
LispMe: An Implementation of Scheme for the Palm Pilot

Fred Bayer

Elisabethstr. 8

80796 Munich, Germany

fred@lispme.de

Abstract

LispMe is an implementation of the Scheme programming
language for the Palm Pilot series of Personal Digital Assis-
tants (PDA). The very limited resources of these kinds of
devices had significant influence on design decisions, regard-
ing both memory architecture and user interface integration
within the Palm environment, as well as the handling of top-
level definitions. LispMe compiles Scheme expressions to a
byte code for a virtual machine which is based on the SECD
model.

In this article we show how to overcome the restrictions
of the Palm Pilot and present several extensions to the basic
SECD model and to the compiler.

1 Introduction

Scheme [6, 10, 18] is a lexically scoped dialect of LISP, in-
cluding first-class continuations. It is extensively used for
research, education, and application programming, since it
is a small, but elegant and expressive language.

Palm Pilots [14] are small electronic organizers with very
limited memory and computing power, but easily portable
in a shirt pocket.

The SECD [8, 13] virtual machine is a simple, but elegant
model for implementing LISP-like languages.

This article describes how we combined these three ingre-
dients to form a tool called LispMe1 to program in Scheme
anywhere.

1.1 The Palm Pilot and its constraints

Palm Pilots are small hand-held devices and mainly used
for organizing purposes, for example storing addresses and
dates. Data is input primarily by stylus movement recogni-
tion (GraffitiTM ) and is backed up to a desktop computer
via a RS-232 serial port.

However, Palm Pilots are complete computers running
an operating system called PalmOS, and they can be pro-
grammed by users, since 3COM (the manufacturer) pub-
lished the API and a number of development kits, including
a port of the GNU C compiler, are available.

1There is no special meaning with this name other than it is a cross
between LISPKIT and Scheme. One could also read ‘Me’, though, as
an acronym for ‘mobile environment’ or ‘micro edition’ like in Java
ME.

Due to their size and the need for low power consump-
tion, there are many restrictions2 for applications running
on them:

• 12 kB usable RAM

• 2 kB stack

• max. 64 kB contiguous data blocks

• max. 64 kB code size

• single-tasking OS

• 160 × 160 pixels monochrome screen

• 16 MHz 68000 processor

1.2 Motivation

Now, why would one want to have Scheme running on this
kind of hardware? There are several reasons: First, due to
its size, the Palm Pilot organizer can accompany its owner
anywhere, so one can program in Scheme anywhere one feels
like it or anywhere one needs to do so. For example, a
number of computer science students reportedly use LispMe
to do their homework assignments while on public transfer,
and at least one university professor has used it to design
class materials while travelling on project work.

Another application of LispMe is as a general scripting
language for simple tasks. For example, many people are
using the Palm Pilot for gathering data like article numbers
and amounts in a warehouse. Since LispMe can access any
file on the Palm Pilot, it can evaluate this data and create
reports or graphical plots, for example.

Last but not least, implementing Scheme on a device as
small as a Palm Pilot was a challenge hard to resist.

1.3 Henderson’s LISPKIT

In his textbook [8] Peter Henderson describes a purely
functional language called LISPKIT, since it works on S-
expressions like Lisp and he also employs a Lisp-like syntax
for it, which facilitates meta-syntactic applications intro-
duced in later chapters.

LISPKIT is a fairly small language (much smaller than
Scheme), supporting only symbols, integers, and lists. LISP-
KIT uses static scoping and supports first-class closures like

2The figures given here are those for the original Pilot. Some of
them where relaxed with later models, but for backward compatibility
only in an evolutionary manner, e.g., the size of a memory block is
still restricted to 64 kB, so our argumentation still applies.



Scheme. Henderson introduces a virtual machine architec-
ture based on Landin’s SECD machine [13], and describes
a compiler from LISPKIT to SECD for it. This compiler is
written in LISPKIT, translated by hand to machine code,
and is bootstrapped afterwards.

Furthermore, Henderson shows some low-level imple-
mentation techniques for the basic (von Neumann) machine
operations, e.g., storage allocation, input/output, and the
virtual machine itself.

Finally, he mentions that heap sizes of 10k cells should
be sufficient to run all examples and exercises in his book,
including the compiler itself. This property made Hender-
son’s approach eminently relevant for implementing Scheme
on the Palm Pilot.

1.4 The LispMe dialect

LispMe implements most concepts and data structures of
the R4RS [6] as well as some common extensions like eval

and macros. LispMe does not support hygienic macros from
the R5RS [10], but uses tree transformation procedures as
in “Scheme and the Art of Programming” [16].

One difference to R4RS Scheme is how LispMe handles
top-level definitions. The reasons and implications are de-
scribed in Section 5.2.

From the tower of numeric types, small integer, real,
and complex numbers including transcendental functions are
supported. Big integers and rationals will probably be sup-
ported in future versions.

LispMe also includes wrappers for functions specific
to the Palm Pilot like graphical I/O, sound output, and
database access. Perhaps the most novel feature of LispMe
is its seamless integration within the Palm Pilot’s event-
driven user interface framework.

1.5 Related work

Several implementations of Scheme are based on virtual ma-
chines, such as Scheme 48 [11] and PC Scheme [2]. Imple-
mentations of continuations are discussed in “Lambda, the
Ultimate Label” [5]. Currently no other implementation of
Scheme exists for the Palm and there are no published arti-
cles about other languages3 for this platform.

There exists an implementation of Caml Light for the
Palm [15], but its development seems to have stalled.

1.6 Source code

LispMe is published under the GNU General Public License,
so its complete source code is freely available at the web site
[3].

1.7 Terms and abbreviations

A number of key terms require definition before we proceed.

immediate objects Values which are not heap addresses
but are special bit patterns used to encode values from
[small] domains, like characters and [small] integers.

VM Virtual machine.

3Apart from cross-compilers, other languages running entirely on
the Palm are Basic, Forth and C. Michael Winikoff’s web site [20] con-
tains a fairly complete list of programming language implementations
for the Palm.

variable-arity closure A closure accepting a variable
number of arguments. They are defined by using a
dotted parameter list (see also Dybvig and Hieb [7]).

pickling a value Transferring a value from the dynamic
heap to the database heap, possibly requiring changing
its internal structure.

unpickling a value The inverse operation of pickling.

dynamic heap The section of the Palm RAM freely usable
by the current application.

database heap The rest of the Palm RAM. It is organized
like a file system and (normally) write-protected.

Scheme heap The part of the memory where Scheme pairs
are stored (in contrast to the last two terms originating
from PalmOS).

1.8 Overview

The rest of this article is organized as follows:

• Section 2 shows how we designed LispMe’s memory
architecture to fit within the Palm Pilot’s memory
model.

• Section 3 describes the interaction between the Palm
Pilot user interface and LispMe.

• Section 4 describes LispMe’s extension module mech-
anism.

• Section 5 discusses some design decisions in the context
of the Palm Pilot environment.

• Section 6 reminds the reader of the original SECD ma-
chine model and describes LispMe’s extensions to it.

• Section 7 does the same with the compiler.

2 Memory architecture

2.1 Palm Pilot memory overview

The main processor of a Palm Pilot is the Motorola Drag-
onball, which is a 68000 architecture extended with LCD
controller and other features which are irrelevant for this
article.

Palm devices contain 1–2 MB of ROM containing Pal-
mOS and the built-in applications (Datebook, Memopad,
etc.) and 1–8 MB of RAM, which is divided into two blocks:

• 32–96 kB of “real” (writable) RAM called the dynamic
heap. This range is further divided into

– Screen memory

– System variables, buffers, etc.

– Stack (only 2–4 kB)

– Finally, only 12–36 kB are usable for applications
as RAM in the classical meaning.

• The rest of the RAM (the database heap) is write-
protected and is managed like a file system (Palm
Computing calls those files “databases”). Each
database consists of a number of records of variable
length, each of which must be less than 64 kB. Each
record may be moved around in the address space
when the operating system tries to defragment the



memory, unless the record is locked during use by an
application. To write to a record, special system calls
are employed, which carefully check their parameters
and disable hardware write-protection for a short time.

Each application is also a special kind of database, which
contains both the machine code and the graphical resources.
The machine code need not be loaded into the “real” RAM
for execution, but executes in place, which makes applica-
tion switches very fast and justifies the claim that PalmOS
is in fact a single-task OS. Applications should save their
state when the user switches to another program and re-
store it immediately upon re-starting the application.

2.2 LispMe memory usage

Having only 12–36 kB of free RAM for the entire Scheme
heap and other run-time data structures is much too re-
strictive, so we looked for other methods. One possibility
(which is employed in LispMe) is keeping the entire mem-
ory image in a Palm database, but the requirement to use
system traps for every single write access is very expensive
in terms of time.

2.3 Disabling write-protection

Fortunately, it is possible to disable write-protection of the
database records by a system call. This technique can be
dangerous, since a buggy program may not only crash the
application itself, but destroy other applications (code and
data), too. In the worst case it may erase the entire device
by overwriting central memory allocation structures.

But considering the alternatives (only a very small
Scheme heap or very slow write access), this seems to be
the only solution. There are several other Palm Pilot pro-
grams using a similar technique to access a larger amount of
memory than the system usually permits. As long as such
a program is carefully designed and tested, disabling write-
protection appears to be a practical solution. In fact, we
never received any report from users about data loss4.

2.4 The session concept

Another advantage of storing the Scheme heap in a Palm
database becomes obvious when considering application
switches: since PalmOS is effectively single-tasking, LispMe
would have to save its memory image to a database while
another application is running (for example the user is edit-
ing some Scheme source with the Memopad) and restore it
afterwards. But LispMe’s data is already in a database, so
nothing need to be done at all (with the exception of certain
foreign data types, see section 4.2). Even a running evalu-
ation can be suspended by switching to another application
and will be continued on re-starting LispMe.

Furthermore, there can be many databases, each con-
taining an entire memory image, making it possible to have
several independent co-existing LispMe instances. These in-
stances are called sessions and the corresponding databases
can be backed up, transferred to other Palms or distributed
over the Internet.

Any session can be associated with an icon on the Palm
application selection screen, which invokes LispMe with the
specified session database and starts evaluating the current

4According to web server statistics, LispMe has been downloaded
about 15000 times (until October 2000). This number includes all
version updates, so we estimate several hundreds of LispMe users.

expression. This method allows writing “stand-alone” Palm
applications in LispMe.

2.5 Memory layout

In each session database, at least 6 records are used:

1. Global variables, root pointers

2. The atom store; all symbol names (which are not built-
in names) are entered here by the reader. The names
are simply stored one after another separated by ’\0’
bytes.5 Atoms are not garbage collected, which is no
real problem with program sizes possible on the Palm.

3. The floating point store; all floating point numbers
are stored here in IEEE-754 double precision format,
occupying 8 bytes each. Unused floating point slots
are linked into a list.

4. The Scheme heap; each heap cell is 32 bits and consists
of two pointers (car and cdr), 16 bits each. The cells
do not carry type tags, instead the pointers do so, as
shown in table 1.

All pointers into the Scheme heap are relative pointers
(offsets) to a virtual heap base lying 32 kB behind the
actual beginning of the heap. This approach allows
relocation of the heap by the operating system. Ad-
ditionally, this saves memory (16 bit relative pointers
vs. 32 bit absolute pointers) and maps nicely to the
68000 addressing mode address register indirect with
index and offset, which uses signed offsets [19].

5. The contents of the input field (see 3.1 for details)

6. The contents of the output field (see 3.1 for details)

7. Each vector and string occupies a single database
record as described in 2.7.

This memory model can easily be extended to 32 bit
pointers by changing the access macros for use on desktop
computers. In fact, we did this in a test implementation of
the SECD machine running under Linux.

2.6 Garbage collection

LispMe uses a mark/scan garbage collector for heap cells and
floating point cells. To store the mark bits, a temporary
bit vector in the dynamic heap is used. The reasons for
preferring mark/scan to copying garbage collection are:

• Memory usage has top priority on the Pilot. Wasting
half of the memory with copying GC is not affordable.

• All heap cells have the same size, so fragmentation
cannot happen

• Heap compaction (provided by copying GC) does not
affect performance, since there is no virtual memory
or cache on the Pilot.

• The disadvantage that mark/scan GC has to touch
every memory cell in the Scheme heap is insignificant
with heap sizes possible on the Pilot.

This approach is justified by the fact that a typical garbage
collection of 16k heap cells takes about 0.2 seconds which is
barely noticable.

5Symbols do not have additional structure in LispMe, they con-
sist solely of their printing name. Additionally, symbols can only
be created by the reader or the gensym procedure, there is no
string->symbol in LispMe, so the ’\0’ byte used as a separator
cannot be part of a symbol.



sddd dddd dddd ddd1 15 bit signed integer (-16384–16383)
sddd dddd dddd dd00 pointer into the Scheme heap, 16 bit signed offset from virtual heap base
dddd dddd dddd 0010 unsigned 12 bit index into atom table (shift right 4 bits), 4 kB atom space
dddd dddd dddd 0110 unsigned 12 bit index into double table (shift right 1 bit and unmask 3 low bits), 4096 reals
aaaa aaaa 1000 1110 8 bit ASCII char
uuuu uuuu 0100 1110 vector in heap, upper 8 bit of UID, cdr field of this cells contains lower 16 bit (untagged)
uuuu uuuu 0101 1110 string in heap, upper 8 bit of UID, cdr field of this cells contains lower 16 bit (untagged)
ffff ffss sss0 1010 built-in symbol, 6 bit frame and 5 bit slot index
ffff ffss sss1 1010 built-in value, 6 bit frame and 5 bit slot index
tttt tttt 0111 1110 foreign data, 8 type bits, cdr field of this cell points to 32 bit value (untagged)

Table 1: Bit patterns used for LispMe values.

2.7 Strings and vectors

Strings and vectors are kept outside the main Scheme heap,
in a separate database record each. They are accessed by
a descriptor cell in the heap containing the 24 bit “unique
identifier” of the record. The length of the vector or string
need not be stored since it can be retrieved from the record
handle by a system call.

Strings can contain any characters, including ’\0’ bytes,
which allows using strings for low-level binary data (bitmaps
for example) in interfaces to Palm system calls. Since
records of size 0 are not allowed, the empty string and the
empty vector are special immediate objects.

2.8 Immediate objects

Several kinds of objects are directly encoded in the pointer
value without requiring cells from the Scheme heap or other
objects. These are

• small integers from −16384 to 16383

• all characters

• some special values #t, #f, (), ""

• special tags used to identify internal types (closures,
continuations, macros, delayed expressions)

2.9 Built-in symbols and primitive operations

To avoid filling the very limited atom store with the names
of LispMe’s primitive operations, they are kept in a two-
dimensional (ragged) table. This table is accessed by a 6 bit
frame index and a 5 bit slot index, fitting in a single 16 bit
pointer. Separating frame and slot indices is advantageous
for grouping related operations and is the basis of the mod-
ule extension mechanism described in Section 4.1.

Frame 0 of the primitives table is reserved for the special
values and tags mentioned in Section 2.8.

2.10 Foreign types

To store PalmOS-specific values (like database handles,
sockets, or calendar dates), LispMe uses ordinary cells of
the Scheme heap where the car contains a type tag as shown
in table 1 and the cdr points to a cell containing a 32 bit
word, which is interpreted depending on the type tags. By
putting the descriptor cell at a lower address than the value
itself, we can ensure that the arbitrary bit pattern will not
be misinterpreted by the garbage collector.

Figure 1: The LispMe main dialog.

2.11 Summary and conclusion

Even within the severe constraints of the Palm’s memory
model a Scheme heap of a useful size can be implemented
for which a simple garbage collection algorithm is sufficient.
The persistence of a memory image during invocations of
LispMe and the possibility of having an unlimited number of
independent memory images both have proved very useful.

The memory model is scalable and can be adapted to fu-
ture versions of PalmOS allowing bigger memory blocks. In
this case, other garbage collection strategies may be prefer-
able.

3 The user interface model

The layout and attributes of the user interface elements
(buttons, entryfields, lists) are stored in resource databases,
which can be created by a variety of tools.

These controls are assigned behaviors by employing an
event loop which waits for events from the system event
queue and calls the appropriate event handler.

Typically, a Pilot application consists of several event
handlers (one for each dialog or “form” in Palm jargon),
which receives elementary events from the system and either
handles them or passes them on to other handlers, which
may create other more complex events from them6.

3.1 LispMe UI

LispMe itself must follow this event model, since there is
unfortunately no stdio style I/O system[12], so a form is
used, which contains both an input and an output text field.

Additionally, there is no standard mechanism like CTRL-

C to interrupt an evaluation and the user application may
only use one thread, so the VM itself has to check for the

6For example, a pen down event followed by a pen up event within
a rectangle specified in a resource file is transformed to a button

pressed event.



Break button. The VM does so after 1600 VM steps or af-
ter output operations or garbage collections to maintain a
balance between check overhead and responsiveness. Mac-
Scheme [5] uses a similar technique, but counts procedure
calls instead of VM instructions.

Writing programs on a Pilot using Graffiti can be a te-
dious task, so we tried to provide a sophisticated develop-
ment environment to minimize taps and pen strokes:

• Parentheses matching

• List of all known symbols with completion option

• Display argument list of both built-in functions and
closures

• History of expressions evaluated

• Evaluate selected text region

3.2 Application UI

Some Palm Pilot programming environments, like PocketC
and KVM, use an ad-hoc model for implementing graphical
interfaces. This means they draw the elements of the in-
terface using graphic primitives and handle all events them-
selves without using the PalmOS UI functions.

Those interfaces generally behave in a different way than
native PalmOS applications and furthermore require addi-
tional libraries and thus memory.

A better way is to use the existing PalmOS UI model:
Dialogs are created as resource databases using any of the
available tools, and the event handlers are coded in Scheme.
LispMe handles all necessary details to call a Scheme closure
when receiving a native system event.

Early versions of PalmOS did not support dynamic cre-
ation of UI controls, all UI elements had to be placed in a
resource database and had to be accessed by their numer-
ical id, so LispMe had to follow this low-level mechanism,
too. However, PalmOS 3.0 introduced dynamic creation of
controls, so a higher-level mechanism for UI access (by us-
ing foreign types encapsulating the underlying PalmOS data
structures, e.g.) is now possible. Future versions of LispMe
will utilize this mechanism.

3.3 Lifecycle of a dialog

A dialog is created in LispMe using the call (frm-popup id

handler)
7 which does the following:

1. Saves possible current dialog context onto a stack (see
below).

2. Displays the dialog with resource identifier id (which
is loaded from the current open resource database).

3. Installs the Scheme closure handler (which should ac-
cept a variable number of parameters) as the current
event handler.

Now each low-level event received by LispMe is transformed
into a symbolic representation and the Scheme event handler
is called. The handler should return #t to indicate that the
event has been handled and should not be passed on to other
(system) handlers, or #f to allow passing on the event.

7The user interface functions are named similarly to the underlying
functions in the PalmOS API[14]. The prefix frm is an abbreviation
for form, the Palm jargon for dialog.

The call (frm-return value) terminates the current dialog
and makes value the return value of the original frm-popup

call, so the ‘context’ indicated above is in fact the Scheme
continuation of the frm-popup call.

3.4 Dialog hierarchy

Dialogs can be nested: By issuing another frm-popup call in
an event handler a new subdialog is displayed which has is
own event handler. So the data structure stored is a stack
of pairs of a closure (the event handler) and a continuation.

Another possibility is replacing the current dialog by an-
other (instead of nesting it) by using (frm-goto id handler).
This discards the current event handler and stores no contin-
uation, but simply installs the new handler. A subsequent
frm-return activates the continuation of the last frm-popup

call.

3.5 Application example

Assume a simple application to count items by tapping a
button. It has two buttons, one to increment and one to
reset the counter and a (read-only) text field displaying the
current count. The dialog has resource id 1000, the text
field 2000, the increment button 3000 and the reset button
3001. The LispMe code for this application is:

(define (run)
(set-resdb "Sample resource")
(frm-popup 1000 handler)) ; display dialog

(define handler
(let ((count 0)) ; note: outside of lambda
(lambda (event . args) ; note var. args

(case event
((frm-open) ; dialog has been opened

(fld-set-text 2000 count)) ; display counter
; LispMe automatically converts to a string

((ctl-select) ; a button has been pressed
(case (car args) ; which button?

((3000) ; increment button
(set! count (+ count 1)))

((3001) ; reset button
(set! count 0)))

(fld-set-text 2000 count)) ; redisplay counter
(else #f))))) ; pass on other events

Note that count is in the environment stored with the han-
dler closure, so it persists from one handler call to the next
one.

Just like any other closure in Scheme, an event handler is
called in the environment in effect when its lambda abstrac-
tion has been executed. This way one can write higher-order
functions returning event handlers whose state is kept in the
enclosing environment. Thus one can have several instances
of the same dialog (but with different values) in an object-
oriented style.

Another possibility is concatenating several event-
handling procedures using higher-order combinators, e.g.,
to include common handling code for a particular menu into
many different dialogs.

3.6 Summary and conclusion

In comparison with other languages Scheme, due to its lexi-
cal closures and higher-order procedures, is very suitable for
coding handler procedures in an event-driven user interface.
Integrating this paradigm within the Palm’s GUI framework
was quite straightforward.



4 Extending LispMe

4.1 Modules

An extension module is an object file which is statically
linked to the LispMe executable8. It provides an array of
primitive symbols as described in Section 2.9 together with
their interpretation which can be:

1. An array of VM opcodes to be generated.

2. The type signature of the primitive operation and the
address of a native C function to be called by the VM.

3. The address of a C function to compile the special form
introduced by this keyword. New VM opcodes can also
be put into the generated code which dispatch to a VM
extension function.

An extension module can optionally define a module con-
trol function, which is called on several events to ensure
proper module initialization:

• Application start and stop: Open and close system
libraries, register hooks for foreign types (see Sec-
tion 4.2).

• Session creation and deletion: Create and destroy
databases or other resources specific to this module.

• Scheme heap initialization: Create variables, reset
other resources.

• Session activation and deactivation: Cache heap-based
variables, unpickle and pickle other resources.

4.2 Foreign types

Foreign types are defined in extension modules (see Sec-
tion 4.1). To integrate foreign types seamlessly into the rest
of LispMe, extension modules can register C functions to be
called

• when printing a foreign value

• when comparing two foreign values (of the same type)
with eqv?

• when marking a foreign value during garbage collection

• when destroying a foreign value, either due to garbage
collection or session deletion

• when pickling or unpickling a foreign value

The last item is perhaps the most interesting. Since PalmOS
is a single tasking OS, the LispMe application must be
stopped and restarted when using other applications and
thus save and restore data from the dynamic heap to
more permanent memory. All kernel objects are stored in
database memory, anyway (see Section 2.5), so copying them
is not necessary, but foreign values often contain pointers to
the dynamic heap.

In many cases, foreign values cannot be saved by simple
binary copy. Instead they must be converted to an external
representation, for example, open file handles are converted
to file names and reopened when the session is reactivated.

8We are planning to provide dynamic (runtime) linking in future
versions.

5 Design decisions

5.1 Internal data structures

Both LISPKIT and LispMe use lists in several places where
other Scheme implementations use vectors for implementing
environments and VM code sequences.

The reason is both historical and technical. LISPKIT
does not provide vectors at all, and so LispMe originally
did not include them, either. Vectors were added later to
LispMe but the Pilot’s memory architecture causes a slight
(constant) overhead for vector accesses and a significant
overhead for vector creation, so vectors were not used to
re-implement environments.

Usually argument lists and environment frames are small
— especially when considering the Palm Pilot’s limit of 16k
Scheme heap cells — so the linear complexity of lists results
in acceptable performance. Additionally, list-based imple-
mentations enable elegant translations of function calls and
conditionals, as shown in Section 6.1 and allow an elegant
optimization for accessing global variables, as shown in Sec-
tion 6.8.

5.2 Top-level environment

Steele and Sussman discuss in The Art of the Interpreter [17]
top level bindings versus referential transparency and come
to the conclusion that free variables should be bound dy-
namically in the top-level environment to allow incremental
program development.

However, for a small system like LispMe, another ap-
proach which was partly inspired by the Hugs Functional
Language Environment [9] seemed practical.

5.3 LispMe’s approach

LispMe handles top-level definitions differently from other
Scheme implementations, i.e., it does not accumulate them
into a single top-level environment. LispMe further requires
each name to be bound statically and does not resolve top-
level names dynamically.

This behaviour is similar to the Hugs Functional Lan-
guage Environment [9] which strictly separates definition
scripts from the expressions entered at top-level (which are
evaluated using the definitions from scripts loaded earlier,
but does not allow entering new ones). LispMe extends this
system in three ways:

1. It allows definitions entered interactively and treats
them like a single source file.

2. It allows “popping” the last loaded source file (or in-
teractively entered definition) from the stack of defini-
tions.

3. Like Hugs, it can show a list of all identifiers currently
defined, but grouped by source file (unlike Hugs).

Both LispMe and Hugs require that all names must be de-
fined in the current source or in a previously loaded one,
so all variable addresses can be computed once and for all
at compile-time, avoiding the difficulties with the mixture
of lexical and by-name references described by Abelson and
Sussman [1] in the section “Compiling define expressions”9.

9On the other hand, this requirement allows removing the top-
most environment frame later without invalidating lexical addresses.



One thing Hugs does and LispMe does not, is automati-
cally partitioning a source file into cliques of mutual depen-
dent definitions, though this is only necessary when a source
file contains function definitions which are called while load-
ing the source (to initialize some variables).

Each source file to be loaded is treated as a set of mutual
recursive definitions and is thus transformed into a equiva-
lent letrec-block with an empty body. On loading a source
file, this letrec-block is compiled and executed. As usual,
during execution of the block, the environment is extended
by a frame containing all (top-level) bindings of the source.
Now this environment frame is captured and pushed onto
the global environment stack, so the net effect of loading a
source file is extending the global environment by a frame
containing the definitions from the source.

As an example, assume the following expressions entered
sequentially into LispMe’s top-level:

(define x 1)
(define f (lambda () x))
(define x 2)
(f)

The last expression evaluates to 1, because it is inter-
preted as

(letrec ((x 1))
(letrec ((f (lambda () x)))
(letrec ((x 2))

(f))))

so the result is 1 since x is lexically bound and cannot be
rebound later. Of course, x can be modified with set! later
to achieve the effect of a redefinition.

LispMe implicitly puts all definitions in a source file into
a begin block to allow mutually recursive definitions.

5.4 Discussion

By requiring all used names to be defined earlier, LispMe
encourages a bottom-up style of programming, where stan-
dard Scheme additionally offers the top-down approach by
allowing unbound identifiers resolved at runtime.

Steele and Sussman’s [17] motivation was to allow inde-
pendent definition, replacement and debugging of parts of
a (presumably) large program. All effects of redefinitions of
top-level names can be achieved by assignment using set!

10 ,
so the only thing missing in LispMe is the possibility to write
definitions using not-yet-defined names. But this feature is
more likely needed in larger programs not possible on the
Palm Pilot anyway. In any case, one can still write dummy
definitions for those names in the meantime.

On the other hand, since LispMe does not accumulate
all definitions into a single top-level pool, but maintains a
stack of loaded source files allowing removal of definitions,
this provides the user with easy control over the code loaded.
This is especially useful in a restricted system like the Palm.
The positive response from LispMe users about its interface
further assured us that this approach is appropriate.

6 The SECD virtual machine

The SECD machine model used by LispMe is largely based
on the design presented by Henderson [8]. However, in
LispMe it is extended in several ways.

10LispMe provides an option to transform re-definitions of already
bound variables into assignments to avoid having to modify the
Scheme source code.

6.1 The original SECD machine

The SECD machine derives its name from the four main
registers of the virtual machine (VM):

S the stack — used to hold intermediate values during eval-
uation

E the environment — used to hold variable values during
evaluation

C the code — used to hold the machine code program being
executed

D the dump — used as a stack to hold other registers while
calling a function

Theoretically, S and D could be combined into a single reg-
ister, but this would complicate the state transitions for the
VM instructions. Each of the registers contains [a pointer
to] an S-expression. To show the effect of a VM instruc-
tion, state transitions are used, which describe the contents
of each register before and after one VM step.

s e c d → s′ e′ c′ d′

For example, the state transition for the VM instruction
LDC

11 used to load a constant on top of the stack is

s e (LDC x.c) d → (x.s) e c d

meaning that E and D have not changed, the code list
in C has been shortened by the first two elements and the
constant x appearing after the instruction LDC has been
pushed onto the stack S.

All implemented VM instructions and the corresponding
numeric codes are defined in the source file vm.h

The meaning of most instructions is quite straightfor-
ward, since many of them encapsulate operations on simple
datatypes, which expect their arguments on the stack (S)
and leave their result on the stack, too:

(a b.s) e (SUB.c) d → (b − a.s) e c d

However, three mechanisms are noteworthy, both be-
cause they differ from other virtual machines and undergo
further extensions in LispMe:

6.2 Conditionals

Executing different code sequences depending on a condi-
tion works differently from most other VM architectures,
where usually jumps to compiler-generated machine code
addresses are employed. The SECD machine exploits the
fact that register contents are arbitrary trees, so an entire
code sequence can occupy a single “machine code location”.

To implement the if special form of Scheme, the SEL in-
struction is used, which activates one of two code sequences
depending on the truth value on top of the stack:

(x.s) e (SEL ct cf .c) d → s e ct (c.d)

(#f.s) e (SEL ct cf .c) d → s e cf (c.d)

11For performance reasons, the instructions are encoded within a
16 bit word.



In any case, the rest of the code (the “continuation”) is
saved on the dump D, whereas the environment E does not
need to be saved.

Each of the two branches is expected to end with a JOIN

instruction, which restores the continuation saved on the
dump:

s e (JOIN) (c.d) → s e c d

6.3 Function calls and environments

Each function call builds an association between the func-
tion parameter names and the actual arguments. Free vari-
ables are resolved in an outer (lexical) environment in the
standard Scheme (or lambda calculus) fashion, so an envi-
ronment is a stack of associations and implemented as a list
of lists.

LISPKIT (and thus LispMe) separate names from values
in their environment structures: there are in fact two iso-
morphic (two-level) trees. One contains the variable names
(symbols) and the other one contains the associated values
on corresponding positions. This has the advantage that
variable names do not have to be stored at runtime and con-
struction of a single environment frame at runtime is very
simple: Just cons all arguments of a function call into a list
and use it as the innermost environment frame. Steele and
Sussman already used this technique in the original Scheme
report [18] (see “This ain’t A-lists”).

All variables are addressed using a two-component ad-
dress:

1. the (relative) frame number beginning with the current
frame

2. the position of the value in this frame

The compiler transforms all variable references into these
addresses and thus provides lexical scoping. Unbound vari-
ables cause a compile-time error.

To apply a function, LISPKIT expects two values on the
stack:

1. Topmost: the closure (or continuation, see later) to
apply

2. Next to top: a list of all arguments

Given that, the AP instruction saves all registers on the
dump (D) installs the closure’s code in C and builds a new
environment from the function arguments and the environ-
ment part of the closure (not the current environment to pro-
vide proper lexical scoping) and executes C with an empty
stack:

((c′.e′)v.s) e (AP.c) d → () (v.e′) c′ (s e c.d)

When a function application has finished, it executes the
RTN instruction, which restores the registers saved on the
dump previously and pushes the return value of the function:

(x) e′ (RTN) (s e c.d) → (x.s) e c d

6.4 Recursion

To be able to refer by name to the function being applied,
the closure’s environment must contain a reference to the
closure itself. To implement this cyclic structure, LISPKIT
uses 2 new VM instructions: DUM creates a new dummy
environment frame Ω implemented by a special tag. The
transition for DUM is

s e (DUM.c) d → s (Ω.e) c d

Trying to access this frame results in LispMe’s Sucked
into black hole error message, which is not a problem, since
the dummy frame will be replaced later, anyway.

RAP (“recursive apply”) is much like AP, but instead
of extending the environment, it expects the top-most envi-
ronment frame to be Ω and replaces it using set-car!:

((c′.e′)v.s) (Ω.e) (RAP.c) d → () e′′ c′ (s e c.d)

where e′′ is the cell obtained by (set-car! e′ v). Be-
cause of the construction of the code list, RAP is always ex-
ecuted when e′ = (Ω.e) and thus creates the cycle described
above.

6.5 Extending closures

To provide error checking, we have extended the representa-
tion of closures. Henderson’s closures are simple pairs of the
code list and the environment, which inhibits error checking.
LispMe adds a type tag to the closure and further includes
the arity a in the closure object, leading to the representa-
tion ([clos] a c.e)

To denote variable numbers of parameters, negative ar-
ities are used as follows: −1 indicates any number of pa-
rameters (created by (lambda x ...)), −2 one required and
any number of optional parameters (created by (lambda (x

. rest) ...)) and so on.
The compiler always generates the same code for a func-

tion call, disregarding the arity of the closure. Instead, arity
check is done at runtime and in the case of variable-arity clo-
sures [7], the argument list is transformed by creating a new
cons cell and thus “pushing the remaining arguments one
level deeper”.

The state transition for this new “apply checked” in-
struction is almost the same as AP:

(([clos]n c′.e′)v.s) e (APC.c) d →

() (v.e′) c′ (s e c.d)

The original opcodes LDF and AP are still supported
and are used for let-expressions where no arity and type
checks are necessary.

6.6 Tail recursion

Tail calls do not have to save the current state onto the
dump D, so the following transition

(([clos]n c′.e′)v.s) e (TAPC) d → s (v.e′) c′ d

yields the desired result.12

12Note that due to its construction, TAPC is always the last in-
struction in a code sequence.



To provide proper tail recursion semantics, several other
instructions do not extend the dump, for example SELR:

(x.s) e (SELR ct cf ) d → s e ct d

(#f.s) e (SELR ct cf ) d → s e cf d

Of course, none of the branches ct and cf must end with
a JOIN instruction now — a condition which is ensured by
the compiler.

6.7 Continuations

Since in the SECD machine there is no processor stack in-
volved and all registers are cell references, implementing
continuations is straightforward. A continuation object is
a list of all 4 VM registers, tagged with a special value
([cont] s e c.d) to allow runtime type checking.

The new instruction LDCT captures the current contin-
uation and pushes it as a singleton list13 onto the stack:

s e (LDCT c′.c) d → ((([cont] s e c′.d)).s) e c d

The application instructions APC and TAPC have been ex-
tended to accept continuations, too: They push the argu-
ment given to the continuation invoked onto the stack after
restoring all registers from the continuation.

6.8 Optimizing access to global variables

Since the lexical address of a variable never changes during
its extent and global variables always occupy the same envi-
ronment frame, a global variable always refers to the same
storage cell.

By using special instructions LDG and STG and embed-
ding the storage cell itself — instead of the lexical address
— in the code list, we reduced the complexity of access to
global variables from O(n) to O(1).

s e (LDG (v.e′).c) d → (v.s) e c d

There is a small difficulty when constructing the cyclic
environment while loading mutual recursive definitions,
since the topmost environment frame has not been con-
structed yet when compiling variable accesses. We solved
this problem by generating another set of special instruc-
tions (LDU and STU) using ordinary lexical addresses, and
by modifying the VM code on first access to the variable:

s e (LDU la.c) d → s e (LDG (v.e′).c) d

where (v.e′) is the cell obtained by locate(la, e).

6.9 Summary and conclusion

The SECD machine is a very suitable base for implement-
ing Scheme within limited resources. Additionally, it allows
straightforward extensions like continuations.

13The receiver procedure this continuation will be passed to ex-
pects one argument, so creating this argument list within the LDCT

instruction saves one instruction.

7 The compiler

7.1 Henderson’s approach

Henderson [8] describes a function comp(expr,names, cont)
returning a code sequence code with the property

eval(expr) = exec(comp(expr, (), (STOP )), ())

where exec(code, env) is the SECD interpreter function
started in the state 〈(), env, code, ()〉.

The LISPKIT expression to be compiled is expr, names
is the compile-time environment and cont is an accumulation
parameter to avoid using append on the intermediate code
lists. But of course cont is in fact the continuation (though
Henderson never uses this word in this context) of expr,
which is exploited in the extensions introduced by LispMe.

Here are some sample compilation equations:

comp(var, n, c) = list∗(LD, location(var, n), c)

where location computes the position of the variable var
in the compile-time environment e

comp((+ e1 e2), n, c) = comp(e1, n, comp(e2, n, cons(ADD, c)))

comp((if e? et ef ), n, c) = comp(e?, n, list∗(SEL, ct, cf , c))

where ct = comp(et, n, (JOIN))

and cf = comp(ef , n, (JOIN))

comp((e e1 . . . ek), n, c) = append((LDC NIL), ck, . . . , c1, p, c)

where p = comp(e, n, (AP ))

and ci = comp(ei, n, (CONS))

∀i ∈ {1, . . . , k}

comp((lambda p e), n, c) = list∗(LDF, body, c)

where body = comp(e, cons(p, n), (RTN))

The last equation shows the extension of the compile-time
environment by a frame containing the function’s parameter
names.

7.2 The LispMe compiler

Henderson [8] uses bootstrapping for the compiler written
in LISPKIT code. Though this approach is instructive in an
introductory textbook, it was impractical for LispMe con-
sidering the memory constraints. To allow as much usable
Scheme heap as possible, we decided to implement the com-
piler entirely in C.

7.3 Optimized parameter passing

The original LISPKIT is somewhat inefficient when build-
ing the argument list for a function call. Each argument is
pushed onto the stack S and afterwards consed to the par-
tial argument list already on the stack, resulting in 2n cons

calls and n+1 additional VM instructions for each function
call with n arguments.



Since the stack is internally represented as a list, it is
an obvious optimization to just push all arguments onto the
stack without intervening CONS instructions and to directly
use the top-most n stack cells as the argument list. We
introduced a new instruction LST for this purpose:

(v1 . . . vn.s) e (LST n.c) d → ((v1 . . . vn).s) e c d

Together with the new translation rule

comp((e e1 . . . ek), n, c) = append(ck, . . . , c1, (LST k), p, c)

where p = comp(e, n, (AP ))

and ci = comp(ei, n, ())

∀i ∈ {1, . . . , k}

replacing the one from Section 7.1, a function call with n
arguments now needs only n cons calls and 1 additional VM
instruction.

Unfortunately, this optimization is not possible when
applying a procedure to a list. Since the called procedure
might modify its parameters, the argument list cannot be
shared and must be copied. The compiler emits the instruc-
tions APY or TAPY in this case.

7.4 Tail calls

Tail calls can be recognized in the compiled code sequences
by the pattern (... APC RTN), so replacing this sequence by
(... TAPC) yields the desired result. Thus TAPC is always
the last instruction in a code sequence as mentioned earlier.

But matters get more difficult when one remembers the
non-linear nature of SECD machine code: A simple con-
ditional separates the APC from the RTN instruction like
this:

(define (exp2 n acc)
(if (eqv? n 0) acc (exp2 (- n 1) (* 2 acc))))

compiles to

(LDC 0 LD (0 . 0) EQV SEL
(LD (0 . 1) JOIN)
(LD (0 . 1) LDC 2 MUL LDC 1 LD (0 . 0) SUB LST 2
LD (1 . 0) APC JOIN)

RTN)

In this case, one can move RTN into both branches of the
SEL instruction, where RTN replaces JOIN (both branches)
and creates the reducible sequence (... APC RTN) in the sec-
ond branch. Since there is no JOIN anymore, we do not need
to save the rest of the code onto the dump (D) like in the
SEL instruction. Instead, we invent a new instruction SELR

behaving like SEL, but without saving the continuation:

(x.s) e (SELR ct cf ) d → s e ct d

(#f.s) e (SELR ct cf ) d → s e cf d

with the additional compilation rule

comp((if e? et ef ), n, (RTN)) = comp(e?, n, list(SELR, ct, cf ))

where ct = comp(et, n, (RTN))

and cf = comp(ef , n, (RTN))

So altogether, the previous example compiles to

(LDC 0 LD (0 . 0) EQV SELR
(LD (0 . 1) RTN)
(LD (0 . 1) LDC 2 MUL LDC 1 LD (0 . 0) SUB LST 2
LD (1 . 0) TAPC))

with tail call elimination. Similar code merging is done
for other instructions when the continuation is RTN.

7.5 Continuations

As mentioned earlier, supporting continuation with a heap-
based SECD machine is simple. The only addition are these
new compilation rules:

comp((call/cc e), n, c) = list∗(LDCT, list(c), cont)

where cont = comp(e, n, cons(APC, c))

comp((call/cc e), n, (RTN)) = list∗(LDCT, (RTN), cont)

where cont = comp(e, n, (TAPC))

Thus the original code continuation c is used twice, once in
the usual way and additionally as an argument to the LDCT

instruction, which creates a Scheme continuation object at
runtime as described in 6.7.

7.6 (Non-)Macros

The first release of LispMe did not allow macros, so we im-
plemented almost all non-core syntactic forms like and, case,
let, delay, quasiquote natively in the compiler and we of-
ten used special VM instructions yielding better optimized
code than is possible with the well-known standard macros.
For example, compiling let uses the original SECD instruc-
tions LDF and AP, which create and apply an unchecked
closure, whereas using a macro which expands let to the
equivalent lambda-application would create LDFC and APC

instructions, performing superfluous type and arity checks.
For this reason (and to avoid having to load an init file

defining those syntactic forms) we left all these forms and
the additional instructions in LispMe even after introducing
the macro facility.

7.7 Primitive procedures

All primitive procedures are inlined (if the symbol has not
been rebound), so they do not require any heap space.

When applying a primitive procedure, the compiler is
invoked14 to generate the code on the fly and prefix it to
the C register.

([primp] v.s) e (APC.c) d →

append(v, s) e (compile builtin([prim p]).c) d

([primp] v.s) e (TAPC) d →

append(v, s) e (compile builtin([prim p]) RTN) d

7.8 Summary and conclusion

Though the basic structure of the LispMe compiler is very
similar to Henderson’s compiler, we have extended it in var-
ious ways, showing the versatility of Henderson’s approach.
Implementing the compiler in C instead of Scheme was im-
portant to retain a maximal Scheme heap within the Palm’s
limited resources.

14in a special mode to avoid generating code for pushing the argu-
ments onto the stack S



8 Conclusions

Since its infancy in autumn 1997, LispMe has been extended
with most of the features of the R4RS. This growth has
been paralleled by a goal shift from “proof of concept” to
the status of a useful tool, partly because of users response,
and partly because of improvements in PalmOS and tools
for overcoming memory restrictions.

LispMe is now becoming a general-purpose language for
Palm development on the Palm. Since currently only a sub-
set of the Palm API is implemented, extending support for
Palm Pilot primitives will be the focus of LispMe’s further
development, especially for the various communication func-
tions, like infrared and telephony.

Other activities planned are better conformance to
R5RS, including arbitrary precision integers and rationals,
and perhaps the generation of fully stand-alone executables.

References

[1] H. Abelson and G. J. Sussman. Structure and Inter-
pretation of Computer Programs. McGraw-Hill Book
Company, Cambridge, MA, 1985.

[2] D. B. Bartley and J. C. Jensen. The implementation of
PC Scheme. In W. L. Scherlis and J. H. Williams, edi-
tors, Proceedings of the 1986 ACM Conference on Lisp
and Functional Programming, pages 86–93, Cambridge,
Massachusetts, Aug. 1986. ACM Press.

[3] F. Bayer. Lispme home page, 2000. Contains executa-
bles, source code and documentation. Available online
at http://www.lispme.de/lispme/.

[4] W. Clinger, A. H. Hartheimer, and E. M. Ost. Im-
plementation strategies for continuations. In R. C.
Cartwright, editor, Proceedings of the 1988 ACM Con-
ference on Lisp and Functional Programming, pages
124–131, Snowbird, Utah, July 1988. ACM Press.

[5] W. Clinger, A. H. Hartheimer, and E. M. Ost. Im-
plementation strategies for first-class continuations.
Higher-Order and Symbolic Computation, 12(1):7–45,
1999. Extended version of [4].

[6] W. Clinger and J. Rees, editors. Revised4 report on the
algorithmic language Scheme. LISP Pointers, IV(3):1–
55, July-September 1991.

[7] R. K. Dybvig and R. Hieb. A variable-arity procedural
interface. In M. Wand, editor, Proceedings of the 1990
ACM Conference on Lisp and Functional Programming,
pages 106–115, Nice, France, June 1990. ACM Press.

[8] P. Henderson. Functional Programming, Application
and Implementation. Prentice-Hall International, Lon-
don, 1980.

[9] M. P. Jones. Hugs 1.3, the haskell user’s gofer system:
User manual. Technical report, Department of Com-
puter Science, University of Nottingham, 1996. Avail-
able online at http://www.haskell.org/hugs/.

[10] R. Kelsey, W. Clinger, and J. Rees, editors.
Revised5 report on the algorithmic language Scheme.
Higher-Order and Symbolic Computation, 11(1):7–
105, 1998. Also appears in ACM SIGPLAN No-
tices 33(9), September 1998. Available online at
http://www.brics.dk/~hosc/11-1/.

[11] R. A. Kelsey and J. A. Rees. A tractable Scheme imple-
mentation. Lisp and Symbolic Computation, 7(4):315–
336, 1994.

[12] B. W. Kernighan and D. M. Ritchie. The C program-
ming language (2nd edition). Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[13] P. J. Landin. The mechanical evaluation of expressions.
Computer Journal, 6:308–320, 1964.

[14] Palm Computing. Palm OS SDK Reference.
Santa Clara, CA, 2000. Available online at
http://www.palm.com/devzone/.

[15] F. Rouaix. Caml Light for PalmOS, 1998.
An implementation of the Caml Light runtime
environment for the Palm. Available online at
http://cristal.inria.fr/~rouaix/pilot/cl.html.

[16] G. Springer and D. P. Friedman. Scheme and the Art of
Programming. The MIT Press, Cambridge, MA, 1989.

[17] G. L. Steele Jr. and G. J. Sussman. The art of the in-
terpreter or, the modularity complex (parts zero, one,
and two). AI Memo 453, Artificial Intelligence Lab-
oratory, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, May 1978.

[18] G. J. Sussman and G. L. Steele Jr. Scheme: An inter-
preter for extended lambda calculus. Higher-Order and
Symbolic Computation, 11(4):405–439, 1998.

[19] S. Williams. 68030 Assembly Language Reference.
Addison-Wesley, Reading, MA, 1989.

[20] M. Winikoff. Palm software development — al-
ternatives to C, 2001. An overview of language
implementations for the Palm. Available online at
http://www.winikoff.net/palm/dev.html.


