
The Sun Labs Lively Kernel
A Technical Overview

February 1, 2008

Summary

The Sun Labs Lively Kernel is a new web programming environment developed at Sun
Microsystems Laboratories. The Lively Kernel supports desktop-style applications with
rich graphics and direct manipulation capabilities, but without the installation or upgrade
hassles that conventional desktop applications have. The system is written entirely in the
JavaScript programming language – a language supported by all the web browsers – with
the intent that the system can run in commercial web browsers without installation or any
plug-in components. The system leverages the dynamic aspects of the JavaScript language
to make it possible to create, modify and deploy applications on the fly, using tools built
into the system itself. In addition to its application execution capabilities, the Lively Kernel
system can also function as an integrated development environment (IDE), making the
whole system self-sufficient and able to improve and extend itself dynamically.

In this document we provide a technical overview of the Sun Labs Lively Kernel,
summarizing its overall architecture and core APIs. We have also included a few sample
applications and widgets to demonstrate application development with the system.

1. Introduction

The widespread adoption of the World Wide Web has fundamentally changed the landscape of software development.
In the past few years, the Web has become the de facto deployment environment for new software systems and
applications. We believe that in the next 5-10 years, the vast majority of new software applications will be written for
the Web, instead of any conventional target platform such as a specific operating system, CPU architecture or device. In
general, the software industry is currently in the middle of a paradigm shift towards web-based software. In this new era
of web-based software, applications live on the Web as services; they consist of data, code and other resources that can
be located anywhere in the world. Unlike conventional desktop applications, they require no installation or manual
upgrades.

The Sun Labs Lively Kernel is an innovative, exceptionally interactive and dynamic system targeted specifically to web
application development. The Lively Kernel supports desktop-style applications with rich graphics and direct
manipulation capabilities, but without the installation or upgrade hassles that conventional desktop applications have.
The system is written entirely in the JavaScript programming language – a language supported by all the web browsers
– with the intent that the system can run in commercial web browsers without installation or any plug-in components.
The Lively Kernel leverages the dynamic aspects of the JavaScript language to make it possible to create, modify and
deploy applications on the fly, using tools built into the system itself. In addition to its application execution
capabilities, the Lively Kernel can also function as an integrated development environment (IDE), making the whole
system self-sufficient and able to improve and extend itself dynamically

In this document we provide a technical overview of the Sun Labs Lively Kernel, summarizing its overall architecture
and core APIs. We have also included a few sample applications and widgets to demonstrate application development
with the system.

2. Architectural Overview of the Lively Kernel

In short, the Sun Labs Lively Kernel is a fully interactive, “zero-installation” web application development environment
that has been written entirely in JavaScript. It runs in an ordinary web browser without installation or plug-in
components; it supports desktop-style applications with rich user interface features and direct manipulation capabilities;
it enables application development and deployment in a web browser with no installation or upgrades, using nothing

more than existing web technologies. In addition to its application execution capabilities, the Lively Kernel can also
function as an integrated development environment (IDE).

A screen snapshot of the Lively Kernel is provided in Figure 1. In this snapshot, you can see a number of applications,
widgets and tools (including a JavaScript code browser) running in a web browser simultaneously

Figure 1: Screen snapshot of the Lively Kernel

2.1 The Lively Kernel Architecture from the End User's Viewpoint

In the most typical situation, the user launches the Lively Kernel by typing a URL in a web browser. When the user
presses the the return key to load the web page, the files that constitute the Lively Kernel system itself and the
application(s) are downloaded to the web browser for execution (see Figure 2). Note that no pre-installation or plug-in
components are required for the Lively Kernel itself or for the applications running in the system, apart from the
JavaScript engine and the graphics libraries that already exist in the browser. Once the Lively Kernel is running, the
application will communicate with the web server using asynchronous HTTP. The Lively Kernel and the application(s)
will remain in the browser running until the user closes the browser or moves to another web page.

Figure 2: The high-level architecture of the Lively Kernel

Web Browser

Lively Kernel

The Internet
(Web Server)

(1b) Application download

(2) Communication with
 the web server (via
 asynchronous HTTP)

(1a) System download

Note that from the end user's viewpoint, the Lively Kernel is a visual environment that requires nothing else than an
available web browser to run. No external tools, plug-in components or special installation are required. The details
related to system downloading or communication with the web server during application execution are entirely
transparent to the end user.

2.2 The Lively Kernel Architecture from the Developer's Viewpoint

From the application developer's viewpoint, the Lively Kernel system consists of the following four main components:

1) The JavaScript programming language and the associated core JavaScript libraries. We have used the
JavaScript programming language as a fundamental building block for the Lively Kernel. A JavaScript engine
is available in all the commercial web browsers today. Our current implementation assumes that at least
JavaScript version 1.5 is available. The actual version of the JavaScript engine and libraries is dependent on
the web browser in which the Lively Kernel is run.

2) Asynchronous HTTP networking. All the networking operations in the Lively Kernel are performed
asynchronously using the XMLHttpRequest feature familiar from Ajax. The use of asynchronous networking is
critical so that all the networking requests can be performed in the background without impairing the
interactive response of the system. Support for asynchronous HTTP networking is available in all the
commercial web browsers today. In the Lively Kernel, the XMLHttpRequest interface is commonly used
indirectly via the Ajax.* API of the Prototype library (see the introduction of the Prototype library below).

3) Morphic user interface framework and widgets. The Lively Kernel is built around a flexible user interface
framework called Morphic. The Morphic framework consists of about 10,000 lines of uncompressed
JavaScript code that is downloaded to the web browser when the Lively Kernel starts. The Morphic user
interface framework will be described in more detail in Section 5.

4) Built-in tools for developing, modifying and deploying applications on the fly. The Lively Kernel includes
built-in tools (such as a JavaScript code browser and object inspector) that can be used for developing,
modifying and deploying applications from within the Lively Kernel system itself. These features have been
implemented using the reflective capabilities of the JavaScript programming language, and can therefore be
used inside the web browser without any external tools or IDEs. The features make it possible, e.g., to write
new JavaScript classes, modify or delete existing methods, or change the values of any attribute in the system.
Finally, it is possible to export objects or entire web pages, so that the applications written inside the Lively
Kernel can also be run as standalone web pages.

Note that the first two components – JavaScript and asynchronous HTTP networking – are part of the web browser, and
are therefore provided by the underlying web browser. In contrast, the Morphic UI framework and the development
tools associated with it are part of the Lively Kernel files that are loaded into the web browser when the system starts.

Figure 3: High-level block structure of the Lively Kernel

Figure 3 provides a block structure illustration of the components of the Lively Kernel at runtime. The items within the
solid black line represent components that are provided by the web browser, while the rest of the components are
usually downloaded from the Web dynamically.

At the bottom of the diagram is the implementation-level SVG graphics library provided by the web browser (see the
more detailed description below). The SVG layer is not visible to application developers, except in terms of the
functionality that it provides. Next, we have the JavaScript virtual machine and the JavaScript core libraries (the
libraries will be discussed in more detail in Section 4). On top of the JavaScript environment we use a JavaScript class

Implementation-level graphics library (usually SVG)

JavaScript Virtual Machine JavaScript Core Libraries

The Lively Kernel Libraries and Tools
(including the Morphic UI framework)

The Prototype Library

library called Prototype that provides additional structure to JavaScript applications as well as hides the browser-
specific details of the XMLHttpRequest networking protocol from the application developer. The Lively Kernel libraries
and tools (including the Morphic user interface framework) then reside on top of the JavaScript environment and the
Prototype library.

As depicted in Figure 3, the Lively Kernel depends on a number of external libraries. These libraries are summarized in
more detail below.

Scalable Vector Graphics (SVG). Our current Lively Kernel implementation depends on an SVG engine that provides
the necessary implementation-level support for our graphics architecture, including the affine transformations and
matrix operations needed for rotating and scaling objects. SVG is a declarative graphics language and specification
designed by the World Wide Web Consortium (W3C). It is supported by most web browsers, although the
implementations are still somewhat incompatible or missing altogether from some web browsers. While SVG is
commonly used via its HTML-like declarative syntax, the SVG functionality of a web browser can also be accessed
programmatically from JavaScript. The Lively Kernel is built on top of the programmatic JavaScript SVG interface.

For further information on SVG, refer to the SVG 1.1 Specification:

http://www.w3.org/TR/2003/REC-SVG11-20030114/

Note that in the context of the Lively Kernel SVG is treated as an implementation-level API. We have chosen to use
SVG because of its functionality and widespread availability in commercial web browsers. However, to application
developers, the Lively Kernel is an environment that is based purely on JavaScript, not SVG. Future releases of the
Lively Kernel may include back-ends also for other graphics libraries than SVG.

Prototype library. The Lively Kernel uses a JavaScript class library called Prototype (see
http://www.prototypejs.org/). In the current version of the Lively Kernel, we use the Prototype library version 1.6.0.
The Prototype library provides convenient syntactic mechanisms for defining and extending JavaScript classes. Such
mechanisms are missing from the widely used versions of the JavaScript (ECMAScript) language. In addition, the
Prototype library introduces a cleaner interface for using asynchronous HTTP networking in a browser-independent,
platform-independent fashion. This is important since the implementation of the XMLHttpRequest feature still varies
from one web browser to another.

3. File Structure and Configuration Options

In this section, we provide a quick overview of the source file structure of the Lively Kernel as well as a summary of
the various configuration options. This information is intended primarily for application developers or for those people
who want to customize the Lively Kernel to their own needs.

Important! The information in this section pertains to the Lively Kernel version 0.8. The future releases
of the Lively Kernel may use an entirely different file structure. For instance, to speed up downloading,
we might package all the Lively Kernel functionality in a single, compressed file. Do not assume that the
file structure will remain the same in the future.

The table below provides a summary of the source files in the Lively Kernel.

File Description
index.xhtml The XHTML file that launches the Lively Kernel and loads all the other files.
prototype.js The Prototype library that we use as part of the system (http://www.prototypejs.org/).
svgtext-compat.js Contains code for mapping text support onto the underlying SVG graphics engine.
Core.js Contains the core Lively Kernel features, the low-level porting interface and

the core Morphic user interface framework.
Text.js Contains all the text-related functionality of the Lively Kernel.
Widgets.js Contains all the widget definitions for the Morphic UI framework.
Network.js Contains all the network-related functionality of the Lively Kernel.
Storage.js Contains all the storage-related functionality of the Lively Kernel.
Tools.js Contains various tools such as the class browser, object inspector, style editor, etc.
Examples.js Contains all the sample applications.
Main.js Contains the JavaScript code that initializes the sample applications.
definitions.svg Contains embedded resource definitions that are included in the system when it starts.
defaultconfig.js Defines the default system configuration options for the Lively Kernel.

http://www.w3.org/TR/2003/REC-SVG11-20030114/
http://www.prototypejs.org/
http://www.prototypejs.org/

Note. The Lively Kernel is a “zero-installation” system, i.e., the user does not actually install anything or deal with any
of the aforementioned files directly. Instead, the necessary files are loaded automatically by the web browser when the
Lively Kernel is started. The loading of the files is performed by the index.xhtml file.

In addition to the files listed above, the user may provide a localconfig.js file that can override the default system
configuration options defined in defaultconfig.js. The configuration options are summarized in the table below.

Important! The configuration options are subject to change in the future releases of the Lively Kernel.

Option Description
shiftDragForDup If true, the user can use shift-dragging to create copies of objects easily.
useNewScheduler If true, the system uses a newer implementation for script scheduling.
skipMostExamples If true, most of the example applications will not be loaded upon system startup.
skipAllExamples If true, none of the example applications will be loaded upon system startup.
showWebStore If true, a WebDAV file browser application will be launched automatically upon startup.
showCurveExample If true, a demo application related to curves and paths will be launched upon startup.
loadFromMarkup If true, some demo applications will be loaded as markup files instead of JavaScript.
showThumbnail If true, an experimental thumbnail view of LinkMorphs will be used instead of icons.
showNetworkExamples If false, none of the example applications that require networking will be launched.
ignoreAdvice If false, ignore function logging through the Prototype.js wrap mechanism.
fakeFontMetrics If false, try to make up font metrics if the SVG API doesn't work.

In addition to the configuration options listed above, there are a number of additional configuration options related to
the sample applications. The options have been defined in the beginning of file Main.js. As with the other configuration
options, these options are subject to change or may be removed from the future versions of the Lively Kernel.

4. Overview of the Application Programming Interfaces (APIs)

Since the Lively Kernel runs in a web browser and leverages the JavaScript engine that is already part of the browser,
the system allows the developers to use all those JavaScript APIs that are provided by the underlying JavaScript
environment.

Generally speaking, the Lively Kernel API set consists of the following three APIs:

1) Core JavaScript APIs
2) The Prototype library APIs
3) APIs specific to the Lively Kernel

The Core JavaScript APIs are provided by the web browser's JavaScript implementation. The details related to those
APIs are beyond the scope of this document. For a summary of the Core JavaScript APIs, refer to online
documentation:

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

Also, the following book provides an excellent summary of the Core JavaScript APIs:

David Flanagan, JavaScript: The Definitive Guide (5th edition). O'Reilly Media, 2006.
(Refer to Part III for a summary of the Core JavaScript APIs.)

For a summary of the Prototype library APIs, refer to online documentation:

http://www.prototypejs.org/api

Note that the Prototype library includes an Ajax.* API that simplifies the use of asynchronous HTTP networking
considerably. The Lively Kernel developers are strongly encouraged to use this API instead of the lower level, browser-
dependent XMLHttpRequest API supported directly by the web browser.

The APIs specific to the Lively Kernel are described in more detail below.

http://www.prototypejs.org/api
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference

5. The Morphic User Interface Framework

The majority of the JavaScript classes defined by the Lively Kernel are related to a user interface framework called
Morphic. Morphic is a framework that supports composable graphical objects, along with the machinery required to
display and animate these objects, handle user inputs, and manage underlying system resources such as displays, fonts
and color maps. Sophisticated built-in mechanisms are provided for object scaling, rotation, object style editing, as well
as for defining new user interface themes. The central goal of Morphic is to make it easy to construct and edit
interactive graphical objects, both by direct manipulation and from within programs. The Morphic user interface was
developed originally for the Self system (http://research.sun.com/self), but it became popular later also as part of the
Squeak system (http://www.squeak.org).

The historical references to the original design of the Morphic framework are provided below:

– Maloney, J.H., Smith, R.B., Directness and liveness in the Morphic user interface construction environment.
Proceedings of the 8th annual ACM Symposium on User Interface and Software Technology (UIST), Pittsburgh,
Pennsylvania, 1995, pp. 21-28.

– Maloney, J.H., Morphic: The Self User Interface Framework. Self 4.0 Release Documentation, Sun Microsystems
Laboratories, 1995.

– Ingalls, D., Kaehler, T., Maloney, J.H., Wallace, S., Kay, A., Back to the Future: The Story of Squeak, A Practical
Smalltalk Written in Itself. Presented at the OOPSLA'97 Conference.Web link:
http://ftp.squeak.org/docs/OOPSLA.Squeak.html.

5.1 The Basic Concepts

The most fundamental concepts in the Morphic user interface framework are morphs, worlds and hands.

Morphs. From the programmer's viewpoint, every visual object in the Lively Kernel is a morph. A morph is a visual
structure that contains the necessary functionality to manage the coordinates, boundaries and other visual aspects of an
object, as well as functions for responding to events and external requests such as moving, grabbing, resizing, rotating,
and so on.

Worlds. All the morphs in the Lively Kernel reside in a world. A world is a visual container – sort of like a fully
interactive, graphical web page or a Wiki – that can be manipulated directly and visually by the users. Before a morph
becomes visible, it needs to be added to a world. A world may contain links to other worlds. A world that is contained
within another world is commonly referred to as a subworld. However, note that the structuring of the worlds does not
need to be strictly hierarchical.

Hands. The morphs in a world are manipulated using a hand. A hand is the Morphic generalization of the cursor; it can
be used to pick up, move, and deposit other morphs, its shape may change to indicate different cursor states, and it is the
source of user events in the Lively Kernel architecture. In general, a hand is like a cursor in a desktop operating system,
except that in the Lively Kernel a world may have multiple users and therefore contain multiple hands simultaneously.
In the current version of the Lively Kernel, multi-user support is not yet enabled.

5.2 Object Composition

The Morphic user interface framework supports a principle known as object composition/adhesion: Whenever a morph
(visual object) is placed on top of another morph in the user interface, the morph is automatically attached (“glued”) to
the underlying object. Figure 4 below provides an example of a face-like object that has been created by attaching two
red rectangles, a blue polygon and a polyline object onto a green ellipse.

Figure 4: An object created by composition

http://ftp.squeak.org/docs/OOPSLA.Squeak.html
http://www.squeak.org/
http://research.sun.com/projects/self

5.3 Shapes, Colors, Patterns and Affine Transformations

Each morph in the Lively Kernel is associated with a shape that defines the underlying graphical attributes of the
morph, such as its fill color, border color, border width and opacity (transparency). The basic shape types are
summarized in the table below:

Class Name Description

Shape The base class for defining the underlying shape of a morph
RectShape A rectangle shape
EllipseShape An ellipse/circle shape
PolygonShape A polygon shape
PolylineShape A polyline shape
PathShape A path/curve shape

Each shape may be associated with a number of colors that are expressed as RGB values. Instead of ordinary colors,
various fill patterns can be used. The basic fill patterns are summarized in the table below.

Class Name Description

Gradient The base class for gradient (“sliding”) colors
LinearGradient A linear gradient that changes color from one origin to another
RadialGradient A radial gradient that changes color from the object's centerpoint to its bounds

StipplePattern A “criss-cross” color pattern.

Figure 5 provides examples of objects that have been filled with linear gradient or radial gradient colors, respectively.

Figure 5: Example of a (horizontal) linear gradient (left) and radial gradient (right)

In addition to its shape, each morph is also associated with a transform. A transform is an affine transformation matrix
that allows the morph to be repositioned, rescaled or rotated flexibly relative to its current owner. Figure 6 provides an
example of a complex morph (a JavaScript code browser) that has been rotated and scaled down (shrunk) using a
transformation matrix. Note that all the components (submorphs) within the code browser, such as the ScrollPane that
displays the source code, have been rotated and shrunk accordingly. All the submorphs can also be transformed (e.g.,
rotated or scaled) independently of each other, relative to their owner.

Figure 6: A JavaScript code browser object that has been rotated and shrunk using an affine transformation

For further information on affine transformations, refer to, e.g.:

http://en.wikipedia.org/wiki/Affine_transformation
http://www.quantdec.com/GIS/affine.htm

http://www.quantdec.com/GIS/affine.htm
http://en.wikipedia.org/wiki/Affine_transformation

Our current Lively Kernel implementation is dependent on affine transformation support and matrix operations
provided by the SVG engine. For details on those functions and data structures, refer to:

http://www.w3.org/TR/2003/REC-SVG11-20030114/coords.html#InterfaceSVGMatrix

5.4 Widgets

Once the basic concepts of Morphic have been introduced, including morphs and object composition, it is possible to
construct a rich set of widgets that all follow the same basic principles. Below is a summary (JavaScript class hierarchy)
of the widgets that are currently supported by the Lively Kernel. All the widgets are morphs, and therefore inherit the
basic functionality from class Morph. More information about the operations that are available for manipulating morphs
will be provided in Section 6. Note that we will not provide a detailed API description of the widgets in this document.
For more details on the widgets, refer to file Widgets.js and the sample applications.

Important! The widget hierarchy of the Lively Kernel is still under development and may change in the
future releases. The future releases are likely to contain more widgets than those listed below.

Class Name Class Name

Morph The Morph base class
ButtonMorph Simple button

ImageButtonMorph Button with an associated image
ImageMorph Image object

IconMorph Image object representing an icon

TextMorph An object that contains formatted text
CheapListMorph Simple textual list that supports selection, etc.

 MenuMorph Popup menu

ClipMorph Clipping view
WindowMorph Full-fledged window object

TabbedPanelMorph Tabbed window/panel
TitleBarMorph An object representing a window title bar
TitleTabMorph Title bar for a tabbed window

PanelMorph Simple panel
ScrollPane Scrollable panel
ListPane A scrollpane containing a textual list (CheapListMorph)
TextPane A scrollpane that contains text
SliderMorph Scroll bar object
ColorPickerMorph Color picker panel

 HandMorph An object representing a hand (cursor) in a Morphic world
 HandleMorph A handle that allows a morph to be resized, rescaled, etc.
 SelectionMorph Selection tray object (for selecting multiple objects)

PasteUpMorph A visual container onto which other morphs can be pasted
WorldMorph A Morphic world

LinkMorph Hyperlink between worlds

Figure 7 contains a few sample widgets to illustrate what kinds of widgets are available and what they commonly look
like. In the upper row, there is a TextMorph, a WindowMorph (containing a TitleBarMorph) and a LinkMorph. In the
lower row, there is a MenuMorph (with a HandMorph on top of the currently selected menu item), and a PanelMorph
containing various other morphs such as four ButtonMorphs, two CheapListMorphs, eight TextMorphs, and a
SliderMorph.

http://www.w3.org/TR/2003/REC-SVG11-20030114/coords.html#InterfaceSVGMatrix

Figure 7: Sample widgets

Note that many of the widgets in the Lively Kernel are intended primarily for system use. For instance, a HandMorph
represents the user's cursor within a world, and it is not usually manipulated by the programmer, except when changing
the shape of the cursor. A SelectionMorph (also known as a “selection tray”) allows multiple objects to be selected
easily. A HandleMorph is used for resizing, reshaping, or rotating other objects. Each HandleMorph is presented as a
rectangular or round handle (usually a small blue rectangle), and is commonly displayed with balloon help that provides
information about the operations that are currently available. Figure 8 shows an example of a SelectionMorph (left) and
a HandleMorph (right) that is used for editing a polygon. A HandMorph and balloon help are also visible.

Figure 8: A SelectionMorph (left) and a HandleMorph (the blue rectangle on the polygon; shown with balloon help)

In addition to the widgets summarized in the class hierarchy above, the Lively Kernel also has a number of tools that
have been constructed using the widgets introduced above. These tools include a JavaScript code browser (class
SimpleBrowser), an object instance inspector (class SimpleInspector), and a style panel that allows the visual attributes
of objects to be edited easily (class StylePanel). All these tools have been defined in file Tools.js.

5.5 Styles and Themes

The look and feel of the Morphic user interface is fully customizable, meaning that the widgets may look entirely
different in different applications. For instance, a widget such as a WindowMorph can look entirely different from the
look and feel shown in Figure 7. The UI customization is accomplished using two mechanisms: styles and themes.

A style is a collection of visual attributes associated with an individual morph. These attributes can be changed easily
using a style panel (see the StylePanel on the left in Figure 9).

Figure 9: A StylePanel (left) and a theme selection menu (right)

A theme is a collection of visual attributes associated with a world (WorldMorph). When the display theme of a world is
changed, the style attributes of all the objects in the world are changed automatically. In the Lively Kernel user
interface, themes are selected using a theme selection menu (see the menu on the right in Figure 9; in this case, only
three display themes are available.) Functions for manipulating themes will be discussed in more detail in Section 7.4.

6. Manipulating Morphs

The morphs in the Lively Kernel can be manipulated in various ways. In this section we provide an overview of the
JavaScript APIs that are available for manipulating morphs. For further details on the APIs, refer to the Lively Kernel
web site:

http://research.sun.com/projects/lively

The operations for morph manipulation can be categorized broadly as follows:

– instantiating morphs
– copying morphs
– adding and removing submorphs
– manipulating and inspecting the visual attributes of a morph
– moving, resizing, rescaling and reshaping morphs
– obtaining information about the surroundings of a morph
– event handling functionality
– timers and scripting/stepping functionality
– printing and inspecting morphs
– additional functions and tools for morph manipulation

Each of the categories is discussed in more detail below.

6.1 Instantiating Morphs

New morphs are instantiated using the normal JavaScript syntax for object instantiation. The parameters for
initialization vary from one morph class to another, but for simple morphs (morphs representing simple shapes such as
rectangles or ellipses) they are as follows:

var myMorph = new Morph(initialBounds, shapeType);

The initialBounds parameter determines the location and size of the new morph, and is expressed as a Rectangle. The
shapeType parameter is a string describing the shape of the morph (see the description of shapes earlier in Section 5.3).
The possible values of the shapeType parameter are “rect”, “rectangle”, “ellipse”, “path”, “polygon”, and “polyline”.

For instance, the following operation would instantiate a morph representing a simple rectangle. The coordinates of the
morph relative to its owner is (x, y), and its size is (width, height).

var x = 10; var y = 10; var width = 100; var height = 50;
var myMorph = new Morph(pt(x, y).extent(width, height), “rect”);

Note. Before a morph becomes visible on the screen, it needs to be added to an owner (such as a world) that is currently
visible. To add a new morph to the world that is currently active, the following code can be used:

var currentWorld = WorldMorph.current();
currentWorld.addMorph(myMorph);

6.2 Copying Morphs

Morphs can be copied using the following operation:

var myCopy = myMorph.copy();

Note that the details related to which morph attributes are copied may vary from one class to another, depending on
whether the morph class has overridden the copy method or not. By default, a deep copy is performed, meaning that all

http://research.sun.com/projects/lively

the submorphs, step handlers and scripts associated with the object are copied as well. Note that objects may
specifically request not to be copied by defining the following method to return false.

myMorph.okToDuplicate()

If the okToDuplicate method returns false, the morph can still be copied programmatically using the copy method.
However, the “duplicate” menu item in the Lively Kernel user interface is disabled/removed, preventing the user from
copying the object from the user interface.

6.3 Adding and Removing Submorphs

As was mentioned in Section 5.2, the Morphic user interface framework supports object composition. At the
implementation level, this means that each morph may have a number of submorphs attached to it. Each submorph may,
in turn, contain an arbitrary number of submorphs.

The following operations are available for adding submorphs:

myMorph.addMorph(submorph);
myMorph.addMorphFront(submorph);
myMorph.addMorphBack(submorph);
myMorph.addMorphAt(submorph, position);

The functions addMorphFront and addMorphBack add the submorph to the front or back in the display hierarchy
(visual layering of objects), respectively. Objects in the front are displayed on top of those objects that are further in the
back if the objects overlap visually.

The following operations are available for removing submorphs:

myMorph.removeMorph(submorph);
myMorph.removeAllMorphs();
myMorph.remove();

The function removeMorph removes the specific submorph, while removeAllMorphs removes all the submorphs from
myMorph. The function remove removes the morph itself (in this case: myMorph) from its owner, and stops all the
stepping/scripting functionality associated with the object.

A number of convenience functions are available for submorph manipulation:

var hasSub = myMorph.hasSubmorphs(); // returns true or false
var topSub = myMorph.topSubmorph(); // returns the topmost submorph
myMorph.withAllSubmorphsDo(func, args); // applies function func to all submorphs

The function hasSubmorphs can be used for querying if an object has submorphs or not. The function topSubmorph
returns the (visually) topmost submorph. The function withAllSubmorphsDo automatically applies the given function
and arguments to the morph itself and all of its submorphs.

Morphs can also have named submorphs. Named submorphs are logically similar to other submorphs, except that they
can be accessed by name instead of an index. The following operations are available for setting and getting named
submorphs:

myMorph.getNamedMorph(“name”);
myMorph.setNamedMorph(“name”, subMorph);

Note. The named submorph mechanism is experimental and may be removed in a future release of the Lively Kernel.

6.4 Manipulating and Inspecting the Visual Attributes of a Morph

There are a large number of operations available for manipulating and inspecting the visual attributes of morphs. Most
of this functionality is inherited from class Visual that is the parent of class Morph. These operations include the
following:

myMorph.setFill(fillColor); // Sets the fill color
myMorph.getFill(); // Gets the fill color

myMorph.setStroke(borderColor); // Sets the border color
myMorph.getStroke(); // Gets the border color

myMorph.setStrokeWidth(borderWidth); // Sets the border width (in pixels)
myMorph.getStrokeWidth(); // Gets the border width (in pixels)

myMorph.setBorderColor(borderColor); // (duplicate of setStroke)
myMorph.getBorderColor(); // (duplicate of getStroke)

myMorph.setBorderWidth(borderWidth); // (duplicate of setStrokeWidth)
myMorph.getBorderWidth(); // (duplicate of getStrokeWidth)

// Note: Opacity values are numbers between 0...1 (0 = transparent; 1 = opaque)
myMorph.setFillOpacity(fillOpacity); // Sets the fill opacity
myMorph.getFillOpacity(); // Gets the fill opacity

myMorph.setStrokeOpacity(borderOpacity); // Sets the border opacity
myMorph.getStrokeOpacity(); // Gets the border opacity

For more information on these operations, refer to the documentation and comments in class Visual.

6.5 Moving, Resizing, Rotating and Reshaping Morphs

Morphs can be moved using the following operations:

myMorph.setPosition(pt(100, 50)); // Move the morph to position (100, 50)
myMorph.getPosition(); // Get current position as a point

myMorph.translateBy(pt(20, 10)); // Move the down and right by (20, 10) pixels
myMorph.moveBy(pt(20, 10)); // (synonym of translateBy)

Note. In order to use these operations, it is necessary to know about classes Point and Rectangle. All the coordinates
within the Lively Kernel are expressed as Point object instances. Correspondingly, all the functions that expect
parameters as bounds or extents (x, y, width, height) are expressed using Rectangle object instances.

Morphs can be aligned to a certain location using the following operation:

myMorph.align(pt1, pt2); // Move the object by pt1-pt2

Morphs can be scaled (enlarged or shrunk) relative to their owner using the following operations:

myMorph.scaleBy(2); // Double the size of the morph
myMorph.getScale(); // Get the current scale factor (1 = no scaling)

Morphs can be rotated relative to their owner using the following operations:

myMorph.rotateBy(0.1); // Rotate clockwise by 0.1 radians
myMorph.getRotation(); // Get the current rotation factor (0 = no rotation)

Morphs can be reshaped in various ways:

myMorph.setShape(newShape); // Change the shape of the morph to newShape
myMorph.setExtent(rect(10, 10, 100, 50)); // Change the bounds of the morph
myMorph.setBounds(rect(10, 10, 100, 50)); // (synonym of setExtent)
myMorph.setVertices([pt(10, 10), pt(20, 20)]); // Change the vertices of a polygon

Note. The setVertices operation is applicable only to polygon and polyline objects. This operation allows the vertices of
a polygon or a polyline to be changed quickly without creating a new morph.

Also note that whenever major changes are done to the shape or layout of an object, the following methods should be
called, respectively. The classes that are provided with the Lively Kernel itself perform such change notifications
automatically, but user-defined morphs should be prepared to call these methods whenever the shape or layout of a
morph changes.

myMorph.changed();
myMorph.layoutChanged();

6.6 Obtaining Information About the Surroundings of a Morph

Morphs have bindings to various other objects and structures in their environment. For instance, apart from the top-
level world, each morph has an owner that contains the morph as one of its submorphs. Correspondingly, each morph
usually belongs to a world and is drawn on a specific canvas. The following operations provide information about the
surroundings of a morph. Note that the world and canvas functions return null if the morph is not currently attached to
any world. For the top level world, the owner is always null.

myMorph.owner; // Returns the owner of the morph (null if no owner)
myMorph.world(); // Return the world in which this morph is currently located
myMorph.canvas(); // Returns the canvas in which this morph is drawn

The following functions are used for obtaining information about the position and the boundaries (extent) of the morph:

myMorph.getPosition(); // Returns the current position of the morph
 // (as a point relative to its owner)
myMorph.getExtent(); // Returns the current extent of the morph (as a rectangle)
myMorph.bounds(); // Returns the full bounding box in owner coordinates
myMorph.innerBounds(); // Returns the bounds of this morph in local coordinates

In Morphic, coordinates of objects are expressed relative to their owner. The following operations can be used for
translating coordinate values between local coordinates, owner coordinates and world coordinates. Like the names
indicate, local coordinates are (x, y) values within an individual object; owner coordinates are (x, y) values that are
expressed relative to morph's owner; world coordinates are (x, y) values within the world in which the morph is located.

myMorph.worldPoint(localPt); // Convert the given local point to world coordinates
myMorph.localize(worldPt); // Convert the given world point to local coordinates

myMorph.relativize(ownerPt); // Convert the given point (expressed in
 // owner coordinates) to local coordinates
myMorph.relativizeRect(rect); // Convert the given rectangle (expressed in
 // owner coordinates) to local coordinates

The following operations are used for checking whether the given point is inside the morph boundaries:

myMorph.containsPoint(ownerPt); // Returns true if the given point (expressed in
 // owner coordinates) is within the object
myMorph.containsWorldPoint(worldPt); // Returns true if the given point (expressed
 // (in world coordinates) is within the object
myMorph.fullContainsPoint(ownerPt); // Returns true if the given point is within
 // the full boundaries of the object
myMorph.fullContainsWorldPoint(worldPt);

6.7 Event Handling

The Lively Kernel is an event-based system that utilizes the same event mechanism as is used by the web browser and
the client-side JavaScript APIs in general. This means that each morph can be associated with a number of event
handler functions that will be called by the system automatically when a certain event occurs, e.g., when a mouse is
clicked on a morph.

The following mouse event handler functions are available for all morphs:

myMorph.onMouseDown(evt); // Called automatically when the mouse button is
 // pressed down when the cursor is on this morph
myMorph.onMouseMove(evt); // Called automatically when mouse cursor is moving
 // on top of this morph
myMorph.onMouseUp(evt); // Called automatically when the mouse button is
 // released on top of this morph (after onMouseDown)
myMorph.onMouseOver(evt); // Called automatically when the cursor moves onto
 // this morph
myMorph.onMouseOut(evt); // Called automatically when the cursor leaves
 // this morph

The following keyboard event handler functions are available for all morphs (but called only when the morph has
keyboard focus):

myMorph.onKeyDown(evt); // Called automatically when a key is pressed down
myMorph.onKeyUp(evt); // Called automatically when a key is lifted

myMorph.onKeyPress(evt); // (Combination of the two events above)

At the world level (for WorldMorphs), the two following additional event handler functions are available:

myWorld.onEnter(); // Called automatically upon entering a world
myWorld.onExit(); // Called automatically upon exiting a world

Note. All the event handler functions above are callback functions. They are not intended to be called by the
programmer directly. Rather, the system will call them automatically when necessary.

For each event handler function, an event parameter (above: evt) will be supplied by the system. The event parameter is
generated by the web browser, and it follows general DOM Event instance structure of the web browser. For instance,
the key code associated with a keyboard event is available as an attribute (evt.keyCode) of the event object.
Correspondingly, the mouse coordinates for a mouse event are available as DOM attributes evt.clientX and evt.clientY.
For further information on DOM events and the Event class, refer to:

David Flanagan, JavaScript: The Definitive Guide (5th edition). O'Reilly Media, 2006.
(Chapter 17: Events and Event Handling)

The Morphic event system has a number of additional operations that control whether a morph is receptive to certain
types of events. For instance, the following two methods control whether a morph listens to mouse events and keyboard
events, respectively:

myMorph.disablePointerEvents();
myMorph.takesKeyboardFocus();

The following methods control whether a morph is willing to process drag-and-drop (DnD) requests:

myMorph.openDnD(); // Enable dropping onto this morph
myMorph.closeDnD(); // Disable dropping onto this morph
myMorph.toggleDnD(); // Toggle DnD on/off
myMorph.openAllToDnd(); // Enable dropping onto this morph and any of its submorphs
myMorph.closeAllToDnd(); // Disable dropping onto this morph and any of its submorphs

Drag-and-drop operations are used internally by the Lively Kernel, e.g., to handle “wormhole” operations to move
objects from one world to another when dragging objects onto a LinkMorph. However, drag-and-drop functionality can
also be used in applications for various user-defined purposes.

6.8 Timers and Scripting/Stepping Functionality

Each morph can have a number of stepping scripts (scripts run by timers) associated with it. Stepping scripts are
functions that are called automatically by the system at certain intervals. The easiest way to create a stepping script is to
use the startStepping function.

myMorph.startStepping(milliseconds, scriptName, arguments);

For instance, the following source code line would create a morph that is rotated by 0.1 radians every 50 milliseconds:

myMorph.startStepping(50, “rotateBy”, 0.1);

There is an alternative, more object-oriented syntax for creating stepping scripts using the JavaScript object notation.

 var action = { actor: this, scriptName: “rotateBy”, argIfAny: 0.1,
 stepTime: 50, ticks: 0 };
 myMorph.addActiveScript(action);

The following operations can be used for creating and controlling stepping scripts:

// Call scriptName every 'stepTime' milliseconds
myMorph.startStepping(stepTime, scriptName, arguments);

// The same as 'startStepping' except that script is defined as a function
myMorph.startSteppingFunction(stepTime, function);

 // Stop all stepping scripts associated with this morph
myMorph.stopStepping();

// Newer syntax for script scheduling (uses special 'action' object syntax)
myMorph.addActiveScript(action)

// Start stepping all the scripts associated with this morph
// This method is called automatically when the morph is added to a world
myMorph.startSteppingScripts();

// Stop stepping all the scripts associated with this morph
// This method is called automatically when the morph is removed from a world
myMorph.stopSteppingScripts();

// Temporarily suspend all the scripts associated with this morph
myMorph.suspendActiveScripts

// Temporarily suspend all the scripts of this morph and its submorphs
myMorph.suspendAllActiveScripts

// Resume all the scripts associated with this morph and its submorphs
myMorph.resumeAllSuspendedScripts

6.9 Printing and Inspecting Morphs

Like all the JavaScript objects, morphs can be printed as strings using the following function:

myMorph.toString(); // Returns a string containing a textual summary of the object

The following function returns a textual representation of a morph using an output syntax that is specific to Morphic:

myMorph.inspect();

All the morphs in the Lively Kernel can also be printed in JSON (JavaScript Object Notation) format using the
following function:

myMorph.toJSON(); // JSON: JavaScript Object Notation

6.10 Additional Functions and Tools for Morph Manipulation

Using the Morph class as an object factory. In addition to the function categories discussed above, a number of
additional functions and tools are available. For instance, the Morph class can also behave as a factory for instantiating
new, simple morphs such as lines, circles and polygons. More specifically, the following factory methods are available:

// Note: in makeLine and makePolygon, vertices is expressed as an array of points
var m1 = Morph.makeLine(vertices, lineWidth, lineColor);
var m2 = Morph.makeCircle(location, radius, lineWidth, lineColor, fillColor);
var m3 = Morph.makePolygon(vertices, lineWidth, lineColor, fillColor);

Note that these functions are class methods, i.e., they are functions of the Morph class itself, rather than methods of its
instances.

Attaching popup menu items to morphs. In the Lively Kernel user interface, each morph can be associated with a
popup menu that is specific to the morph. The default popup menu can be accessed using the following function:

var popupMenu = myMorph.morphMenu();

In order to manipulate the items that are visible in the popup menu, you can use the functions of the MenuMorph class
(see file Widgets.js). The functions for manipulating the menu contents include:

popupMenu.addItem(["item name", this, 'functionToCall']);
popupMenu.addLine(); // Adds a separator line to the menu
popupMenu.removeItemNamed(“item name”);
popupMenu.replaceItemNamed(“item name”, ["item name", this, 'functionToCall']);

In general, items in the menus are expressed as arrays that consist of three elements: a name (the name of the menu
item), object (the object to which the menu operation is applied), and the name of the function (within the specified
object) to call.

Applying user interface theme definitions to morphs. As was summarized earlier in Section 5.5, the Lively Kernel
supports user-defined display themes. A theme is a collection of visual attributes associated with a world (class

WorldMorph). When the display theme of a world is changed, the style attributes of all the morphs in the world are
changed automatically. A special theme specification syntax (basically a JavaScript object containing the visual
attributes) is used for defining new themes. A theme specification can be applied to an individual morph using the
following method:

myMorph.applyStyle(themeSpec);

The theme specification syntax will be discussed in more detail in a future version of this document.

7. Manipulating Worlds

Worlds are a central concept in the Morphic user interface. A Morphic world captures the notion of an active, dynamic
web page. Every morph in the Lively Kernel resides in a world. Before a morph becomes visible, it must be added to a
world. When building applications for the Lively Kernel, it is therefore necessary to know about the operations that can
be used for creating and manipulating worlds.

Morphic worlds can be thought of like fully interactive, graphical web pages or Wikis. Each world can potentially
contain a large number of objects. Numerous applications and widgets can run simultaneously in the same world.
However, note that a world can also be a host for an individual, standalone application. For instance, it is quite possible
to build conventional, desktop-style applications using the Lively Kernel. In that case, the application will usually
consists only of a single world that hosts the entire application.

In this section we provide an overview of the operations that are used for manipulating worlds and subworlds.

7.1 Creating a World

Worlds are instances of class WorldMorph. Before a world becomes visible, it must be set current using the operation
setCurrent and connected to a drawing canvas using the operation displayWorldOn, as shown below:

var world = new WorldMorph(Canvas);
WorldMorph.setCurrent(world);
world.displayWorldOn(Canvas);

After calling the operations above, any morph that is subsequently added to the current world will become visible on the
screen automatically.

7.2 Creating Subworlds

The Morphic user interface framework allows an unlimited number of worlds to be created. These worlds do not
necessarily have to be linked to each other in any way. However, usually it is most convenient to create subworlds that
are organized hierarchically so that the user can navigate in the worlds easily. The easiest way to create hierarchically
arranged subworlds is to use class LinkMorph.

When a new LinkMorph is instantiated, a new subworld is created automatically. A link icon representing the subworld
becomes visible in the parent world (the world that owns the subworld). The subworld will also contain a similar link
icon that allows the user to navigate back to the parent world. Below are two examples of LinkMorph instantiation:

var subworldLink1 = new LinkMorph();
world.addMorph(subworldLink1); // Attach LinkMorph to the current world
var subworld1 = subworldLink1.myWorld; // Get pointer to the subworld

// Position the LinkMorph icon at (60, 460)
var subworldLink2 = new LinkMorph(null, pt(60, 460));
world.addMorph(subworldLink2); // Attach LinkMorph to the current world
var subworld2 = subworldLink2.myWorld; // Get pointer to the subworld

Note that if the first parameter in instantiating a LinkMorph is left null, an empty subworld will be created
automatically. The optional second parameter will indicate the initial position in which the LinkMorph icon will be
placed (the icon position will initially be the same in the subworld and in the parent world). If no position is specified, a
default position (normally the bottom left corner of the screen) will be used.

7.3 Obtaining Information About the Surroundings of a WorldMorph

The following operations can be used for obtaining information about the surroundings of a WorldMorph:

world.owner; // Returns the owner of this world
world.world(); // Returns the topmost owning world of this world
world.canvas(); // Returns the drawing canvas of the world

The world operation provides a quick way to access the topmost owning world of a WorldMorph, regardless of how
deep in the subworld hierarchy the current world is located. Note that for the topmost world in a hierarchy of worlds,
world.owner is always null.

7.4 Other Operations for Manipulating WorldMorphs

Setting and getting the currently displayed world. The following operations can be used for setting and getting the
currently active world:

var currentWorld = WorldMorph.current()
WorldMorph.setCurrent(someOtherWorld);

Note that these operations are class methods, i.e., they are operations of the WorldMorph class itself rather than
methods of its instances.

Also note that you must call the displayWorldOn function immediately after calling setCurrent, or otherwise the world
change will have no impact on the display.

Adding and removing hands. Hands (cursors) can be added and removed using the following operations:

var hand = new HandMorph();
world.addHand(hand);
world.removeHand(hand);

The first hand in a world can be accessed easily using the following function:

var hand1 = world.firstHand();

Note that usually the programmer should not manipulate hands directly. Rather, hands are normally created, deleted and
handled by the Morphic user interface framework itself.

Attaching popup menu items to worlds. Like all the morphs in the Lively Kernel, each WorldMorph can have its own
popup menu that can be invoked by alt-clicking the morph (in case of WorldMorphs, by Alt-clicking the background of
the world). The menu object of a WorldMorph can be accessed using the following operation:

var popupMenu = world.morphMenu();

The menu can be manipulated using the same operations that were summarized earlier in Section 6.10. For additional
details, refer to the definition of the MenuMorph class (see file Widgets.js).

Choosing display themes. As was explained in Section 5.5, the look and feel of the Morphic user interface is entirely
customizable and supports user-defined display themes. Themes are associated with WorldMorphs and can be changed
using the following operation:

world.setDisplayTheme(themeObject);

Themes are specified using special theme specification syntax (basically, a JavaScript object that defines the values of
the various visual attributes). When the setDisplayTheme operation is called, the display attribute values of the theme
are automatically applied to all the morphs in the world.

As explained earlier, themes associated with a world can also be changed from the user interface. In order to invoke the
theme selection menu programmatically, the following function can be called:

world.chooseDisplayTheme();

Operations related to timers and scripting/stepping functionality. In the Lively Kernel, timers and
scripting/stepping functionality is accessed primarily through individual morphs (see Section 6.8). However, there are

some useful operations that are available at the world level. Specifically, the following operation opens up a visual
inspector that can be used for viewing all the timers that are currently associated with all the morphs in a world:

world.inspectScheduledActions(); // Opens an inspector for viewing timed actions

Note. This functionality is still subject to change. In the future, we may use a different inspector for timer actions.

8. Sample Applications and Widgets

Application development for the Lively Kernel can occur in two different ways.

1) Applications can be developed interactively within the system itself, using the built-in tools that are part of the
Lively Kernel.

2) Applications can be developed using a more conventional, file-based approach, using external tools such as a
conventional text editor or a JavaScript IDE.

In this section, we show a number of sample applications in conventional source code format. We start with an
overview of the general class definition syntax in the Lively Kernel, followed by three examples. The first two
examples implement relatively simple widgets (an analog clock and a JavaScript code browser, respectively). The third
example implements a radial engine simulator that can be used for educational purposes to demonstrate how internal
combustion engines work.

8.1 Creating New Morph Classes – An Overview

New classes in the Lively Kernel are generally defined using the following syntax:

Morph.subclass(“MyCoolMorph”, {

 // Constructor
 initialize: function(/* constructor arguments */) {
 // Initialize instance variables here
 this.foo = 123;
 this.bar = “Hello!”;
 return this;
 },

 myMethod: function() {
 // ... do something ...
 }

});

The definition above creates a new class MyCoolMorph as a subclass of class Morph. The initialize operation is the
constructor function that is called automatically when creating instances of the class. Note that property definitions
(such as the method definitions above) in the class definition are separated by a comma.

Instances of the morph class defined above would be created as follows:

var aCoolMorph = new MyCoolMorph(/* constructor arguments */);

Additional information on the class definition syntax can be found in the documentation of the Prototype library:

http://www.prototypejs.org/learn/class-inheritance

8.2 Sample Application: ClockMorph Widget

In this section we have included a complete example that defines a widget called ClockMorph – a simple analog clock.
A ClockMorph instance is shown in Figure 10.

The entire source code of the ClockMorph class is below.

http://www.prototypejs.org/learn/class-inheritance

/**
 * @class ClockMorph: A simple analog clock
 */

Morph.subclass(“ClockMorph”, {

 defaultBorderWidth: 2,
 type: "ClockMorph",

 // Constructor

 initialize: function($super, position, radius) { Figure 10: A ClockMorph instance
 $super(position.asRectangle().expandBy(radius), "ellipse");
 this.openForDragAndDrop = false; // Do not handle drag-and-drop requests
 this.makeNewFace(); // Construct the clock face
 return this;
 },

 // Construct a new clock face
 makeNewFace: function() {

 var bnds = this.shape.bounds();
 var radius = bnds.width/2;
 var labels = [];
 var fontSize = Math.max(Math.floor(0.04 * (bnds.width + bnds.height)),2);
 var labelSize = fontSize; // room to center with default inset

 // Add Roman numerals to the clock
 for (var i = 0; i < 12; i++) {
 var labelPosition = bnds.center().addPt(Point.polar(radius*0.85,
 ((i-3)/12)*Math.PI*2)).addXY(labelSize, 0);
 var label = new TextMorph(pt(0,0).extent(pt(labelSize*3,labelSize)),
 ['XII','I','II','III','IV','V','VI','VII','VIII','IX','X','XI'][i]);
 label.setWrapStyle(WrapStyle.SHRINK);
 label.setFontSize(fontSize); label.setInset(pt(0,0));
 label.setBorderWidth(0); label.setFill(null);
 label.align(label.bounds().center(),labelPosition.addXY(-2,1));
 this.addMorph(label);
 }

 // Add clock hands
 this.addMorph(this.hourHand = Morph.makeLine([pt(0,0),pt(0,-radius*0.5)],4,Color.blue));
 this.addMorph(this.minuteHand = Morph.makeLine([pt(0,0),pt(0,-radius*0.7)],3,Color.blue));
 this.addMorph(this.secondHand = Morph.makeLine([pt(0,0),pt(0,-radius*0.75)],2,Color.red));
 this.setHands();
 this.changed();
 },

 // Set clock hand angles based on current time
 setHands: function() {
 var now = new Date();
 var second = now.getSeconds();
 var minute = now.getMinutes() + second/60;
 var hour = now.getHours() + minute/60;
 this.hourHand.setRotation(hour/12*2*Math.PI);
 this.minuteHand.setRotation(minute/60*2*Math.PI);
 this.secondHand.setRotation(second/60*2*Math.PI);
 },

 // Will be called when the ClockMorph is placed in a world
 startSteppingScripts: function() {
 this.startStepping(1000, "setHands"); // once per second
 }

});

The ClockMorph class consists of a constructor, three other methods and a few variable declarations. The method
makeNewFace creates a new clock face by adding Roman numerals and three hands (representing the hour, minute and
second hand) onto the ellipse representing the clock. The method setHands is called once a second to update the
rotation angle of the hands. The method startSteppingScripts initializes the stepping actions, and is called automatically
when the ClockMorph is placed in a world.

Note the use of $super reference in the constructor. The $super reference – defined in the Prototype library – allows a
method to refer to the corresponding method in its parent class (in this case, the constructor of the parent class Morph).
For further information on the use of $super, refer to the documentation of the Prototype library:

http://www.prototypejs.org/learn/class-inheritance

In order to initialize the ClockMorph, the following code can be used:

http://www.prototypejs.org/learn/class-inheritance

 var widget = new ClockMorph(pt(60, 60), 50); // Position (60, 60), radius 50 pixels
 world.addMorph(widget);
 widget.startSteppingScripts();

This code creates a new ClockMorph instance in position (60, 60), with a radius of 50 pixels.

8.3 Sample Application: JavaScript Code Browser

The source code in this section shows how the JavaScript code browser in the Lively Kernel has been implemented. The
class SimpleBrowser consists of a constructor and eight methods that utilize the reflective capabilities of the JavaScript
programming language that allow the code browser to display the JavaScript classes and methods in the global
namespace (“Global”) of the Lively Kernel itself.

An example of a SimpleBrowser instance is shown in Figure 11.

Figure 11: A SimpleBrowser (JavaScript code browser) instance

The source code of class SimpleBrowser is below.

/**
 * @class SimpleBrowser: A simple JavaScript class browser
 */

Model.subclass(“SimpleBrowser”, {

 // Note: Real initialization is done in the 'openIn' method
 initialize: function($super) { $super(); },

 // Get the list of all the classes in the system
 getClassList: function() {
 return Class.listClassNames(Global).sort();
 },

 setClassName: function(n) { this.className = n; this.changed("getMethodList"); },

 // Get all the methods associated with 'className'
 getMethodList: function() {
 if (this.className == null) return [];
 else {
 if (this.className == 'Global')
 return Global.constructor.functionNames().without(this.className);
 else return Global[this.className].localFunctionNames();
 }
 },

 setMethodName: function(n) { this.methodName = n; this.changed("getMethodString"); },

 // Get the method code associated with 'className' and 'methodName'
 getMethodString: function() {
 if (!this.className || !this.methodName) return "no code";
 else return Function.methodString(this.className, this.methodName);
 },

 // Override previous method definition with eval()
 setMethodString: function(newDef) { eval(newDef); },

 // Open a code browser in the given location
 openIn: function(world, location) {
 world.addMorphAt(new WindowMorph(this.buildView(pt(400,300)),
 'JavaScript Code Browser'), location);
 this.changed('getClassList')
 },

 // Build a three-pane panel for the code browser
 buildView: function(extent) {
 var panel = PanelMorph.makePanedPanel(extent, [
 ['leftPane', ListPane, new Rectangle(0, 0, 0.5, 0.6)],
 ['rightPane', ListPane, new Rectangle(0.5, 0, 0.5, 0.6)],
 ['bottomPane', TextPane, new Rectangle(0, 0.6, 1, 0.4)]
]);

 // Connect panes with specific methods in the SimpleBrowser class
 var m = panel.getNamedMorph('leftPane');
 m.connectModel({model: this, getList: "getClassList", setSelection: "setClassName"});
 m = panel.getNamedMorph('rightPane');
 m.connectModel({model: this, getList: "getMethodList", setSelection: "setMethodName"});
 m = panel.getNamedMorph('bottomPane');
 m.connectModel({model: this, getText: "getMethodString", setText: "setMethodString"});

 return panel;
 }

});

Class SimpleBrowser inherits from the Lively Kernel class Model that provides a straightforward Observer (publish-
subscribe) pattern implementation (see http://en.wikipedia.org/wiki/Observer_pattern) to manage dependencies
between different objects. In this case, the Model dependency mechanism is used for hooking up the three panes in the
user interface of the code browser to specific methods of the SimpleBrowser class. For instance, when the user performs
a selection in the class panel (top left panel in a a SimpleBrowser instance), the method setClassName will be called
automatically (see the buildView method code above).

8.4 Sample Application: Radial Engine Simulator

In this section we have included a more comprehensive example application: a radial engine simulator. This application
can be used for educational purposes to illustrate how radial engines (and more generally, internal combustion engines)
work. For a general introduction to radial engines, refer to, e.g., http://en.wikipedia.org/wiki/Radial_engine.

The radial engine simulator consists of a WindowMorph that contains a central crankshaft and a number of cylinders
arranged radially (see Figure 12). All the components of the engine are created as morphs in the application. The
different colors in the cylinders indicate the four different cycles/strokes in the engine (intake stroke, compression
stroke, power stroke, exhaust stroke). A number of MenuMorphs are used for controlling the number of cylinders, the
ignition timing sequence, and the general state of the simulation (running, stopped, manual stepping).

Figure 12: The Radial Engine Simulator

http://en.wikipedia.org/wiki/Radial_engine
http://en.wikipedia.org/wiki/Observer_pattern

The source code of the radial engine simulator (class EngineMorph) is included below.

/**
 * @class EngineMorph: The Radial Engine demo
 */

Morph.subclass(“EngineMorph”, {

 initialize: function($super, fullRect) {
 $super(fullRect, "rect");
 this.setFill(new LinearGradient(Color.gray,
 Color.darkGray, LinearGradient.NorthSouth));
 this.makeLayout();
 this.running = true;
 },

 // Create the general layout of the demo (crankshaft and the menus)
 makeLayout: function() {
 var bnds = this.innerBounds().withHeight(this.innerBounds().width);
 var center = bnds.center();
 this.stroke = bnds.height*0.14;
 this.alternateTiming = false;
 this.crank = Morph.makeCircle(center, this.stroke*0.8, 4,
 Color.black, Color.gray);
 this.addMorph(this.crank);
 this.crankPin = Morph.makeCircle(pt(0, -this.stroke/2), this.stroke*0.25,
 0, null, Color.black);
 this.crank.addMorph(this.crankPin);
 this.crankAngle = 0; // goes up to 4*pi, while rotation wraps at 2*pi
 this.angleStep = Math.PI/8;

 var menu = new MenuMorph([]);

 for (var i=1; i<=9; i++) menu.addItem([i.toString(), this, 'makeCylinders', i]);
 menu.openIn(this, pt(80,440), true, "Number of cylinders");

 menu = new MenuMorph([
 ["sequential", this, 'setAlternateTiming', false],
 ["alternate", this, 'setAlternateTiming', true]
]);
 menu.openIn(this, pt(300,440), true, "Ignition timing");

 menu = new MenuMorph([
 ["run", this, 'setRunning', true],
 ["stop", this, 'setRunning', false],
 ["step", this, 'doStep'],
 ["rebuild", this, 'rebuild']
]);
 menu.openIn(this, pt(315,515), true, "Operating State");

 var label = new TextMorph(new Rectangle(0, 0, 100, 20),
 "The Radial Engine").beLabel();
 label.setFontSize(20); this.addMorph(label);
 label.align(label.bounds().topCenter(), bnds.bottomCenter().addXY(0, -20));
 },

 // Construct the given number of cylinders
 makeCylinders: function(nCylinders) {
 // Build cylinder-piston assembly with center or rotation at crank center
 this.crankAngle = 0;
 this.crank.setRotation(this.crankAngle);
 var bnds = this.innerBounds().withHeight(this.innerBounds().width);
 var center = bnds.center();
 var relBore = 0.14;
 var cr = bnds.scaleByRect(new Rectangle(0.5 - (relBore/2), 0.1, relBore, 0.2));
 var dHead = cr.width*0.2; // slight dome at top of cylinder -- room for valves
 var cylVerts = [cr.topRight(), cr.bottomRight(), //vertices of cylinder polygon
 cr.topRight().addXY(0, this.stroke), cr.topLeft().addXY(0, this.stroke),
 cr.bottomLeft(), cr.topLeft(),
 cr.topLeft().addXY(dHead, -dHead), cr.topRight().addXY(-dHead, -dHead),
 cr.topRight()
];
 cylVerts = Shape.translateVerticesBy(cylVerts,
 this.crank.bounds().center().negated());
 var cylinder = Morph.makePolygon(cylVerts, 4, Color.black, Color.gray);
 cylinder.setPosition(cr.topLeft().addXY(0, -dHead));
 var pistonBW = 2;
 var pistonDx = (cylinder.getBorderWidth() + pistonBW) / 2;
 var piston = new Morph(cr.insetByPt(pt(pistonDx, (cr.height-this.stroke)/2)),
 "rectangle");
 piston.setFill(Color.darkGray);
 piston.setBorderWidth(pistonBW);
 cylinder.addMorph(piston);
 var wristPin = Morph.makeCircle(piston.innerBounds().center(), cr.width*0.1,
 0, null, Color.black);

 piston.addMorph(wristPin);

 // Duplicate and rotate the cylinder assembly to complete the engine
 if (this.cylinders) this.cylinders.each(// remove any previous assemblies
 function(each) { each.connectingRod.remove(); each.remove(); }
);
 this.cylinders = [];
 for (var i=0; i<nCylinders; i++) {
 var cyl = cylinder.copy();
 this.addMorph(cyl)
 cyl.angle = (Math.PI*2/nCylinders)*i;
 if (this.alternateTiming && i%2 == 1) cyl.angle += Math.PI*2;
 cyl.setRotation(cyl.angle);
 cyl.piston = cyl.topSubmorph();
 cyl.piston.topPos = cyl.innerBounds().topLeft().addXY(pistonDx, dHead);
 cyl.wristPin = cyl.piston.topSubmorph();
 this.movePiston(cyl);
 this.cylinders.push(cyl);
 cyl.connectingRod = Morph.makeLine(
 [this.localizePointFrom(cyl.wristPin.bounds().center(), cyl.piston),
 this.localizePointFrom(this.crankPin.bounds().center(), this.crank)],
 cr.width*0.15, Color.gray.darker(2)
);
 this.addMorph(cyl.connectingRod)
 };
 },

 // Move a piston according to the four engine cycles/strokes
 movePiston: function(cyl) { // Method to move piston and connecting rod
 var pi = Math.PI;
 var phase = (this.crankAngle - cyl.angle);
 if (phase < 0) phase += pi*4;
 var dy = (Math.cos(phase) - 1) * this.stroke/2;
 cyl.piston.setPosition(cyl.piston.topPos.addXY(0, -dy));
 var cycle = Math.floor(phase / pi);
 var frac = phase / pi - cycle; // fractional part of cycle used to mix colors
 switch (cycle) {
 case 0: cyl.setFill(Color.blue.lighter());
 break; // intake
 case 1: cyl.setFill(Color.blue.mixedWith(Color.blue.lighter(), frac));
 break; // compression
 case 2: cyl.setFill(Color.red.lighter().mixedWith(Color.red, frac));
 break; // power
 case 3: cyl.setFill(Color.red.lighter());
 break; // exhaust
 }
 // ignition
 if (Math.abs(phase-2*pi) < this.angleStep/2) cyl.setFill(Color.yellow);
 },

 setRunning: function(trueOrFalse) { this.running = trueOrFalse; },

 nextStep: function() { if (this.running) this.doStep(); },

 doStep: function() {
 this.crankAngle += this.angleStep;
 if (this.crankAngle > Math.PI*4) this.crankAngle -= Math.PI*4;
 this.crank.setRotation(this.crankAngle); // Rotate the crankshaft
 this.cylinders.each(function(cyl) {
 this.movePiston(cyl); // Move the pistons
 cyl.connectingRod.setVertices(// Relocate the connecting rods
 [cyl.connectingRod.localizePointFrom(cyl.wristPin.bounds().center(),
 cyl.piston),
 cyl.connectingRod.localizePointFrom(this.crankPin.bounds().center(),
 this.crank)]);
 }.bind(this));
 },

 setAlternateTiming: function(trueOrFalse) {
 // Demonstrate alternate and sequential firing order
 this.alternateTiming = trueOrFalse;
 this.makeCylinders(this.cylinders.length);
 },

 rebuild: function() {
 this.removeAllMorphs();
 this.makeLayout();
 this.makeCylinders(this.cylinders.length);
 },

 startSteppingScripts: function() { this.startStepping(100,'nextStep'); }

});

The main functionality of the radial engine simulator is defined in four functions. Function makeLayout creates the
general layout of the demo (the crankshaft and the menus for controlling the demo). Function makeCylinder constructs
the given number of cylinder (the number of cylinders can vary from 1 to 9). The function movePiston moves the piston
of the given cylinder according to the four different strokes of the cylinder. The function doStep runs the demo one step
forward. The doStep function is called periodically as a stepping script (from function nextStep) every 100 milliseconds,
unless the user has stopped the engine.

9. Advanced Topics for Future Discussion

There are a number of advanced topics that have not been covered in this document. Such topics include the following.

Manipulating text. The Morphic user interface framework implements its own text handling functions that are defined
in class TextMorph (file Text.js). TextMorph functionality will be covered in a future version of this document.

Using the Model and SimpleModel classes. The Morphic user interface framework includes an Observer (publish-
subscribe) pattern implementation (see http://en.wikipedia.org/wiki/Observer_pattern) that allows the programmer to
manage dependencies between different objects easily. Classes Model and SimpleModel will be covered in more detail
in a future version of this document.

Defining new user interface themes. As was described earlier in this document, the Morphic user interface framework
supports user-defined display themes. The syntax for specifying new themes will be covered in a future version of this
document.

Using the built-in tools for application development. The Lively Kernel differs from most other web application
development systems in the sense that in the Lively Kernel application development can occur inside the system itself,
using tools that have been built into the Lively Kernel itself. No external tools are needed, apart from the web browser
in which the Lively Kernel runs. The built-in development tools will be covered in more detail in a future version of this
document.

Saving, importing and exporting Lively Kernel objects and worlds. Objects and classes created within the Lively
Kernel can be saved, imported and exported in different ways. These mechanisms will be covered in more detail in a
future version of this document.

Porting the Lively Kernel onto additional target platforms. We have ported the Lively Kernel to run on a number of
alternative target platforms. Our porting experiences and porting advice will be summarized in the future versions of
this document.

http://en.wikipedia.org/wiki/Observer_pattern

