result ...)
(cond ?clause ...)))))

The second pattern for this macro contains a fixed identifier
else. This will only match a given identifer x in a use
of cond if the denotation of x in the environment of use
matches the denotation of else in the environment of cond’s
definition. Typically x is else and is self-denoting in both
environments. However, consider the following:

(let ((else #f))
(cond (#f 3)

(else 4)
(#t 5)))

6

Expanding this expression requires calculating
match (else, else, euse , edef) where

lookup (euse , else) = else.1,

lookup (edef , else) = else.

Thus
match (else, else, euse , edef) = nomatch

and the final expansion is

(let ((else.1 #f))
(if #f (begin 3)

(if else.1 (begin 4)
(if #t (begin 5) #f))))

4 Integration issues

We emphasize that our algorithm is suitable for use with
any block-structured language, and does not depend on the
representation of programs as lists in Scheme. Scheme’s rep-
resentation is especially convenient, however. This section
explains how the algorithm can be made to work with less
convenient representations.

The simplicity of the match function defined in Figure
4 results from the regularity of a Cambridge Polish syntax.
For Algol-like syntaxes the matcher could be much more
complicated. To avoid such complications, a macro system
may eschew complex patterns and may specify a fixed syntax
for macro calls.

Our algorithm must understand the structure of the
source program, so Algol-like syntaxes require that the algo-
rithm be integrated with a parser. If the macro language is
sufficiently restricted, then it may be possible to parse the
input program completely before macro expansion is per-
formed. If the actual parameters of a macro call need to be
transmitted to the macro in unparsed form, however, then
parsing will have to be interleaved with the macro expansion
algorithm.

For the algorithm to work at all, the parser must be
able to locate the end of any macro definition or macro use.
If parentheses are used to surround the actual parameters
of a macro call, for example, then mismatched parentheses
within an actual parameter cannot be tolerated unless they
are somehow marked as such, perhaps by an escape charac-
ter. This is a fundamental limitation on the generality of
the syntactic transformations that can be described using a
macro system based on our algorithm.

This is not a particularly burdensome limitation. For
example, it is possible to design a hygienic macro system for
C that allows the for construct to be described as a macro.

Experience with macros in Lisp and related languages
has shown that macros are most useful when local variables
can be introduced in any statement or expression context.
Most Algol-like languages are not fully block-structured in
this sense. C, for example, does not admit blocks as expres-
sions, while Pascal and Modula-2 do not even admit blocks
as statements. Fortunately this particular shortcoming can
usually be overcome by the macro processor. Macros can be
written as though the language admits blocks in all sensible
contexts, and the macro processor itself can be responsible
for replacing these blocks by their bodies while lifting all
local declarations to the head of the procedure body within
which the declarations appear.

In our algorithm, the matcher compares an identifier in
the pattern against an identifier in the input by compar-
ing their denotations. This makes it difficult to use such a
sophisticated matcher in languages such as Common Lisp,
where an identifier may denote many different things at
once, and where the overloading is resolved by syntactic
context. The problem is that the matcher cannot reliably
determine the syntactic context in which the identifier will
ultimately appear. One solution is to ban identifiers from
patterns. Another is to resolve the overloading by relying
on declarations provided by the author of the macro.

5 Previous work, current status, future work

The problems with naive macro expansion have been recog-
nized for many years, as have the traditional work-arounds
[2]. The capturing problems that afflict macro systems for
block-structured languages were first solved by Kohlbecker’s
work on hygienic macro expansion. Bawden and Rees then
proposed syntactic closures [1] as a more general and efficient
but lower-level solution. Our algorithm unifies and extends
this recent research, most of which has been directed toward
the goal of developing a reliable macro system for Scheme.

At the 1988 meeting of the Scheme Report authors at
Snowbird, Utah, a macro committee was charged with de-
veloping a hygienic macro facility akin to extend-syntax [5]
but based on syntactic closures. Chris Hanson implemented
a prototype and discovered that an implementation based on
syntactic closures must determine the syntactic roles of some
identifiers before macro expansion based on textual pattern
matching can make those roles apparent [6]. Clinger ob-
served that Kohlbecker’s algorithm amounts to a technique
for delaying this determination, and proposed a linear-time
version of Kohlbecker’s algorithm. Rees married syntactic
closures to the modified Kohlbecker’s algorithm and imple-
mented it all, twice. Bob Hieb found some bugs in the first
implementation and proposed fixes.

A high-level macro system similar to that described here
is currently implemented on top of a compatible low-level
system that is not described in this paper. Bob Hieb and
Kent Dybvig have redesigned this low-level system to make
it more abstract and easier to use, and have constructed
yet another implementation. It is expected that both the
high-level and low-level macro facilities will be described in
a future report on Scheme [3].

Some problems remain. The algorithm we have described
treats identifiers uniformly, but identifiers in Scheme are lex-
ically indistinguishable from symbols that appear in con-
stants. Consequently any symbols introduced by a macro
will be renamed just as if they were identifiers, and must
therefore be reverted after macro expansion has revealed
that they are part of a constant. This means that constants
introduced by a macro may have to be copied. In this respect
our algorithm improves upon Kohlbecker’s, which copied all
constants, but is still not ideal.

More significantly, the pattern variables used to define
macros might be lexically indistinguishable from identifiers
and symbols. In order for macros that define other macros
to remain referentially transparent, pattern variables must
not be reverted to their original names even though they are
represented as symbols in our existing implementation. We
are not completely certain that this refinement eliminates
all problems with macros that define other macros.

One project we intend to pursue is to integrate our al-

7

gorithm with a module system for Scheme such as that de-
scribed in [4]. For example, it should be possible for a mod-
ule to export a macro without also having to export bindings
needed by the macro’s expansions.

An obvious application for this research is to develop
better macro facilities for other block-structured languages
such as Modula-2.

Acknowledgements

The authors thank an anonymous member of the program
committee who helped us to write the introduction. Jim
O’Toole and Mark Sheldon provided helpful comments on
drafts of the paper.

References

[1] Alan Bawden and Jonathan Rees.
Syntactic closures.
1988 ACM Conference on Lisp and Functional Pro-
gramming, pages 86–95.

[2] P. J. Brown.
Macro Processors and Techniques for Portable Soft-
ware.
Wiley, 1974.

[3] William Clinger and Jonathan Rees, editors.
Revised4 report on the algorithmic language Scheme.
University of Oregon Technical Report CIS-TR-90-02,
to appear.

[4] Pavel Curtis and James Rauen.
A module system for Scheme.
1990 ACM Conference on Lisp and Functional Pro-
gramming, pages 13–19.

[5] R. Kent Dybvig.
The Scheme Programming Language.
Prentice-Hall, 1987.

[6] Chris Hanson.
Personal communication.

[7] Samuel P. Harbison and Guy L. Steele Jr.
C: A Reference Manual.
Prentice-Hall, second edition 1987.

[8] Eugene Kohlbecker, Daniel P. Friedman, Matthias
Felleisen, and Bruce Duba.
Hygienic macro expansion.
1986 ACM Conference on Lisp and Functional Pro-
gramming, pages 151–159.

[9] Eugene E. Kohlbecker Jr.
Syntactic extensions in the programming language
Lisp.
Technical report no. 199, Indiana University Computer
Science Department, 1986.

[10] Jonathan A. Rees and William Clinger, editors.
Revised3 report on the algorithmic language Scheme.
SIGPLAN Notices 21(12), pages 37–79, 1986.

[11] Guy L. Steele Jr.
Common Lisp: The Language.
Digital Press, second edition 1990.

8

