CPS Recursive Ascent Parsing

Arthur Nunes-Harwitt
Nassau Community College
One Education Drive
Garden City, NY 11530

nunesa@newton.matcmp.ncc.edu

ABSTRACT

The parsing problem is ubiquitous in Computer Science.
Perhaps that is part of the reason it has been used so fre-
quently to illustrate the power of continuations and monads.
It is often the case, though, that the parser examples of con-
tinuation passing style and monads are top-down parsers. [
intend to show that the continuation passing style of pro-
gramming naturally leads to bottom-up or recursive ascent
parsers. The programming language Scheme will be used to
code example parsers.

1. INTRODUCTION

Parsing is an important problem. So much so, that we cur-
rently have several powerful technologies available for pars-
ing, such as top-down recursive descent parsing and the
bottom-up LR family of automated parsing tools. Is there
any reason to look beyond these techniques?

The LR automated parsing tools can generate parsers for
a very large class of grammars. Nevertheless, programmers
often write recursive descent parsers despite the fact that
that method can handle a smaller class of grammars. Why?
In a word, recursive descent parsers are hackable. They are
easy to understand, and it is straightforward to insert se-
mantic actions. In contrast, LR tools are black boxes that
generate inscrutable code. By writing a parser using con-
tinuation passing style (CPS) it is possible to get both the
benefit of being able to parse a large class of grammars and
the advantage of being able to understand the parser code.

This paper is structured as follows. First I will summarize
some of the previous work done on parsing. Then I will give
a brief overview of monadic programming since my parser’s
design, while not actually making use of monads, was influ-
enced by those ideas. After that, I will discuss CPS recursive
ascent parsing and give some sample parsers to demonstrate
the power of the technique.

2. REVIEW OF PARSING

E:=+EFE]|n
Figure 1: Grammar 1

This section discusses various approaches to parsing and
their respective advantages and disadvantages.

2.1 Top-Down Parsing

It is easy to write a recursive descent parser by hand; in fact,
often top-down parsing is used to illustrate some technique
in functional programming[11, 13, 14]. While it is possible
to automate recursive descent parsing[l, 5], the intuition
behind the formalism involves viewing grammar variables as
procedures. Each production A ::= B; --- B, can be read,
not as a rewrite rule, but rather as a method for getting A
— namely, get B; through B,,. With this intuition, it is easy
to translate a grammar into code, and it is easy to discern
what a recursive descent parser is doing.

For example, the production
A= Bl,l Bl,ml | | Bn,l n,mpn
corresponds with the following Scheme[7] code.

(define (get-A)
(cond ((eq? (peekToken) predictor_1)
(let ((resultll (get-Bi11))

(resultiml (get-Bim1)))

(make-resultl resultll ... resultiml)))

((eq? (peekToken) predictor_n)
(let ((resultnl (get-Bnl))

(resultnml (get-Bnmn)))
(make-resultn resultnl ... resultnmn)))
(else (error "Syntax error"))))

When there are tokens in the token input stream that can
identify or predict which rule to use, recursive descent pars-
ing works very well. Grammar 1 (Figure 1) is an example
of a grammar that poses no problem for recursive descent
parsing. There are two rules, and they can be distinguished
immediately because one starts with a plus sign and one
starts with a number.

Grammar 2 (Figure 2) is an example of a grammar that is
more difficult. Not only is there no token to predict which
rule to use, but also, because of the left recursion, the parser

E:=FEE+|n

Figure 2: Grammar 2

S <S|M
M = <M>|<

Figure 3: Grammar 3

will go into an infinite loop continually trying to get an E.
Fortunately, there is a simple transformation that eliminates
the left recursion; this transformation also eliminates any
confusion about which rule to pick.

Grammar 3 (Figure 3) is an even more difficult example.
Here there is no simple transformation to apply. The lan-
guage generated by the grammar consists of a sequence of
less-than signs followed by matched nested less-than and
greater-than signs. Any less-than sign could potentially
start the matched portion; the parser would have to guess
which less-than sign it was. Deterministic recursive descent
parsing cannot handle this grammar[5].

2.2 Bottom-Up Parsing

2.2.1 LR Parsing

LR parsing[1, 5] refers to a family of bottom-up parser gen-
erator algorithms. The reason that these techniques are used
to build parser generators rather than actual parsers is that
it is too difficult to construct parsers manually using these
techniques. LR based parsers all shift tokens from the token
input stream onto the parse stack. An oracle then decides if
what is on the top of the stack can be reduced using one of
the productions in the grammar. The oracle is realized as a
finite state machine. Differences in the techniques are deter-
mined by the way look-ahead is incorporated into the oracle;
these differences affect the size of the parser generated.

LR parsing is powerful; LR based parsers can handle all of
the example grammars. However, as mentioned earlier, they
are very difficult to write by hand, and the parser code is
even more difficult to understand. A table representing the
SLR oracle for the parser for grammar 2 (Figure 2) is in
figure 4. Note that the table has many states even for this
simple grammar.

2.2.2 Classic Recursive Ascent Parsing
While it is possible to generate table-driven top-down parsers,
it is also possible to construct procedure-based LR parsers.

action goto
state [n [+ |$ E
0 s4 1
1 s4 acc | 2
2 s3
3 r2 | r2 | r2
4 rl | rl | rl

Figure 4: SLR Parser Table

E = (E — .n)

E = (E — .EE+)

(n, E — n) = (F — n.)

(E,E — .EE+) := (E — E.E+)
(E,E — E.E+) == (E — EE.+)
(+,F — EE~+) u= (E — EE+.)

(F — .FE+) = n({n, E — EE+)

(E — E.E+) i= n({nm E — E.E+)

(E — EE +) = +(+,F — EE +)

(E — .n) = n({n, E — .n)
(n,E — EE+) u= (E — n) (E,E — .EE+)
(n,E — E.E+) u= (E —- n) (E/E — E.E+)
(E,E — EE+) = (E — EE+) (E,E — .EE+)
(E,E — E.E+) == (E — EE+) (E,E — E.E+)
(E — n.) = €

(E — EE+) = ¢

Figure 5: Leermaker’s transformation of grammar 2

This technique is known as classic recursive ascent pars-
ing[2], and can sometimes make for faster parsers[8]. Unfor-
tunately, it does not make for more readable parsers, as the
procedures in the recursive ascent parser correspond exactly
to the states in the LR parsing table.

2.2.3 Leermaker’'s Approach to Recursive Ascent
Leermaker[9] takes a very different view of recursive ascent
parsing. Instead of basing the procedures on states con-
structed in the traditional approach to LR parser construc-
tion, he uses a complex transformation to construct a new
grammar that can be parsed with a recursive descent parser.
This transformation involves items, just as the construction
of the oracle does in the traditional LR approach. Unfor-
tunately, his technique suffers from the same problems as
LR parsers — parsers are difficult to read and write. The
transformed grammar of grammar 2 (Figure 2), which can
be parsed directly by a recursive descent parser, is in figure
5.

2.2.4 Recursive Ascent-Descent Parsing
Researchers, such as Horspool[8], have been concerned about
the complexity and inscrutability of LR parsers. One ap-
proach, called left-corner parsing[3, 8], involves waiting until
enough bottom-up information has been amassed that it is
clear which production must be reduced. This often occurs
before all the variables of the production’s right-hand side
are pushed onto the stack. In that case, top-down techniques
can be used for the rest of the right-hand side. If the bottom-
up part of the parser is written using recursive ascent, this
technique is called recursive ascent-descent parsing. This
approach is powerful, and it is how I would automate CPS
recursive ascent parsing. However, while Horspool is inter-
ested in parser generators, I am focusing on writing parsers
by hand.

3. REVIEW OF MONADS

Although I do not use monads, the parsers presented in this
paper use operators that hide certain parameters. That style
was inspired by monads, and so I review that topic here.

It is well known that the CPS-transform can be used to

model control[12, 6]. This transform adds a continuation
parameter to each term.

T = M.(ka)
M = Me.(k (\a.D))
(IN) = Ae.(8 (un.(N (n.((m n) K))))
call/cc = Mk.(k (Afxe.((f (Av.Ag.(c v))) ¢)))

Moggi[10] was the first to realize that adding parameters
to hold onto information necessary for a particular side-
effect, such as control, can be characterized mathemati-
cally as a monad. He and other researchers[4] point out
that much of the complexity and plumbing can be hidden
in the monadic operators. However, since the last line in-
volves the continuation operator call/cc, it is possible to hide
the plumbing only by introducing another operator callcc=
Ae.(k (Afxe.((f (Av.Ag.(c v))) ¢)). Following the recent
convention[13], I will use the names return and bind for the
monadic operators. These operators are subject to rules
that prevent them from doing anything more than plumb-
ing. We see that if return = Aa.Ak.(k a), and bind =
AcAf Ak (e(Aa.((f a) k))), the CPS-transform can be writ-
ten without the k’s. In this example, (bind W (Aw.M)) is
abbreviated (bind (w W) M).

T = (return x)
Ae.M = (return (\z.M))
(M N) = (bind (m M) (bind (n N) (m n)))

call/cc = callcc

4. CPS RECURSIVE ASCENT PARSING

So far, there have been two approaches to recursive ascent
parsing. The classic approach has a procedure for each state
of the parsing automaton. Leermaker’s approach involves
transforming a grammar G to a new grammar G’, which
can be parsed using a recursive descent parser. Actually,
the two are related: non-terminals in Leermaker’s derived
grammar G’ are items of the original grammar G. CPS
recursive ascent parsing is different from those methods in
that is does not involve computing the items of the grammar.

The name “recursive ascent,” like “recursive descent,” is
used here simply to describe the working of the parser. Fur-
ther, the intuition behind the approach is similar to the
intuition of recursive descent parsing — but turned on its
head. With recursive descent parsing, the parser starts with
the start symbol, works its way down to the terminals, and
then comes back up. With CPS recursive ascent, the parser
starts with the terminals and continues as appropriate up-
wards until the start symbol is reached.

Every parsing procedure has the following structure.

(A (s f) (X (ts svar svar) M))

The parameters s and f are success and failure continua-
tions, where a continuation has the form of the inner ab-
straction. These parameters are visible and are used ex-
plicitly as a means of combination. The inner abstraction

(define (get-E s f)
(token-stream-empty??
f
(test-token-stream??

token-plus?

(popping

(get-E (get-E (reduce 2 E make-sum s) f) f))
(test-token-stream??

number?

(shift E s)

£3)))

Figure 6: Parser for Grammar 1

is hidden using a monadic style. It is not possible to use
an actual monad because no values are returned due to the
continuation passing style. The parameter ts is the token
stream, Syqr is a stack of grammar variables, and s,4; is the
stack of values determined by semantic actions. The param-
eters Syqr and Suq1 could be represented by a single stack,
but I found it simpler to have two stacks. I occasionally
refer to syqr simply as “the parse stack.” Using the parsing
operators keeps the stacks consistent with each other.

There are only a few parsing operators: token-stream-empty??,
test-token-stream??, test-parse-stack??, shift, reduce, reduce-
type, and popping. I use the convention of writing a conclud-
ing double question-mark for any operator that tests one of
the hidden parameters and then calls a success or failure
continuation as a result. The meaning of each operator is
fairly intuitive; their definitions can be found in appendix

A.

Using the same three grammars illustrated earlier, I am go-
ing to give examples in Scheme[7] that show how to write
CPS recursive ascent parsers. These examples will also
demonstrate that CPS recursive ascent parsers are easy to
read, and that they are more powerful than recursive de-
scent parsers. Like recursive descent parsers, CPS recursive
ascent parsers will often try to ‘get’ a grammar variable;
however, there are occasions when there is no top-down pre-
dictor token. In those cases, the parser simply shifts a value
onto the parse stack, and continues to a procedure repre-
senting the fact that the parser ‘has’ that value on the parse
stack.

Grammar 1 (Figure 1) is a simple grammar that is easily
parsed using recursive descent techniques. It should also be
easy to parse using CPS recursive ascent techniques, and,
indeed, it is. Focusing on the terminals, the parser (Figure
6) looks for a plus sign or a number. If it finds a plus sign, it
continues by getting two E’s and then reducing. If it finds
a number it shifts it as an F, skipping an unnecessary step.

Grammar 2 (Figure 2) is more difficult to parse. A top-
down parser cannot handle the grammar until it is rewritten
so that the left recursion is eliminated. While the bottom-
up approaches can handle the grammar as is, they generate
complicated parsers. As we have seen, even the SLR ap-
proach generates many states, and the other approaches to
recursive ascent do no better.

Whereas my parser code for the previous grammar was sim-

(define (get-n s f)
(token-stream-empty??
f
(test-token-stream??
number?
(shift E s)
)

(define (have-E s f)
(token-stream-empty??
s
(test-token-stream??
number?
(shift E (have-EE s f))
£)))

(define (have-EE s f)
(token-stream-empty??
f
(test-token-stream??
token-plus?
(popping
(reduce 2 E make-sum (test-parse-stack??
E-waiting?
(have-EE s f)
(have-E s £))))
(test-token-stream??
number?
(shift E (have-EE s f))
£))))

(define (get-E s f)
(get-n (have-E s f) f))

Figure 7: Parser for Grammar 2

ilar to a top-down parser, here I will start to illustrate how
to write the parser in a bottom-up style that does not elimi-
nate left recursion. The procedures for this parser(Figure 7)
are little or no more complicated than those for a recursive
descent parser.

First I write a procedure that gets a number from the token
stream. If it finds one, it shifts it onto the parse stack as an
FE; otherwise, it calls its failure continuation. Then I write
two more procedures. One corresponds to the case where
there is one F on the parse stack. If the token stream is
empty, it succeeds; if it finds a number on the token stream,
it shifts the number onto the parse stack as an E, and con-
tinues to the two-E case; otherwise, it calls its failure contin-
uation. The other procedure corresponds to the case when
there are two E’s on the parse stack. If it finds a plus sign
on the token stream, it pops off the two E’s, replaces them
with a single E, and then continues to the appropriate pro-
cedure based on what is on the parse stack; if it encounters
a number, it continues to have two E’s on the parse stack;
otherwise it calls its failure continuation. One more proce-
dure, get-F, glues the pieces of the parser together.

Grammar 3 (Figure 3) cannot be parsed by a top-down
parser. A top-down parser cannot pick which rule of S to
use, since both start with a less-than sign. The bottom-up
approaches can handle the grammar, but as this grammar
is more complicated than the previous two, there are even
more states to contend with.

(define (get-< s f)
(token-stream-empty??
f
(test-token-stream??
left-token?
(shift < (get-< s £))
£))

(define (have-M s f)
(token-stream-empty??
s
(test-token-stream??
right-token?
(popping
(test-parse-stack??
<M-waiting?
(reduce 2 M make-pair2 (have-M s f))
£))
£3))

(define (reduce-to-start s f)
(test-parse-stack??
just-87
s
(test-parse-stack??
<S-waiting?
(reduce 2 S make-seq (reduce-to-start s f))
(test-parse-stack??
M-waiting?
(reduce-type S (reduce-to-start s f))
£3)))

(define (get-S s f)
(get-<
s
(token-stream-empty??
f
(test-token-stream??
right-token?
(popping
(test-parse-stack??
<-waiting?

(reduce 1 M make-pairl (have-M (reduce-to-start s f) f))

£))
£3)))

Figure 8: Parser for Grammar 3

Using the techniques developed to parse grammar 2, I will
show that CPS recursive ascent parsing is more powerful
than recursive descent. Furthermore, this parser(Figure 8)
will also be short and understandable, in contrast to previ-
ous bottom-up parsing techniques.

For this grammar, I first write a procedure that shifts less-
than signs onto the parse stack; if there isn’t one, it calls
its failure continuation. I also write a procedure that cor-
responds to the case where there is an M on the top of
the parse stack. If it finds a greater-than sign on the token
stream, the token is popped off, and the M and the less-
than sign below it are reduced to an M. If the token stream
is empty, it succeeds; otherwise, it calls its failure contin-
uation. There are two more procedures necessary to make
things work. A reduction continuation procedure converts
an M at the top of the parse stack to an S, and then reduces
a less-than sign and an S to simply an S. Finally, procedure
get-S plugs the continuations into the appropriate places to
complete the parser.

5. CONCLUSION

While it has long been possible to write parsers by hand,
and to parse a large class of grammars, it has not been pos-
sible to do both. A parser with both qualities is desirable,
since it is easier to understand and modify a hand writ-
ten parser. CPS recursive ascent parsing provides the best
of both worlds, with all the advantages of a hand written
parser and the ability to parse a larger class of grammars.
Questions for future research include, which error handling
strategies are most appropriate, how one can get the best
performance, and how these techniques can be adapted for
non-deterministic parsing.

6. ACKNOWLEDGMENTS

I would like to thank Melissa Nunes-Harwitt for carefully
reading previous drafts of this paper.

7. REFERENCES
[1] A. V. Aho, R. Sethi, J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1985.

[2] F. E. J. K. Aretz. On a Recursive Ascent Parser.
Information Processing Letters, Vol. 29, No. 3,
201-206, 1988.

[3] A. J. Demers. Generalized Left Corner Parsing. Proc.
4th Symposium on Principles of Programming
Languages, 170-182, 1977.

[4] D. Espinosa. Semantic Lego. Doctoral thesis,
Columbia University, 1995.

[5] C. N. Fischer, R. J. LeBlanc, Jr. Crafting a Compiler
with C. Benjamin/Cummings, 1991.

[6] D. P. Friedman, M. Wand, C. T. Haynes. Essentials of
Programming Languages — 2nd Edition. MIT Press,
2001.

[7] R. Kelsey, W. Clinger, and J. Rees editors. Revised®
Report on the Algorithmic Language Scheme. ACM
SIGPLAN Notices, Vol. 33, No. 9, 26-76, 1998.

[8] R. N. Horspool. Recursive Ascent-Descent Parsing.
Journal of Computer Languages, Vol. 18, No. 1, 1-16,
1993.

[9] R. Leermakers. The Functional Treatment of Parsing.
Kluwer Academic Publishers, 1993.

[10] E. Moggi. Notions of Computation and Monads.
Information and Computation, Vol. 93, 55-92, 1991.

[11] C. Okasaki. Even Higher-Order Functions for Parsing
or Why Would Anyone Ever Want to Use a
Sixth-Order Function? J. of Functional Programming,
Vol. 8, No. 2, 195-199, 1998.

[12] J. C. Reynolds. The Discoveries of Continuations.
LISP AND SYMBOLIC COMPUTATION: An
International Journal, Vol. 6, 233-247,1993.

[13] J. Sobel, E. Hilsdale, R. K. Dybvig, D. P. Friedman.
Abstraction and Performance from Explicit Monadic
Reflection. Unpublished manuscript, 1999.

[14] P. Wadler. How to Replace Failure by a List of
Successes. Conference on Function Programming
Languages and Computer Architecture, 113-128, 1985.

Appendix A

Helper code for any CPS recursive ascent parser.

(define peek-token-stream car)
(define pop-token-stream cdr)
(define empty-token-stream? null?)

(define top-stack car)
(define pop-stack cdr)
(define empty-stack? null?)
(define empty-stack ’())

(define-syntax popping
(syntax-rules ()
((popping 7k)
(lambda (ts ps rs)
(?k (pop-token-stream ts) ps rs)))))

(define-syntax shift
(syntax-rules ()
((shift ?7parse-var 7k)
(lambda (ts ps rs)
(?k (pop-token-stream ts)
(cons (quote ?7parse-var) ps)
(cons (peek-token-stream ts) rs))))))

(define (remove n L)
(if (=n 0)
L
(remove (- n 1) (cdr L))))

(define (retrieve n L)
(let loop ((n n)
(L L)
(a’>0Nn
(if (=n 0)

a
(loop (- n 1) (cdr L) (cons (car L) a)))))

(define-syntax reduce
(syntax-rules ()
((reduce ?n 7parse-var 7action 7k)
(lambda (ts ps rs)

(let ((m ?n))
(7k ts
(cons (quote ?parse-var) (remove m ps))
(cons (apply 7action (retrieve m rs))

(remove m rs))))))))

(define-syntax reduce-type
(syntax-rules ()
((reduce-type 7parse-var 7k)
(lambda (ts ps rs)
(7k
ts
(cons (quote ?7parse-var)
(pop-stack ps))
rs)))))

(define-syntax token-stream-empty??
(syntax-rules ()
((token-stream-empty?? s f)
(lambda (ts ps rs)
(if (empty-token-stream? ts)
(s ts ps rs)
(f ts ps rs))))))

(define-syntax test-parse-stack??
(syntax-rules ()
((test-parse-stack?? 7test? s f)
(lambda (ts ps rs)
(if (7test? ps)
(s ts ps rs)
(f ts ps rs))))))

(define-syntax test-token-stream??
(syntax-rules ()
((test-token-stream?? 7test? s f)
(lambda (ts ps rs) ;assumes non-empty stream
(if (7test? (peek-token-stream ts))
(s ts ps rs)
(f ts ps rs))))))

(define (init-s ts ps rs)
(if (empty-token-stream? ts)
(top-stack rs)
(init-f ts ps rs)))

(define (init-f ts ps rs)
(if (empty-token-stream? ts)
(begin
(display "Unexpected end of input.")
(newline))
(begin
(display "Unexpected token ")
(display (peek-token-stream ts))
(newline)))
ts)

Appendix B

Helper code for the example parsers.

Helper code for the parser for grammar 1.

(define (token-plus? t) (eq? t ’+))
(define (make-sum rl r2) ‘(+ ,rl1 ,r2))
(define (parse ts)

((get-E init-s init-f) ts empty-stack empty-stack))

Helper code for the parser for grammar 2.

(define (token-plus? token) (eq? token ’+))

(define (E-waiting? stack)
(and (not (empty-stack? stack))
(not (empty-stack? (pop-stack stack)))
(eq? (top-stack (pop-stack stack)) ’E)))

(define (make-sum rl1 r2) ‘(+ ,r1 ,r2))

(define (parse ts)
((get-E init-s init-f) ts empty-stack empty-stack))

Helper code for the parser for grammar 3.

(define (left-token? token) (eq? token ’<))
(define (right-token? token) (eq? token ’>))

(define (<-waiting? stack)
(and (not (empty-stack? stack))
(eq? (top-stack stack) ’<)))

(define (M-waiting? stack)
(and (not (empty-stack? stack))
(eq? (top-stack stack) ’M)))

(define (<M-waiting? stack)
(if (M-waiting? stack)
(let ((s2 (pop-stack stack)))
(and (not (empty-stack? s2))
(eq? (top-stack s2) ’<)))
#£))

(define (<S-waiting? stack)
(and (not (empty-stack? stack))
(eq? (top-stack stack) ’S)
(let ((s2 (pop-stack stack)))
(and (not (empty-stack? s2))
(eq? (top-stack s2) ’<)))))

(define (just-S87 stack)
(and (not (empty-stack? stack))
(eq? (top-stack stack) ’S)
(empty-stack? (pop-stack stack))))
(define (make-pairl token) ’(< >))
(define (make-pair2 token M) ‘(< ,M >))
(define (make-seq left right) (list left right))

(define (parse ts)
((get-S init-s init-f) ts empty-stack empty-stack))

