
The T Manual

Fifth Edition

— Pre-Beta Draft —

Jonathan A. Rees Norman I. Adams James R. Meehan

November 21, 2003

Copyright c©1988
Computer Science DepartmentYale University

New Haven CT

All rights reserved.
Permission is granted to anyone to make or distribute verbatim
copies of this document provided that the copyright notice and

this permission are preserved.

Contents

1 Introduction 9

1.1 Notation . 9

1.2 Naming Conventions . 10

1.3 Language principles and conventions . 11

2 Syntax and semantics 12

2.1 External representation . 12

2.2 Core language . 13

2.3 The standard environment . 14

2.4 Undefined . 14

2.5 Multiple values . 14

3 Objects 15

3.1 Literals . 15

3.2 Procedures . 16

3.3 Object identity . 17

3.4 Symbols . 17

3.5 Predicates and truth values . 18

3.6 Types . 19

3.7 Continuations . 19

4 Environments 20

4.1 Environments and contours . 20

4.2 Local variables . 21

4.3 Locales . 23

4.4 Non-local reference . 24

5 Control 25

5.1 Conditionals . 25

2

3

5.2 Iteration . 28

5.3 Procedure application . 29

5.4 Sequencing . 30

5.5 Explicit return . 30

5.5.1 Non-local exits . 30

5.5.2 Returning multiple values . 31

5.6 Lazy evaluation . 32

6 Side effects 33

6.1 Assignment . 33

6.2 Locatives . 35

6.3 Dynamic state . 36

7 Operations 38

7.1 Fundamental forms . 38

7.2 Defining operations . 40

7.3 Joined objects . 41

7.4 Example . 42

8 Numbers 43

8.1 Predicates . 43

8.2 Arithmetic . 44

8.3 Comparison . 46

8.4 Sign predicates . 47

8.5 Transcendental functions . 48

8.6 Bitwise logical operators . 48

8.7 Coercion . 49

8.8 Assignment . 50

9 Lists 51

9.1 Predicates . 51

9.2 Constructors . 52

9.3 List access . 53

9.4 Lists as sequences . 54

9.5 Lists as sets . 54

9.6 Mapping Procedures . 56

9.7 Lists as associations . 56

9.8 Lists as stacks . 57

4

10 Trees 58

10.1 Comparison . 58

10.2 Tree utilities . 59

10.3 Destructuring . 59

10.4 Quasiquote . 60

11 Structures 62

11.1 Terminology . 62

11.2 Defining structure types . 62

11.3 Manipulating structure types . 63

11.4 Manipulating structures . 65

12 Characters and strings 66

12.1 Predicates . 67

12.2 Comparison . 68

12.3 String access . 69

12.4 String manipulation . 70

12.5 String header manipulation . 71

12.6 Case conversion . 72

12.7 Digit conversion . 73

12.8 ASCII conversion . 73

12.9 Symbols . 73

13 Miscellaneous features 75

13.1 Comments and declarations . 75

13.2 Errors and dead ends . 75

13.3 Early binding . 77

13.4 Symbol generators . 77

13.5 Combinators . 77

13.6 Vectors . 79

13.7 Pools . 81

13.8 Weak pointers . 81

14 Syntax 83

14.1 The reader . 83

14.2 Read tables and read macros . 85

14.3 Standard compiler . 87

14.4 Syntax Tables . 88

5

14.5 Defining syntax . 89

14.6 Local syntax . 90

14.7 Macro expanders . 91

15 Ports 93

15.1 General . 93

15.2 Port switches . 94

15.3 Input . 95

15.4 Output . 96

15.5 Formatted output . 98

15.6 Miscellaneous . 98

15.7 Example . 100

16 Files 101

16.1 File systems . 101

16.2 Filenames . 102

16.3 Files . 104

17 Program structure 106

17.1 Environment structure . 106

17.2 Source files . 107

17.3 File syntax . 108

17.4 Loading files . 109

17.5 File compilation . 109

18 User interface 111

18.1 Invoking T . 111

18.2 Suspending T . 112

18.3 Read-eval-print loops . 113

18.4 Command levels . 113

18.5 Transcripts . 114

18.6 Customization . 114

19 Debugging 116

19.1 Errors . 116

19.2 Debugging utilities . 117

19.3 The inspector . 117

19.4 Debugging primitives . 120

19.5 Miscellaneous . 121

6

A Foreign-function Interface 123

A.1 Foreign Type Specification . 124

A.2 Pascal (Apollo) Enumerated Types . 125

A.3 Pascal Sets (Apollo) . 125

A.4 Returned Values and Out Parameters . 126

B Libraries 127

B.1 Tables . 127

B.2 Random Integers . 128

B.3 List utilities . 129

B.4 Type-specific arithmetic . 130

C Other Lisps 132

C.1 Scheme Environment . 132

D ASCII character conversion 133

E Friendly advice 136

E.1 Comparison with other Lisp dialects . 136

E.2 Incompatibilities . 136

F Future work 138

F.1 Language design problems . 138

F.2 Common Lisp influence . 140

F.3 Bugs in the implementation . 140

G Notes on the 4th edition 142

Preface

This manual describes T, a programming language being developed at the Yale University Computer Science
Department [RA82], and its current implementations. It is a reference manual, intended to define the language
and to describe the general direction of its development. It is not intended as an introduction or a tutorial.

The bulk of this document describes T as a programming language. However, chapters 17, 18, and 19 describe
pragmatic features which are specific to the current implementations.

The reader is expected to have some programming experience; the reader may also find a knowledge of Lisp
helpful, although T is different enough from Lisp that prior experience with Lisp might actually be a hindrance.

Chapter F describes ways in which the language is deficient and directions in which it is likely to grow. Also,
the implementations are not faithful to the language definition presented in the manual; section F.3 catalogs
known deviations.

Please send questions and comments about the language, this manual, or the various implementations of the
system, via Internet mail to T-Project@Yale.Edu, or via U.S. Mail to

T Project
Department of Computer Science
Yale University
P.O. Box 2158 Yale Station
New Haven, Connecticut 06520

Announcements of interest to T users are regularly broadcast via Arpanet and Usenet electronic mail to the
mailing list T-Discussion@MC.LCS.MIT.EDU; send mail to T-Discussion-Request@MC.LCS.MIT.EDU if you
want to be added to (or removed from) this list. Send reports about errors in the manual or implementations
to T3-Bugs@YALE.EDU.

To be added to the Scheme mailing list send mail to Scheme-Request@MC.LCS.MIT.EDU, or subscribe to the
comp.lang.scheme Usenet newsgroup.

The T project has been funded exclusively by the Computing Facility of the Yale Computer Science Department.

The Fifth Edition of the T Manual is the result of converting the 1984 T2.7 manual to LaTeX and then slapping
in the release notes from T3.0 and T3.1. The T3.0 release notes were written by James Philbin. The T3.1
release notes are by David Kranz. Most of the work in converting the original Scribe sources to LaTeX was done
by Mitchell Charity. Final cleaning up and some amount of integration was done by Dorab Patel. Thanks to
Jonathan Rees, David Kranz, (and others to be mentioned), who helped with the cleanup.

0VMS, and VAX are trademarks of Digital Equipment Corporation. Domain and Aegis are trademarks of Apollo Computer,
Inc. UNIX is a trademark of Bell Laboratories.

7

Acknowledgements

The authors wish to thank Kent Pitman for his continuing assistance in making T true.

Gerry Sussman has provided essential guidance and inspiration.

Guy Steele wrote most of the compiler we’re using, and has otherwise been a strong influence, originating much
of the project’s design philosophy and shaping and inspiring many of its features.

This document borrows from the Lisp Machine Manual [WM81] and the Common Lisp Reference Manual
[Ste84]. We are grateful to their authors.

We wish to acknowledge the influence and valuable advice provided during the design process by the following
people at Yale, MIT, and elsewhere: Alan Bawden, Richard Bryan, David Byrne, George Carrette, William
Clinger, Peter Deutsch, John Ellis, William Ferguson, Christopher Hanson, Carl Hoffman, David Kranz, David
Littleboy, Drew McDermott, Nathaniel Mishkin, Robert Nix, Jim Philbin, John Ramsdell, Christopher Riesbeck,
John Ruttenberg, Olin Shivers, and Steve Wood.

Thanks to Judy Martel for her patient proofreading.

The NIL project at MIT was the source of many of T’s good ideas. NIL is the work of Richard Bryan, Glenn
Burke, George Carrette, Michael Genereseth, Robert Kerns, Jim Purtilo, John White, and one of the present
authors (JR).

Jim Purtilo wrote the integer arithmetic package used in the current implementation while he was working on
the NIL project.

We appreciate the patience of our user community, at Yale and elsewhere, who have had to put up with an
incompatible, incomplete, and untuned new system.

Finally, we wish to thank John O’Donnell for helping to shelter us from the real world, and for having the
foresight, or perhaps folly, to initiate the project in the first place.

8

Chapter 1

Introduction

T is a dialect of Lisp derived from Scheme [SS78]. It is comparable in power and expressivness to other recent
Lisp dialects such as Lisp Machine Lisp [WM81], Common Lisp [Ste84], and NIL [Whi79], but fundamentally
more similar in spirit to Scheme than these other Lisp dialects.

T is an attempt to create a powerful and expressive language which is portable, efficient, and suitable for a
broad variety of applications, including symbolic, numerical, and systems programming.

T draws from many sources in its attempt to provide a complete yet simple and unified system. For the most
part, the language’s designers are collators, not originators. Common Lisp, NIL, and Scheme have been the
strongest influences.

1.1 Notation

Throughout this document the following conventions are used:

{ . . . } Curly braces group together whatever they enclose.

[. . .] Square brackets indicate that what they enclose is optional. See also Dot-notation below.

∗ Braces or brackets followed by a star, e.g. { . . . }∗ , indicate zero or more occurences of the enclosed item.
See also Dot-notation below.

+ Braces or brackets followed by a plus sign, e.g. [. . .]+, indicate one or more occurences of the enclosed item.

| A vertical bar is used to separate alternatives in a braced or bracketed group, e.g. { thing1 | . . . | thingN }.

=⇒ is used to indicate evaluation. (Evaluation is described in section 2.2.) It is read as “evaluates to”. For
example, (+ 3 5) =⇒ 8 means that evaluating the expression (+ 3 5) yields 8.

≡ indicates code equivalence. It is read as “is equivalent to”. For example, (CAR (CDR x)) ≡ (CADR x) means
that for any x , the value and effects of (CAR (CDR x)) are always the same as the value and effects of
(CADR x).

−→ is used in definitions to indicate the type of the result. For example, (NUMBER? object) −→ boolean means
that the procedure named NUMBER? yields a boolean result.

(PRINT object port) −→ undefined

9

10

means that PRINT returns a value of no particular interest; that is, one should not depend on it to return
anything in particular.

Italicized names in the code examples are meta-variables that stand for pieces of code to be filled in. Restrictions
on the particular types or values of a meta-variable are often suggested by its name or are given in the
text associated with the example. The term object denotes data of unrestricted type.

Dot-notation , as in (ADD . numbers), is used where any number of sub-forms are permitted. In this exam-
ple, there may be zero or more numbers; the description subsumes cases such as (ADD), (ADD 3), and
(ADD 3 5 2). See also ∗ and ([. . .]) above.

Settable Some routines described in this manual, such as VREF (page 80), serve as access routines in the sense
that they are appropriate for use in SET and related forms to designate locations. These routines have
their descriptions flagged with the notation Settable.

Type Predicate Functions that take an object of any type as an argument and return a boolean are called type
predicates. They return true if the argument was of the required type and false otherwise.

Operation Functions that dispatch on their first argument are labelled as operations. See Chapter 7.

1.2 Naming Conventions

Below are listed some of the naming conventions used for standard T procedures, variables, and reserved words.

... ? The suffix ? indicates a predicate. For example, ZERO? is a predicate which returns true if its argument
is numerically equal to zero.

... ! The suffix ! indicates a side-effecting variant of a non-side-effecting procedure. For example, REVERSE!
is the same as REVERSE, but it alters its argument, recycling the storage to form its result.

... ->... Infix -> is used in names of coercion procedures, which are routines which perform conversions
between objects of different types. For example, given a string, STRING->LIST forms a list of the characters
in the string.

*... * The names of mutable variables whose scope is not visually apparent to someone reading the program
is usually bounded on either side with *’s. In T2, also used for some immutable variables.

DEFINE-... Relates to the assignment of something in a permanent way. DEFINE is typically used for defining
procedures, DEFINE-OPERATION to define generic operations, and so forth.

MAKE-... Indicates a routine which creates an object of some type, given size (and sometimes datatype)
information. For example, (MAKE-STRING 5) makes a string of length 5.

NOT-... The prefix “NOT-” means that the truth value of some predicate is complemented. For example,
(NOT-LESS? x y) is the same as (NOT (LESS? x y)).

... CDR Relates to the subtail or successive subtails of a list. For example, while the procedure named NTH
returns the nth element of a list, there is another procedure named NTHCDR that returns the nth subtail .

... Q The presence of the trailing character “Q” on a name typically means that the predicate “EQ?” is involved.
For example,

(MEMQ? x l) ≡ (MEM? EQ? x l)

11

1.3 Language principles and conventions

The design of T employs a number of conventions. These conventions make the language more regular, pre-
dictable, and easy to learn.

Anonymity: objects are not tightly coupled to their names.

Locality: effects may be achieved locally.

Argument order: procedures which extract components from aggregate objects generally take the aggregate
object as the first argument, and selection information (if any) as subsequent arguments. Similarly, assignment
procedures take the aggregate object or location specification early, and the value to be stored last.

Indexing: where numeric indices are involved, the indices begin with zero and range up to a given limit. Ranges
are specified as half-open intervals, inclusive at the low end and exclusive at the high end.

Abbreviations: are avoided in names of T entities. Words are spelled out and separated by hyphens, e.g.
DEFINE-OPERATION, STRING-LENGTH. Where abbreviations are used, they are used consistently: e.g. CHAR
abbreviates CHARACTER, as in CHAR?, and ELT abbreviates ELEMENT, as in STRING-ELT.

Chapter 2

Syntax and semantics

This chapter gives an overview of T as a programming language.

The T language logically comprises three distinct components:

an external representation for objects as character sequences,

a core language - syntax and semantics for expressions, and

a standard environment - the behavior of the objects which are values of system variables.

2.1 External representation

Like other Lisp dialects, and in contrast with most other programming languages, T has two different kinds of
syntax: the external representation by which objects (data) are represented as a linear sequence of characters,
and an expression syntax by which these objects can be understood as programs. That is, the meaning of a T
program represented as characters in a file or other external storage medium must be determined in two stages:
first, by mapping the characters to objects, and then by interpreting these objects as executable programs.

The external syntax of T is very similar to that of other Lisp dialects, and is discussed in detail at appropriate
places in this manual. The following gives only the most cursory description. Characters may be classified
according to their lexical properties; the two most important distinctions are between constituent and delimiter
characters, and between read-macro characters and non-read-macro characters. Alphabetic, numeric, and some
special characters (e.g. - and $) are constituent characters; whitespace and some special characters (e.g. left and
right parenthesis) are delimiter characters. Some special characters such as (and ’ are read-macro characters;
these introduce special syntactic constructs which are idiosyncratic to the particular character introducing them.

A delimited sequence of consecutive constituent characters represents either a number or a symbol. For example,
255 represents the integer 255, and APPEND and append both represent the symbol APPEND. Here, and throughout
the manual, the term symbol is being used in a technical manner to refer a particular kind of named object (see
section 3.4).

Balanced parentheses with a sequence of (representations of) objects between them represent a list of the
(represented) objects. For example, the characters (A B (C 12) D) represent a list of four objects, three of
which are symbols, and one of which (the third one) is a list of two objects, the symbol C and the integer 12.
Parentheses which enclose no objects represent an empty list.

There are also external representations for strings and characters, as well as for some kinds of objects which
are syntactically illegal as expressions (for example, vectors). Not all objects have external representations,
however.

12

13

2.2 Core language

The core language is described in terms of a hypothetical machine (called an evaluator) which executes T
code directly. In practice, the existing T implementations have (at least) two evaluators, both of which per-
form evaluation as a two-stage process consisting of compilation (syntactic and semantic analysis) followed by
interpretation.

Evaluation is a process whereby an object called an expression (the term form is used synonymously with
expression) is mapped to another object, called its value. Evaluation occurs in the context of a particular
variable environment ; see below. The expression is said to yield its value.

The evaluation mapping is not a purely mathematical mapping, since in some cases the evaluation of an ex-
pression may depend not only on the variable environment but on the state of the running T system, or on the
state of the world outside it; and evaluation may cause changes in the state of system or the world, which may,
in turn, affect future evaluations. These state changes are called side-effects.

The rules by which an object is evaluated are as follows:

Self-evaluating literals: All numbers, strings, and characters are syntactically valid expressions which, when
evaluated, yield themselves. For example,

-2102 =⇒ -2102
#\M =⇒ #\M
"A string." =⇒ "A string."

The notation “expression =⇒ value” means that expression, when evaluated, yields value. (Note also that we
are making use of the external object syntax itself as a notational device: “the object -2102” could be said more
precisely as “an object externally represented by the characters “-2102”.” Just as a program should never be
confused with an object which represents it, an object should never be confused with a sequence of characters
which notates it.)

Symbols: As evaluable expressions, symbols are interpreted as variable references. A symbol evaluates to its
value according to the current variable environment. For example, in an environment in which the variable
DELTA has the value 15, evaluating the expression DELTA will yield 15.

Symbols have many uses other than as names for variables. It is important not to confuse the use of a symbol
as a datum manipulated by a program with the occurrence of a symbol as a variable reference in a program.
Symbols do not have values a priori ; variables only have values by virtue of the context in which they occur.

Lists: Non-empty lists are classified either as calls or as special forms. If the first element of the list is a symbol,
and the symbol is a reserved word, then the list is a special form; otherwise it is considered to be a call . T
reserved words , for example, the symbols QUOTE, IF, and LAMBDA. (However, see section 14.4.)

Special forms: The syntax and semantics of a special form are idiosyncratic to the reserved word which introduces
it; descriptions of the meaning of expressions introduced by the various reserved words are therefore distributed
throughout the manual.

Calls: Calls are evaluated as follows: the elements of the list (including the first) are evaluated, in an undefined
order. The first must evaluate to a procedure; this procedure is applied to the rest of the values, which are
called arguments. (The verbs call and invoke mean the same as apply .)

The evaluation order of arguments in a combination is undefined. orbit produces code in which the evaluation
order of arguments is undefined and not necessarily left to right.

Particularly insidious bugs have resulted from LET, see page 21, forms whose clauses contain order dependent
side effects. In T2, because TC and the standard compiler evaluated the clauses of LET forms of this sort in
sequential order they produced the expected value. orbit will usually not produce the expected value. LET∗

should be used to ensure sequential evaluation order.

14

2.3 The standard environment

The standard environment corresponds to what is usually known as the “run-time library” in other language
environments such as C or Pascal.

New variable environments may be introduced in various ways (see chapter 4), but a T system is obliged to supply
one standard environment in which system variables are bound to system procedures and constants, as defined
by this manual. Program execution typically occurs in an environment inferior to this standard environment (see
section 17.1), so that these objects are easily accessible as values of lexically apparent variables. For example,
in this standard environment, the variable CONS has a certain procedure as its value.

For the most part, the values of system variables are procedures, and therefore the only behavior of interest
is what they do when called. (See the discussion of calls, above.) In other cases, values are objects such as
numbers or symbols.

A representation of the standard environment is available as the value of STANDARD-ENV (page 107).

2.4 Undefined

The term undefined is used in two different ways in this manual. An expression may yield an undefined value, in
which case it yields some value, the particular value not being defined by this manual. In such cases it is unwise
to depend on this value having any particular characteristics, for example, it being null, or not a number, or
whatever. The evaluation of the expression and the creation of the undefined value are not in error; it is the
use to which this value is put that may lead to problems. Expressions yielding undefined values are generally
useful only for any side-effects they cause.

On the other hand, the evaluation of an expression may have an undefined effect , in which case an implementation
will endeavor to signal an error condition, permitting a user to take appropriate action. For example, a call
to a non-procedure, or adding two symbols together, have undefined effects. An implementation is not obliged
however, to signal an error, and in fact it may be in the interest of efficiency to avoid the overhead of detecting
circumstances under which undefined effects will happen.

The two procedures UNDEFINED-VALUE and UNDEFINED-EFFECT are used for expository purposes in examples
throughout this manual; they are described in section 13.2.

2.5 Multiple values

T now supports multiple return values. This makes procedure call and return uniform, in the sense that a
procedure can be invoked with zero or more values and can return zero or more values. See page 31.

Like procedures, continuations have certain expectations about the number of arguments (values) that will be
delivered to them. It is an error if more or fewer values are delivered than expected.

The idiom (RETURN) is useful for procedures that return an undefined value and many of the system procedures
whose value(s) is undefined now return no value. However, the procedure undefined-value may provide a more
informative error message.

Other forms, such as CATCH and RET, have been extended to allow multiple return values.

Chapter 3

Objects

T is an object-oriented language. T programs are concerned for the most part with creating and manipulating
objects, which represent all data, and form the currency of computation in T. Particular objects are defined not
by bit patterns or by addresses within a computer but rather by their behavior when called or when passed to
procedures which manipulate them.

Objects are obtained most primitively through the use of QUOTE (page 15), LAMBDA (page 16), and OBJECT (page
38) special forms, and less primitively by calling procedures defined in the standard environment, e.g. CONS and
COMPOSE, which create new objects or return existing ones. (An implementation of T would presumably define
many such procedures using more primitive object constructors; for example, COMPOSE might be defined by a
T program which employs LAMBDA to construct the composed procedure. Thus the question of what kinds of
objects are truly primitive and which are not is left unanswered by this manual.)

3.1 Literals

As described in section 2.2, some expressions evaluate “to themselves” or to copies of themselves. These numbers,
strings, and characters, and are called self-evaluating literals. However, some expressions, lists and symbols in
particular, do not evaluate to themselves. When an expression yielding a particular constant value is required,
it is necessary to use QUOTE. Self-evaluating literals and quoted constants are called literals.

Although not all objects have external representations, some objects which do have external representations
have undefined evaluation semantics. These vectors (section 13.6) and the empty list. QUOTE must also be used
to obtain these values as constants.

(QUOTE object) −→ object Special form

Yields object . The object is not evaluated; thus QUOTE provides a literal notation for constants.

(QUOTE A) =⇒ A
(QUOTE (A B)) =⇒ (A B)
(QUOTE (+ X 8)) =⇒ (+ X 8)
(QUOTE (QUOTE A)) =⇒ (QUOTE A)

Since QUOTE is used so frequently, an abbreviated external syntax is provided for QUOTE forms: ’object is
an alternative external representation for the list (QUOTE object).

15

16

’A =⇒ A
’(A B) =⇒ (A B)
’(QUOTE A) =⇒ (QUOTE A)
’’A =⇒ (QUOTE A)

Objects returned by literal expressions are read-only; they should not be altered using SET or any other
side-effecting form.

3.2 Procedures

A procedure (or routine) is any object which may be called. Ordinarily, a procedure is called as a result of the
evaluation of a call (page 13). The most primitive mechanism for creating procedures is the LAMBDA special
form.

(LAMBDA variables . body) −→ procedure Special form

A LAMBDA-expression evaluates to a procedure. When the procedure is called, the variables are bound to
the arguments to the call, and the body , an implicit block, is evaluated. The call yields the value of the
last form in the body .

((LAMBDA (X Y) (LIST Y X)) 7 ’FOO) =⇒ (FOO 7)

If variables is not a proper list, but ends in a symbol x , then the variable x will be bound to a list of the
arguments beginning at the position corresponding to x .

((LAMBDA (X . Y) (LIST Y X)) 7 ’FOO ’BAZ) =⇒ ((FOO BAZ) 7)
((LAMBDA Y Y) 7 ’FOO ’BAZ) =⇒ (7 FOO BAZ)

If body in the LAMBDA-expression is null, a syntax error will be signalled.
If any variable is () instead of a symbol, then the corresponding argument in a call is ignored. Also see,
IGNORE, on page 75.
Scoping: The values of the bound variables are apparent only in code lexically contained in the body of
the LAMBDA-expression, and not to routines called from the body. That is, like SCHEME and ALGOL
and unlike most Lisp dialects, T is a lexically scoped language, not a dynamically scoped language.
Closure: The procedure is said to be a closure of the LAMBDA-expression in the current lexical environment.
That is, when procedure is called, the body is evaluated in an environment which is the same as that in
which the LAMBDA-expression was evaluated, augmented by the bindings of the variables. For example, if
Z is mentioned in the body , and it is not one of the variables, then it refers to whatever Z was in scope
when the LAMBDA-expression was evaluated, not (necessarily) to the the variable Z that is in scope when
procedure is called.

LAMBDA-bindings do not shadow syntax table entries in the standard compiler. The standard-compiler and
orbit, the new optimizing compiler, now have the same evaluation semantics. This is consistent with the T
manual. In T2, TC, the old compiler, complied with the manual but the standard compiler did not. Thus,

(LET ((SET LIST) (X 5)) (SET X 8)) =⇒ 8 not (5 8)

However, this doesn’t mean that the LAMBDA-binding has no effect, but rather that the binding is not recognized
as such when the name appears in the CAR of a form. Thus,

(LET ((SET LIST) (X 5)) ((BLOCK SET) X 8)) =⇒ (5 8)

This is not a final decision. This was the easiest semantics to implement, and it is consistent with the
documentation. In the future lambda bindings may shadow syntax.

17

3.3 Object identity

Every object has identity in the sense that one may determine whether two given values are the same object.

In the following:

(DEFINE A (LIST ’P ’Q))
(DEFINE B (LIST ’P ’Q))

there is no way (other than EQ?) to distinguish the two objects which are the values of A and B. Nonetheless,
since LIST is defined to return a new object each time it is called, the two objects are distinct; and indeed, a
side-effect to one object will not affect the value of the other:

(SET (CAR A) ’R)
A =⇒ (R Q)
B =⇒ (P Q)

Some system procedures and special forms create new objects, others return objects which already exist. In
some cases, it is not defined which of the two happens; it is only guaranteed that some object with appropriate
characteristics is returned. For example, CONS creates new objects; QUOTE expressions yield pre-existing constant
objects; and numerical routines such as + may or may not create new numbers.

The EQ? predicate primitively determines object identity.

(EQ? object1 object2) −→ boolean

Returns true if object1 and object2 are identically the same object. EQ? is the finest comparison predicate
for objects, in the sense that if EQ? cannot distinguish two objects, then neither can any other equality
predicate.

(NEQ? object1 object2) −→ boolean

NEQ? is the logical complement of EQ?.

(NEQ? object1 object2) ≡ (NOT (EQ? object1 object2))

Uniqueness of literals (other than symbols and characters) isn’t defined in general. For example,

(EQ? ’(A B C) ’(A B C))

may yield either true or false, depending on the implementation. Two similar-looking literal expressions in
different places may or may not yield distinct objects.

However, a given literal expression will always yield the same object each time it is evaluated.

(LET ((F (LAMBDA () ’(A B C)))) (EQ? (F) (F))) =⇒ true

3.4 Symbols

Symbols are named objects which have wide applicability as tokens and identifiers of various sorts. Symbols are
uniquely determined by their names, and have a convenient external syntax by which they may be obtained.

Uniqueness of symbols is defined:

18

(EQ? ’FOO ’FOO) =⇒ true

(SYMBOL? object) −→ boolean Type predicate

Returns true if object is a symbol.

See also SYMBOL->STRING and STRING->SYMBOL, page 74.

3.5 Predicates and truth values

Conditional expressions in T (see section 5.1) usually involve the evaluation of a test expression; the object
yielded by the test is then used to make a control decision, depending on whether the value is false or true.
There is one distinguished false value called #F. Any other value is considered to be true. A value intended to
be used in this way is called a boolean or truth value.

A predicate is any procedure which yields truth values. Predicates are typically given names which end in ?,
e.g. NULL? and EQ?. Calls to predicates are naturally used as test expressions.

An equality predicate is a two-argument predicate which is side-effectless and unaffected by side-effects, and acts
like an equivalence relation in the mathematical sense.

The canonical boolean objects have convenient read syntax associated with them.

#T reads as true Read syntax

Read syntax for canonical true object.

#F reads as false Read syntax

Read syntax for canonical false object.

(true? ’#T) =⇒ true
(false? (car ’(#F #T))) =⇒ true

() reads as empty-list Read syntax

Read syntax for empty-list object.

NIL −→ #F

This system variable has as its value the canonical false object #F. In T2 it was instead bound to null .

T −→ #T

The system variable T has as its value the canonical true value. Later versions of T may leave the system
variable T unbound, so users should not depend on these semantics. Any non-false value is considered to
be true for the purposes of tests.

(), #T, and #F are elements of read syntax, not evaluatable symbols.

19

(car ’(#T foo)) =⇒ #T
(list #T foo) =⇒ undefined, and is probably a syntax error.
In T2: () =⇒ ()
In T3.1: () =⇒ () with warning.
In future: () =⇒ error

In T3, the canonical false value ’#F is not necessarily the same object as the empty list, (). For compatibility
with previous versions, in T3.1 false and the empty list will continue to be the same object, but this will change
in a future release.

(eq? ’#F ’()) −→ undefined

In T3.1 (eq? #F () =⇒ true’).

It is an error to use () in an evaluated position. This error currently generates a warning and treats () as ’(),
i.e. as if the empty list were self evaluating. An error will be signalled in the future. Use ’() for empty lists, and
NULL? to check for the empty list. NIL or ’#F can be used for false values, and NOT to check for false values.

3.6 Types

A type may be seen either as a collection of objects with similar behavior, or as a characteristic function for
such a collection, or as the behavior characteristic of similar objects; these views are equivalent.

A type predicate is a predicate which is defined on all objects and whose value is not affected by any side-effects
(that is, calling the type predicate on a particular object will return the same value regardless of the point at
which it is called with respect to arbitrary other computations). Type predicates are usually used to determine
a given object’s membership in a type.

3.7 Continuations

(CALL-WITH-CURRENT-CONTINUATION proc) −→ value-of-proc proc

The procedure CALL-WITH-CURRENT-CONTINUATION packages up the current continuation as an “escape
procedure” and passes it as an argument to proc. proc must be a procedure of one argument. The escape
procedure is an n-ary procedure, which if later invoked with zero or more arguments, will ignore whatever
continuation is in effect at that later time and will instead pass the arguments to whatever continuation
was in effect at the time the escape procedure was created.

The escape procedure created by CALL-WITH-CURRENT-CONTINUATION has unlimited extent just like any
other procedure. It may be stored in variables or data structures and may be called as many times as
desired. For a more thorough explanation consult the Revised3 Report on Scheme.

Chapter 4

Environments

4.1 Environments and contours

Environments are associations between identifiers (variable names) and values. One such association between
an identifier and a value is called a binding. In general, environments are created implicitly, for example, on
entering LAMBDA-bodies.

Environments are organized hierarchically into contours. Each contour augments an “outer” environment,
providing bindings for a few additional identifiers. These bindings are in effect in the body of the expression
which introduces the contour. The portion of a program in which a binding is in effect is known as the variable’s
scope.

For example:

(BLOCK
(LIST ’A ’B)
...
(LAMBDA (A B C)

... ; [1]
(LAMBDA (D E)

... ; [2]
())

... ; [3]
(LAMBDA (A F G)

... ; [4]
)

...)
...)

Each LAMBDA introduces a new contour. This code presumably occurs in an outermost environment in which the
variable LIST is bound. (The values of BLOCK and LAMBDA are not in question here; they are reserved words, and
their bindings as variables are irrelevant.) At point [1] in the program, a new environment is in effect which
now has bindings for A, B, and C, as well as for any variables known in the outer environment. At [2], D and E
also have values. [3] is in the scope of A, B, and C but not in the scope of D and E. Finally, the outer binding of
any given identifier is shadowed by inner bindings of that identifier; an occurrence of the identifier A appearing
at [4] refers not to the outer A but to the inner one, because the inner one shadows the outer.

There are two kinds of contours, known as lambda-contours and locales. Lambda-contours are introduced by

20

21

many special forms, such as LAMBDA, LET, and LABELS. Locales are introduced by LOCALE special forms.

4.2 Local variables

(LET specs . body) −→ value-of-body Special form

LET provides a convenient syntax for introducing local bindings. Each spec should be a two-element list
of the form (variable value). The value expressions are all evaluated (in no particular order), then the
body (an implicit block) is evaluated in an environment where the variables are bound to those values.
The value of body is yielded. The result of the expression is undefined if more than one spec has its first
element to be the same variable.

(LET ((X 2)) X) =⇒ 2
(LET ((var1 val1) (var2 val2) ... (varn valn)) . body)
≡ ((LAMBDA (var1 var2 ... varn) . body) val1 val2 . . . valn)

See also DESTRUCTURE (page 59).

(LET* specs . body) −→ value-of-body Special form

LET* is like LET, except that the binding of variables to values is done sequentially, so that the second
binding is done in an environment in which the first binding has already occurred, etc. In a LET-expression,
all the bindings are done in one environment. For example, suppose the variable A is already bound to
10 when the expression (LET ((A 20) (B A)) B) is evaluated. The result is 10, not 20, because B is
bound to A’s value in the outer environment. In contrast, (LET* ((A 20) (B A)) B) evaluates to 20.

(LET* ((var1 val1) (var2 val2) ... (varn valn)) . body)
≡

(LET ((var1 val1))
(LET ((var2 val2))

...
(LET ((varn valn)) . body)...))

≡
((LAMBDA (var1)

((LAMBDA (var2)
...
((LAMBDA (varn) . body)
valn) ...)

val2))
val1)

(LABELS specs . body) −→ value-of-body Special form

LABELS is useful for defining local procedures that may be mutually recursive. Each spec should be of
the form (variable value). The value-expressions are evaluated (in no particular order), and the body is
evaluated in an environment where all the variables are bound to those values. However, LABELS differs
from LET in that the bindings of the variables are already in effect (scope) before the value-expressions
are evaluated, so that the value-expressions can refer to any of the variables, including the ones to which
they themselves will be bound (thus permitting local recursive procedures).

Each spec may alternatively have the form

22

((variable . argument-vars) . body)

This is equivalent to

(variable (LAMBDA argument-vars . body))

This is intended to parallel the syntax for DEFINE (see page 23).

In the following example, note that REV-1 is bound to a value that refers to REV-1.

(DEFINE (REVERSE L)
(LABELS (((REV-1 L RESULT-SO-FAR)

(COND ((NULL? L) RESULT-SO-FAR)
(ELSE
(REV-1 (CDR L)

(CONS (CAR L) RESULT-SO-FAR))))))
(REV-1 L ’())))

As an extension to the dialect of SCHEME described in [SS78], T does not restrict the value expressions to
be LAMBDA-expressions. However, the values of the variables are not defined until body is evaluated; i.e., the
variables should not be used in the value-expressions. For example, (LABELS ((A B) (B 1)) . body)
is ill-formed; at the point when the expressions B and 1 are being evaluated, the variable B is bound,
but will have an undefined value. Consequently, A will have an undefined value. By contrast, in the
well-formed expression

(LABELS ((A (LAMBDA (X) (+ X B))) (B 1)) . body)

which can also be written

(LABELS (((A X) (+ X B)) (B 1)) . body)

the value of B is not used before body is evaluated. The LAMBDA-expression evaluates to a closure that
includes B. By the time A (the closure) is called, B will have a value.

LABELS cannot easily be described in terms of LAMBDA. However, it can be described in terms of LAMBDA
and SET. (SET performs side-effects on bindings; see page 33.) This is misleading because LABELS should
not be thought of as a side-effecting operator.

(LABELS ((var1 val1)
(var2 val2)
...
(varn valn))
. body)
≡

(LET ((var1 (UNDEFINED-VALUE))
(var2 (UNDEFINED-VALUE))
...
(varn (UNDEFINED-VALUE)))
(SET var1 val1)
(SET var2 val2)
...
(SET varn valn)
. body)

This equivalence is overly concrete in that the order of evaluation of the vali expressions, and the sequence
in which the variables are given their values, is not defined.

23

4.3 Locales

T3: We are working on a module system which will eventually subsume the functionality of locale. T2
had a function called LOCALE that has been removed in T3.

Locales serve two purposes. First, they provide an incremental or declarative syntax for creating variable bindings
in a contour. Second, they provide access to environments as objects which can be dynamically manipulated.
The term locale is used to mean both the kind of contour introduced by a LOCALE-expression, and the object
which represents the environment.

There are no global variables in T; all variables are lexically bound in some contour. Locales play the role of
what is known in other Lisp and Scheme dialects as the global environment.

(DEFINE variable value) −→ undefined Special form
(DEFINE (variable . arguments) . body) −→ undefined

DEFINE creates a binding for variable in the lexically innermost locale in which the DEFINE expression
occurs. The variable is given value as its value.

The second DEFINE syntax is for defining procedures.

(DEFINE (variable . arguments) . body)

is equivalent to

(DEFINE variable (LAMBDA arguments . body))

For example:

(DEFINE (F X) (LIST X 2)) ≡ (DEFINE F (LAMBDA (X) (LIST X 2)))
(DEFINE (F . X) (LIST X 2)) ≡ (DEFINE F (LAMBDA X (LIST X 2)))

(LSET variable value) −→ undefined Special form
(LSET variable value) −→ value

The value of the LSET special form is undefined, and it is an error to use an LSET form in a value requiring
position. In T3.0, LSET will continue to return a value, but an error will be signalled in the future.

LSET is identical to DEFINE except that the procedure definition syntax is not permitted, and the variable
is declared to be alterable. Variables bound by DEFINE may not be altered with SET; variables bound by
LSET may be. See SET, page 33.

(MAKE-LOCALE superior-locale identification) −→ locale

Creates a locale inferior to superior-locale. Identification may be any object, and is used only for debug-
ging purposes.

(DEFINE *FOO-ENV* (MAKE-LOCALE STANDARD-ENV ’*FOO-ENV*))

(MAKE-EMPTY-LOCALE identification) −→ locale

Creates a locale containing no bindings whatsoever.

(LOCALE? object) −→ boolean Type predicate

Returns true if object is a locale.

24

4.4 Non-local reference

(*VALUE locale identifier) −→ object Settable

Accesses the value of identifier in locale. If identifier has no value in locale, then the effect of the call to
*VALUE is undefined.

(*VALUE STANDARD-ENV ’T) =⇒ true
(LSET MY-LOCALE (MAKE-EMPTY-LOCALE ’MYSTUFF))
(*DEFINE MY-LOCALE ’A 10)
(*VALUE MY-LOCALE ’A) =⇒ 10

(*DEFINE locale identifier value) −→ undefined

Defines the value of identifier in locale to be value.

(*LSET locale identifier value) −→ value

Creates a binding for identifier in locale with initial value value.

(IMPORT locale . variables) −→ undefined

Locally defines variables to have the same values as their values in locale.

(IMPORT locale var1 var2 . . . varn)
≡

(BLOCK (DEFINE var1 (*VALUE locale ’var1))
(DEFINE var2 (*VALUE locale ’var2))
...
(DEFINE varn (*VALUE locale ’varn)))

Chapter 5

Control

5.1 Conditionals

(COND . clauses) −→ value-of-clause Special form

COND is a general conditional construct. Each clause should have one of the following forms:

(test . body)

(test)

(test => procedure)

The test expressions are evaluated in sequence until one yields true, at which point:

If it is part of a clause of the form (test . body), then body , an implicit block, is evaluated, and
its value is what the COND-expression yields.

If the clause has the form (test), then the COND-expression yields the value of test (which, of course,
is non-null).

If the clause has the form (test => procedure), then the procedure expression is evaluated, and its
value, which should be a procedure, is called with the value of the test as its one and only argument.
The COND yields the value of that call.

Example:

(COND ((PAIR? X) (GAUR (CAR X)))
((FIXNUM? X) (GAUR X)))

If all the tests yield false, then the COND yields an undefined value. See section 2.4 for a discussion of
undefined values.

The system variable ELSE has a non-null value. This provides a convenient way to specify a branch to
take when all other tests fail.

(COND ((PAIR? X) (GAUR (CAR X)))
((ASSQ X *SAMPLE-ALIST*) => CDR)
((GAUR X))
(ELSE NIL))

25

26

(XCOND . clauses) −→ value-of-clause Special form

Similar to COND, but its effect is undefined (and presumably an error is signalled) if no clause is selected.
X is mnemonic for “exhaustive”.

ELSE −→ true

ELSE has as its value some true value. It exists mainly for use in COND.

(IF test consequent alternate) −→ value-of-arm Special form
(IF test consequent) −→ undefined

IF is a primitive two-way conditional. The test expression is evaluated. If it yields true, then the
consequent expression is evaluated, and the IF yields its value. Otherwise, the alternate expression, if
any, is evaluated, and the IF yields its value. If test yields false and there is no alternate, then the value
of the IF is undefined.

(IF T 1 2) =⇒ 1
(IF (PAIR? ’X) ’FOO ’BAR) =⇒ BAR
(IF test consequent) ≡ (IF test consequent (UNDEFINED-VALUE))

(CASE key . clauses) −→ value-of-clause Special form

CASE performs a multi-way dispatch based on the value of the key expression. Each clause should be
of the form (keys . body), where keys is a list of values (not expressions!) against which the value
of the key expression is compared (using EQ?), and body is an implicit block. The body of the clause
which matches the key value is evaluated, and the CASE-expression yields the value of the body. The last
clause may be of the form (ELSE . body); this designates a default action to be taken if no other clause
is selected. If the key never matches and there is no default clause, then the CASE-expression yields an
undefined value.

(CASE ’B ((A) ’LOSE) ((B C) ’WIN) (ELSE NIL)) =⇒ WIN

(XCASE key . clauses) −→ value-of-clause Special form

Similar to CASE, but no ELSE-clause is permitted, and the effect is undefined (and presumably an error
is signalled) if no clause is selected.

(SELECT key . clauses) −→ value-of-clause Special form

SELECT is like CASE, but the car of each clause is a list of expressions that are evaluated, instead of a list
of constants.

(DEFINE *RED-COLOR* ...)
(DEFINE *GREEN-COLOR* ...)
(DEFINE *BLUE-COLOR* ...)
(SELECT COLOR

((*RED-COLOR* *BLUE-COLOR*) ’INORGANIC)
((*GREEN-COLOR*) ’ORGANIC))

(XSELECT key . clauses) −→ value-of-clause Special form

27

Similar to SELECT, but no ELSE-clause is permitted, and the effect is undefined (and presumably an error
is signalled) if no clause is selected.

(NOT object) −→ boolean Type predicate

(FALSE? object) −→ boolean Type predicate

NOT returns true if object is false, and returns false otherwise.

(NOT NIL) =⇒ true
(NOT T) =⇒ false
(NOT 3) =⇒ false

(AND . tests) −→ value-of-test or false Special form

The test expressions are evaluated from left to right, until one evaluates to false, at which point the AND
yields false. If no test evaluates to false then the value of the AND is the value of the last test .

(AND 3 4) =⇒ 4
(AND 3 NIL) =⇒ false
(AND) =⇒ true

(OR . tests) −→ value-of-test or false Special form

The test expressions are evaluated from left to right, until one evaluates to true (i.e., not null); its value
is yielded as the value of the OR. If no test evaluates to true, then the value of the OR is false.

(OR 3 4) =⇒ 3
(OR 3 NIL) =⇒ 3
(OR) =⇒ false

(*AND . objects) −→ object

If any of the objects is false, *AND returns false; otherwise it returns the last object . This is superficially
similar to AND, but it is a procedure, not a special form. That is, the value of *AND is a procedure, whereas
AND is a reserved word which introduces a special syntactic form. This fact implies that (a) the variable
*AND has a value suitable to be passed as an argument to some procedure, and (b) a call to *AND behaves
differently from an AND special form in the case that the argument expressions have side-effects. In

(AND NIL (FOO))

FOO will not be called, whereas in

(*AND NIL (FOO))

FOO will be called.

(*OR . objects) −→ object

If any of the objects is true, *OR returns that object; otherwise it returns false. *OR’s relation to OR is
analogous to *AND’s relation to AND.

(*IF test consequent alternate) −→ object

If test is true, *IF returns consequent ; otherwise it returns alternate. *IF’s relation to IF is analogous
to *AND’s relation to AND.

28

5.2 Iteration

Separate iteration constructs are not strictly necessary in T, since iteration may be written using recursive
procedures defined by LABELS (or even DEFINE). There is no penalty for this in T, either in efficiency or
practicality (for example, stack size), because tail-recursions are implemented without net growth of stack, and
it is expected that compilers will implement local procedures efficiently.

However, the following two iteration constructs provide a somewhat more convenient notation for loops than
does LABELS. (There are also some higher-order procedures which perform iteration; see for example MAP, page
56, and WALK, page 56.)

(DO specs (end-test . exit-forms) . body) −→ value-of-exit Special form

Iterates until end-test yields true. Each spec should be of the form (variable initial next). The variables
are initialized (bound) in parallel to the values of the initial -expressions, as with LET; then, the end-test
and body are executed iteratively. If the end-test yields true on any iteration, then the loop terminates,
at which point the exit-forms are evaluated. The value of the DO-expression is the value of the last
exit-form, or the value of the end-test if there are no exit-forms (this is like a COND clause). At the end
of each iteration, the next-expressions are all evaluated, and the variables are re-bound to the values of
the next-expressions.

DO is useful for loops which have a single termination condition, such as numerical, ALGOL-style for-
loops, loops where desired results are accumulated in variables, and loops that perform side-effects on
every element in a sequence (see WALK, page 56).

(REVERSE L) ≡
(DO ((L L (CDR L))

(RESULT ’() (CONS (CAR L) RESULT)))
((NULL? L) RESULT)))

(VECTOR-FILL VECTOR CONSTANT) ≡
(DO ((I (-1+ (VECTOR-LENGTH VECTOR)) (-1+ I)))

((<0? I) VECTOR)
(VSET VECTOR I CONSTANT))

Any DO-expression may be rewritten using the more primitive LABELS construct. The following example
has only one induction variable and one body-expression, and assumes that there are no name conflicts
with the variable LOOP.

(DO ((variable initial next)) exit-clause body)
≡

(LABELS (((LOOP variable)
(COND exit-clause

(ELSE body
(LOOP next)))))

(LOOP initial))

(ITERATE variable specs . body) −→ value-of-body Special form

Another iteration construct. Specs has the form

((arg1 val1) (arg2 val2) ... (argn valn))

The variable is bound to a local procedure whose formal parameters are arg1 arg2 . . . argn. The procedure
is initially invoked with the vals bound to the corresponding args.

29

ITERATE is more flexible than DO. It is useful in loops where the terminating condition occurs in the
middle of the body of the loop, or where there is more than one terminating condition, or where the
iteration may occur in several places.

For example, consider the following example (from [SS78]), a procedure to sort a list of trees into atoms
and lists:

(DEFINE (COLLATE X)
(ITERATE COL ((Z X) (ATOMS ’()) (LISTS ’()))

(COND ((NULL? Z)
(LIST ATOMS LISTS))

((ATOM? (CAR Z))
(COL (CDR Z) (CONS (CAR Z) ATOMS) LISTS))

(ELSE
(COL (CDR Z) ATOMS (CONS (CAR Z) LISTS))))))

A rough analogy ITERATE : LABELS :: LET : LAMBDA holds. ITERATE expands trivially into LABELS,
but may be more convenient than LABELS for the same reason that a LET form may be preferable than a
call to a LAMBDA-expression.

(ITERATE variable
((arg1 val1) (arg2 val2) ... (argn valn))
. body)
≡

(LABELS (((variable arg1 arg2 . . . argn) . body))
(variable val1 val2 . . . valn))

5.3 Procedure application

The only operation which all procedures support is invocation. All initial system routines, like CAR, LIST, and
EQ?, are procedures. Procedures are usually created by evaluating LAMBDA- or DEFINE-forms.

The standard way to apply a procedure to arguments is with a call expression. Calls are described on page 13.

(PROCEDURE? object) −→ boolean Type predicate

Returns true if object is a procedure, i.e., if it may be called.

(APPLY procedure . objects) −→ object

APPLY applies a procedure to a list of arguments.

The sequence of object arguments should have the form

arg1 arg2 ... argn arglist

where n may be 0. The procedure is called with arg1, arg2, etc., as the first n arguments, and the
members of arglist as final arguments.

(APPLY CONS ’(1 2)) =⇒ (1 . 2)
(APPLY CONS 1 ’(2)) =⇒ (1 . 2)
(APPLY CONS 1 2 ’()) =⇒ (1 . 2)
(APPLY LIST 1 2 3 ’(4 5 6)) =⇒ (1 2 3 4 5 6)

30

5.4 Sequencing

(BLOCK . body) −→ value-of-body Special form

Body is a non-empty sequence of expressions. These expressions are evaluated in order from left to right.
The BLOCK-expression yields the value of the last expression.

Because their values are ignored, expressions other than the last are useful only for side-effects they may
cause.

Since the bodies of most special forms are implicitly blocks, BLOCK is useful only in places where syntac-
tically a single expression is needed, but some sequencing is required.

(BLOCK0 first-form . body) −→ value-of-first-form Special form

The first-form is evaluated, then the expressions in the body are evaluated. The BLOCK0-expression yields
first-form’s value.

5.5 Explicit return

(RET {value}∗)

Returns zero or more values as the value of the current read-eval-print loop. value defaults to an
undefined value if not supplied. See section 19.1 for examples.

5.5.1 Non-local exits

(CATCH identifier . body) −→ value-of-body Special form

CATCH provides a structured, non-local exit facility similar to PROG and RETURN (without GO), or CATCH and
THROW, in other Lisps. The identifier is bound to an “escape procedure” corresponding to the continuation
of the CATCH form. The escape procedure is now an n-ary procedure. This means that CATCH forms can
ruturn multiple values. In T2 the continuation was a procedure of one argument. The escape procedure
can be invoked only during the dynamic extent of the CATCH form (see section 3.7). If the escape procedure
is called as a result of evaluating body , then the argument to the escape procedure is returned as the value
of the CATCH-expression. If the escape procedure is not called, then CATCH returns whatever body returns.
A call to an escape procedure is called a throw .

In the following example, the call to LIST never happens, because one of its subforms performs a throw.

(CATCH X (LIST 1 (X 2) 3)) =⇒ 2
(CATCH X (LIST 1 (X 2 3) 4)) =⇒ 2 3

A throw may cause side-effects if the dynamic state in effect when the escape procedure is called differs
from that in effect when evaluation of its corresponding CATCH-expression began. T’s CATCH is a restriction
of SCHEME’s. Continuations are only valid within the dynamic extent of the CATCH-expression; however,
because of CALL-WITH-CURRENT-CONTINUATION (see page 19) the CATCH can yield a value at most once.
In this case the throw undoes the effects of BIND forms, and must perform cleanup action requested by
UNWIND-PROTECT forms, in the process of “unwinding” the evaluation context from that of the throw to
that of the CATCH. See section 6.3 for descriptions of BIND and UNWIND-PROTECT.

31

5.5.2 Returning multiple values

T supports multiple return values. This makes procedure call and return uniform, in the sense that a procedure
can be invoked with zero or more values and can return zero or more values.

(RETURN {value}∗)

RETURN returns its arguments as the values of the current expression. In order to access the values of a
RETURN expression the values must be bound to identifiers using either RECEIVE or RECEIVE-VALUES.

For example,

(LAMBDA () (RETURN 1 2 3)) =⇒ 1 2 3

where “=⇒ 1 2 3” denotes evaluates to the three values 1, 2, and 3.

Like procedures, continuations have certain expectations about the number of arguments (values) that
will be delivered to them. It is an error if more or fewer values are delivered than expected. There are
only a small number of ways to create continuations, thus one need only understand these cases:

Implicit continuations, e.g. those receiving an argument of a combination or the predicate of an IF,
expect exactly one value, thus

(LIST (VALUES 1) 2) =⇒ (1 2)

but
(LIST (VALUES) 2) is an error
(LIST (VALUES 1 2) 2) is an error

In a BLOCK, a continuation which proceeds to execute subsequent commands (e.g. the continuation
to the call to FOO in (BLOCK (FOO) 2)) accepts an arbitrary number of values, and discards all of
them.

RECEIVE expressions (and the subprimitive RECEIVE-VALUES) creates a continuation which accepts
whatever values are delivered to it, and passes them to a procedure; and of course it is an error if
this procedure is passed the wrong number of values.

RETURN when invoked with no arguments returns to the calling procedure with no value. Thus (RETURN)
will return to its caller with no value. It is an error to return no value to a value-requiring position. For
example,

(LIST ’A (RETURN)) =⇒ error

The idiom (RETURN) is useful for procedures that return an undefined value. Many of the system pro-
cedures whose value is undefined now return no value. The procedure UNDEFINED-VALUE may provide a
more informative error message.

(RECIEVE-VALUES receiver sender) =⇒ value(s) of receiver

RECEIVE-VALUES returns the value of applying receiver, a procedure of n arguments, to the values returned
by sender. sender is a thunk , a procedure of no arguments, which returns n values.

For example,

(RECEIVE-VALUES (LAMBDA (X Y) (LIST X Y))
(LAMBDA () (RETURN 1 2))) =⇒ (1 2)

(RECEIVE ({ident}∗) expression {body}∗) =⇒ value-of-body Syntax

32

In a RECEIVE form the expression is evaluated in the current environment and the values returned by the
expression are bound to the corresponding identifiers. body, which should be a LAMBDA body, i.e. a
sequence of one or more expressions, is evaluated in the extended environment and the values of the last
expression in body is returned.
The expression

(RECEIVE (A B C) (RETURN 1 2 3)
(LIST A B C))
=⇒ (1 2 3)

is equivalent to

(RECEIVE-VALUES (LAMBDA (A B C) (LIST A B C))
(LAMBDA () (RETURN 1 2 3)))
=⇒ (1 2 3)

5.6 Lazy evaluation

Delays provide a general mechanism for delayed (lazy) evaluation, also known as “call-by-need”.

(DELAY expression) −→ delay Special form

Returns a delay of the expression. The computation of the expression, which happens at most once, is
delayed until its value is requested with FORCE.

(DEFINE (INF-LIST-OF-INTEGERS N)
(CONS N (DELAY (INF-LIST-OF-INTEGERS (1+ N)))))

(HEAD (TAIL (TAIL (INF-LIST-OF-INTEGERS 1)))) =⇒ 3
(DEFINE HEAD CAR)
(DEFINE (TAIL OBJ) (FORCE (CDR OBJ)))

The behavior of DELAY and FORCE can be described by the following hypothetical implementation:

(DEFINE-SYNTAX (DELAY EXP)
‘ (MAKE-DELAYED-OBJECT (LAMBDA () ,EXP)))

(DEFINE (MAKE-DELAYED-OBJECT THUNK)
(LET ((FORCED-YET? NIL)

(FORCED-VALUE NIL))
(OBJECT NIL

((FORCE SELF)
(COND ((NOT FORCED-YET?)

(SET FORCED-VALUE (THUNK))
(SET FORCED-YET? T)))

FORCED-VALUE))))
(DEFINE-OPERATION (FORCE OBJ) OBJ)

(FORCE delay) −→ object

Forces the computation of the delay ’s value, If FORCE has not previously been applied to the delay, then
the expression in the original DELAY-expression which created delay (see above) is evaluated, and its value
is returned. If FORCE has previously been applied to the delay, then the value previously computed is
returned.
If FORCE is applied to a non-delay, then it simply returns its argument.

Chapter 6

Side effects

A side-effect is a change in the state of a running T system, such as a change in the value stored in some
location, or an effect on the outside world.

Many useful programs can be written which make no use of side-effects. In principle, side-effects other than
those controlling the outside world are unnecessary. However, side effects, when used carefully, can be used to
promote program modularity and readability. In addition, they may be necessary in a T implementation to
obtain efficient program execution.

6.1 Assignment

T provides several special forms which perform assignment to locations. A location is a place in which a value
may be stored, for example, a variable, or the car of a list, or a component of a structure. Locations are not
objects per se, although references to them may be obtained through the use of locatives.

(SET location new-value) −→ undefined Special form

SET is a generalized assignment operator. It alters the location specified by location to hold new-value.
The value of any SET-expression is the new-value thus stored.

If location is a symbol, then it names a variable which has been previously bound by a LAMBDA or an
LSET (or indirectly by any form which does LAMBDA-binding, such as LET), whose value is to be altered.

(SET X (LIST 1 2 3)) =⇒ (1 2 3)
X =⇒ (1 2 3)

Location may also have the syntax of a call to an access-type procedure or operation such as CAR. (In this
manual, these are marked as Settable.)

(SET (CAR X) ’A) =⇒ A
X =⇒ (A 2 3)

(SET (proc arg1 ... argn) value)
≡ ((SETTER proc) arg1 ... argn value)

It is an error to use a SET form in a value requiring position. For example,

(SET (p x y ...) val)

is conceptually equivalent

33

34

(LAMBDA ()
((SETTER p) x y ... val)
(RETURN))

where (RETURN) invokes the calling continuation with no arguments. For more information on RETURN
see section 5.5.2.

In T3.1 SET will continue to return the value being assigned to the location, but an error will be signalled
in the future.

(SETTER procedure) −→ procedure Operation

Given an access routine, SETTER returns a corresponding alteration routine. (SETTER CAR), for example,
evaluates to a primitive procedure that takes two arguments, a list whose car is to be changed, and a
value to store in the car of the list.

See also DEFINE-SETTABLE-OPERATION, page 41.

(SWAP location new-value) −→ object Special form

This behaves the same as SET, except that the value returned is the old value found in location, rather
than the new-value. For example, the following expression exchanges the values of the variables X and Y:

(SET X (SWAP Y X))

(EXCHANGE location1 location2) −→ undefined Special form

Exchanges the values in the two locations.

(MODIFY location procedure) −→ undefined Special form

Stores a value in the location which is obtained by applying procedure to the old value in location.

(MODIFY location 1+) ≡ (INCREMENT location)

The value of the MODIFY special form is undefined, and it is an error to use a MODIFY form in a value
requiring position. In T3.1 MODIFY will continue to return a value.

(MODIFY-LOCATION location continuation) −→ object Special form

Calls continuation, which should be a procedure of two arguments, passing it an access procedure of no
arguments, which fetches the value in location; and an update procedure of one argument, which will
store a new value in location.

MODIFY-LOCATION’s purpose is to ensure that any subforms of the form for location are evaluated only
once. For example,

(INCREMENT (CAR (HACK))
≡

(MODIFY-LOCATION (CAR (HACK))
(LAMBDA (FETCH STORE) (STORE (+ (FETCH) 1))))

In this expression, (HACK) will be evaluated only once, whereas in the following naive expansion

35

(SET (CAR (HACK)) (+ (CAR (HACK)) 1))

it is evaluated twice, which is presumably neither necessary nor desirable. During the expansion of
MODIFY-LOCATION forms extra temporary variables are introduced, as needed, to account for this.

MODIFY-LOCATION is useful in macro expansions, although awkward when written directly. Other “modifi-
cation” forms such as PUSH, MODIFY, and SWAP are implementeded as macros in terms of the MODIFY-LOCATION
special form.

For example, one might define a DOUBLE macro, which multiplies by two the value in a location, as follows:

(DEFINE-SYNTAX (DOUBLE FORM)
‘ (MODIFY-LOCATION
,FORM
(LAMBDA (FETCH STORE) (STORE (* (FETCH) 2)))))

(DOUBLE (CAR (HACK)))

6.2 Locatives

Locatives in T are similar to the pointers or references of languages like C or Algol 68.

Locatives are obtained by evaluating LOCATIVE-expressions. The value in the location they refer to may be
fetched using the CONTENTS operation, and stored using SET.

Objects which act as locatives may be created using OBJECT, as long as they handle the CONTENTS and (SETTER
CONTENTS) operations appropriately, and handle LOCATIVE? by returning true.

(LOCATIVE location) −→ locative Special form

Returns a locative which accesses the location specified by location. Location receives similar treatment
to the location position in the SET special form; it may refer to a variable, or to a “field” within some
mutable structure, for example the car of a pair.

The following equivalence approximates the behavior of LOCATIVE:

(LOCATIVE location)
≡

(OBJECT NIL
((CONTENTS SELF) location)
(((SETTER CONTENTS) SELF VALUE) (SET location VALUE))
((LOCATIVE? SELF) T))

This is accurate if location is a variable, but if it is a call, the subforms of the call are evaluated when
the LOCATIVE-expression is evaluated, not when the contents of the locative are required. For example,

(LOCATIVE (FOO (BAR BAZ)))
≡

(LET ((TEMP1 FOO)
(TEMP2 (BAR BAZ)))
(OBJECT NIL

((CONTENTS SELF) (TEMP1 TEMP2))
(((SETTER CONTENTS) SELF VALUE) (SET (TEMP1 TEMP2) VALUE))
((LOCATIVE? SELF) T)))

(CONTENTS locative) −→ object Settable operation

36

Dereferences (indirects through) the locative.

(LSET Z (LIST ’A ’B)) =⇒ (A B)
(CONTENTS (LOCATIVE (CAR Z))) =⇒ A
(SET (CONTENTS (LOCATIVE (CAR Z))) ’C) =⇒ C
Z =⇒ (C B)
(CONTENTS (LOCATIVE location)) ≡ location
(SET (CONTENTS (LOCATIVE location)) value ≡ (SET location value)

(LOCATIVE? object) −→ boolean Type predicate operation

Returns true if object is a locative.

6.3 Dynamic state

(BIND specs . body) −→ value-of-body Special form

BIND implements dynamic binding. Syntactically, it is similar to LET, but semantically it is completely
different. BIND operates by doing temporary assignments to locations, for example, to bound variables.
Unlike LET, it does not introduce a new lexical binding contour.

Note that the use of the term bind in this context is unrelated to its use elsewhere (for example, at the
beginning of chapter 4.1).

Each spec should have the syntax

(location value)

The value in each location is obtained and saved. Each location is assigned the value, as with SET. The
body expressions are evaluated and the value of the last is saved. The locations are then restored to their
original saved values. The BIND-expression finally yields the saved value of the body .

(BIND ((location value)) . body)

is therefore similar to

(LET ((SAVED-VALUE location))
(SET location value)
(BLOCK0 (BLOCK . body)

(SET location SAVED-VALUE)))

or

(LET ((SAVED-VALUE location))
(SET location value)
(UNWIND-PROTECT (BLOCK . body)

(SET location SAVED-VALUE)))

Examples:

(LSET A 1)
(DEFINE (F) (+ A 1))
(F) =⇒ 2
(LET ((A 10)) (F)) =⇒ 2

37

(BIND ((A 10)) (F)) =⇒ 11
(LSET X (LIST 1 2 3))
(BIND (((CAR X) 10))
(LSET Y (COPY-LIST X)))
X =⇒ (1 2 3)
Y =⇒ (10 2 3)

The values in the locations are restored, even if a throw out of body occurs (see CATCH, page 30). For
example:

(LET ((A 10))
(CATCH EP (BIND ((A 20)) (EP NIL)))
A)
=⇒ 10

Any location in a BIND-form which is a variable name should name a variable which has been previously
bound using, for example, LSET or LET.

(UNWIND-PROTECT form . unwind-forms) −→ value-of-form Special form

UNWIND-PROTECT behaves nearly the same as BLOCK0: the form is evaluated, and the value is saved;
the unwind-forms are evaluated; and the UNWIND-PROTECT-expression yields the (saved) value of form.
However, unlike BLOCK0, UNWIND-PROTECT guarantees that the unwind-forms will be evaluated, even if a
throw occurs during the evaluation of form.

In the following example, the motor will be stopped even if DRILL-HOLE attempts to throw out of the
UNWIND-PROTECT.

(UNWIND-PROTECT (BLOCK (START-MOTOR)
(DRILL-HOLE))

(STOP-MOTOR))

A throw (see page 30) out of the BLOCK - for example, as a result of calling DRILL-HOLE, will evaluate the
exit form (STOP-MOTOR) before control finally returns to its corresponding CATCH.

It is an error to throw out of the unwind forms of an UNWIND-PROTECT.

Chapter 7

Operations

T provides a simple mechanism for programming in what has come to be known as the object-oriented style of
programming. Object-oriented style may be contrasted to what will here be called procedural style. In object-
oriented programming, programs are organized by giving the behavior of objects when various operations are
applied to them, whereas in procedural style, programs are organized by giving the behavior of procedures when
applied to various kinds of objects. These styles are equivalent in terms of computational power, but each offers
different advantages in terms of readability and modularity.

T supports the object-oriented style with a special kind of procedure known as an operation, and with forms
which permit one to create objects which exhibit certain behavior when a given operation is applied to them.

When an operation is called, the following sequence of events occurs:

A handler is obtained for the object which was the operation’s first argument. (Operations must always
be called with at least one argument.)

The operation asks the handler for a method which will handle the operation for the object.

The handler either provides a method, or it indicates that the object is not prepared to handle the
operation.

If the handler provided a method, the method is invoked. If not, then the operation’s default method,
if any, is invoked. If the operation has no default method, then the effect of the call to the operation is
undefined (and presumably an error condition is signalled).

In this way, an object’s handler may determine how the operation is to be performed for the object - that is,
which particular method is to be invoked as a result of invoking the operation.

Handlers map operations to methods. Many objects may have the same handler, or a handler may be idiosyn-
cratic to a particular object. However, every object has a handler, so all objects participate in the generic
operation dispatch protocol.

7.1 Fundamental forms

The basis of the generic operation system consists of the two special forms OBJECT and OPERATION. OBJECT-
expressions create objects which respond appropriately to generic operations, and OPERATION-expressions eval-
uate to operations.

(OBJECT procedure . method-clauses) −→ object Special form

38

39

An OBJECT-expression yields an object which is prepared to handle generic operations according to the
method-clauses. In the following description, “the object” refers to the value of a given OBJECT-expression.

Each method-clause should be of the form

((operation . variables) . body)

Operation is an evaluated position, and is typically a variable which evaluates to an operation, although it
may be any expression. When an operation is called with the object as its first argument, the operation-
expressions are evaluated, and if one yields the operation being applied to the object, the corresponding
method-clause is selected. The operation is then performed according to the selected method-clause:
the clause’s variables are bound to the arguments to the operation, and its body , an implicit block, is
evaluated.

(DEFINE OP (OPERATION NIL))
(OP (OBJECT NIL ((OP SELF) 34))) =⇒ 34
(OP (OBJECT NIL ((OP SELF X) X)) 55) =⇒ 55

Procedure may be any expression, and is evaluated at the time the OBJECT-expression is evaluated.
The object, when called, simply calls the value of the procedure expression, passing on any arguments.
Typically procedure might be either a LAMBDA-expression, if the object is to be callable, or it is NIL, which
by convention means that the object is not intended to be called, the value of NIL being an uncallable
object.

In the degenerate case, where there are no method clauses, the value of

(OBJECT (LAMBDA args . body))

is indistinguishable from that of

(LAMBDA args . body).

The semantics of the OBJECT and OPERATION special forms can be described in terms of hypothetical
primitive procedures *OBJECT and GET-HANDLER. These primitives do not actually exist in T, but are
introduced here as expository aids. *OBJECT takes two arguments, and returns an object which, when
called, calls the object which was *OBJECT’s first argument, and when given to GET-HANDLER returns the
object which was *OBJECT’s second argument. That is, *OBJECT creates a two-component record (like a
pair), GET-HANDLER extracts one component, and the other component is called when the record is called.

(GET-HANDLER (*OBJECT proc handler)) ≡ handler
((*OBJECT proc handler) arg ...) ≡ (proc arg ...)

In addition, GET-HANDLER is defined on all objects to return some handler, even objects not created by
*OBJECT (if indeed there are any such objects).

Given these primitives, the following rough equivalence holds:

(OBJECT proc
((op1 . args1) . body1)
((op2 . args2) . body2)
...
((opn . argsn) . bodyn))
≡

(*OBJECT proc
(LAMBDA (OP) LNL (SELECT OP

((op1) (LAMBDA args1 . body1))
((op2) (LAMBDA args2 . body2))
...

40

((opn) (LAMBDA argsn . bodyn))
(ELSE NIL))))

The outer LAMBDA-expression yields the object’s handler; the inner LAMBDA-expressions yield the methods,
and the mapping from operations to methods is accomplished by the SELECT-expression (see SELECT,
page 26). Note that the syntactic positions op1, op2, . . . opn are evaluated positions, and the operation
expressions are evaluated when an operation is applied to the object, not when the object is created.

(OPERATION default . method-clauses) −→ operation Special form

The syntax of OPERATION is the same as that of OBJECT, but its semantics and application are somewhat
different. An OPERATION-expression evaluates to an operation. When called, the operation obtains a
handler for its first argument, calls the handler to obtain a method, and then invokes the method. The
default method for the operation is established as being default .

As the subject of another generic operation, an operation is an object like any other, and in this case the
operation acts just as if it had been created by an OBJECT-expression with the same method-clauses. In
this way one can establish the behavior of an operation when subject to other operations, for example
SETTER.

The following rough equivalence describes the semantics of OPERATION. Some details have been omitted.

(OPERATION default . methods)
≡
(LABELS ((OP (OBJECT (LAMBDA (OBJ . ARGS)

(LET ((METHOD ((GET-HANDLER OBJ) OP)))
(COND (METHOD

(APPLY METHOD OBJ ARGS))
(ELSE
(APPLY default OBJ ARGS)))))

. methods)))
OP)

For example:

(DEFINE OP (OPERATION (LAMBDA (OBJ) ’ZEBU)))
(OP (OBJECT NIL ((OP SELF) ’QUAGGA))) =⇒ QUAGGA
(OP ’ELAND) =⇒ ZEBU

An operation is created, and the variable OP is bound to it. The operation’s default method always returns
the symbol ZEBU. When the operation is applied to the value of the OBJECT-expression, the appropriate
method is invoked, and the call to the operation yields the symbol QUAGGA. When the operation is applied
to an object which doesn’t handle it - the symbol ELAND - the operation’s default method is invoked, so
the call yields the symbol ZEBU.

(OPERATION? object) −→ boolean Type predicate

Returns true if object is an operation.

7.2 Defining operations

(DEFINE-OPERATION (variable . argument-vars) . body) −→ undefined Special form

41

Defines variable to be an operation. The syntax is intended to be analogous to that of DEFINE. The
operation’s default method is defined by argument-vars and body . If there is no body , then the operation’s
default method is undefined. In this case, the argument-vars appear only for documentary purposes.

(DEFINE-OPERATION (var . args) . body)
≡ (DEFINE var (OPERATION (LAMBDA args . body)))
(DEFINE-OPERATION (var . args))
≡ (DEFINE var (OPERATION UNDEFINED-EFFECT))

(DEFINE-SETTABLE-OPERATION (variable . argument-vars) . body) −→ undefined Special form

Defines variable to be an operation, as with DEFINE-OPERATION, but arranges for the operation’s “setter”
to be another operation, so that the operation is “settable” (see page 33).

(DEFINE-SETTABLE-OPERATION (var . args) . body)
≡

(DEFINE var
(LET ((THE-SETTER (OPERATION UNDEFINED-EFFECT)))

(OPERATION (LAMBDA args . body)
((SETTER SELF) THE-SETTER))))

(DEFINE-PREDICATE variable) −→ undefined Special form

Defines variable to be an operation which, by default, returns false.

(DEFINE-PREDICATE var)
≡
(DEFINE-OPERATION (var OBJ) NIL)

The intent is that particular OBJECT-expressions contain clauses of the form ((variable SELF) T). This
way the operation defined by DEFINE-PREDICATE may act as a type predicate that returns true only for
those objects returned by such OBJECT-expressions.

7.3 Joined objects

(JOIN . objects) −→ joined-object

JOIN returns an object, called a joined object, whose behavior is a combination of the behaviors of the
objects. When an operation is applied to the joined object, each object in turn is given an opportunity
to handle the operation; the first to handle it does so.

(JOIN (OBJECT proc1 method11 method12 ...)
(OBJECT proc2 method21 method22 ...))
≡

(OBJECT proc1 method11 method12 ... method21 method22 ...)

Using the hypothetical primitives described earlier, JOIN could be defined by the following:

(JOIN first second)
≡
(*OBJECT first

(LAMBDA (OP)
(OR))

42

Bug: T3.0: JOIN works on proceedures and objects created by OBJECT, but not on structures or
primitive objects.

7.4 Example

Hypothetical implementation of CONS:

(DEFINE-PREDICATE PAIR?)
(DEFINE-SETTABLE-OPERATION (CAR PAIR))
(DEFINE-SETTABLE-OPERATION (CDR PAIR))
(DEFINE (CONS THE-CAR THE-CDR)

(OBJECT NIL
((PAIR? SELF) T)
((CAR SELF) THE-CAR)
((CDR SELF) THE-CDR)
(((SETTER CAR) SELF NEW-CAR) (SET THE-CAR NEW-CAR))
(((SETTER CDR) SELF NEW-CDR) (SET THE-CDR NEW-CDR))))

Chapter 8

Numbers

Numbers in T are objects which represent real numbers. Numbers come in three varieties: integers, ratios,
and floating point numbers. Integers and ratios are exact models of the corresponding mathematical objects.
Floating point numbers give discrete approximations to real numbers within a certain implementation-dependent
range.

As expressions, numbers are self-evaluating literals (see section 3.3).

-377 =⇒ -377
72723460248141 =⇒ 72723460248141
13/5 =⇒ 13/5
34.55 =⇒ 34.55

There may be many different objects which all represent the same number. The effect of this is that EQ? may
behave in nonintuitive ways when applied to numbers. It is guaranteed that if two numbers have different types
or different numerical values, then they are not EQ?, but two numbers that appear to be the same may or may
not be EQ?, even though there is no other way to distinguish them. Use EQUAL? or = (page 46) for comparing
numbers.

8.1 Predicates

(NUMBER? object) −→ boolean Type predicate

Returns true if object is a number.

(INTEGER? object) −→ boolean Type predicate

Returns true if object is an integer.

(FLOAT? object) −→ boolean Type predicate

Returns true if object is a floating point number.

(RATIONAL? obj) −→ boolean

RATIONAL? returns true if obj is an integer or ratio; otherwise, it returns false.

43

44

(RATIO? object) −→ boolean Type predicate

Returns true if object is a ratio.

(ODD? integer) −→ boolean

Returns true if integer is odd.

(EVEN? integer) −→ boolean

Returns true if integer is even.

8.2 Arithmetic

(+ . numbers) −→ number

(ADD . numbers) −→ number

Returns the sum of the numbers.

(+ 10 27) =⇒ 37
(+ 10 27.8) =⇒ 37.8
(+) =⇒ 0
(+ -35) =⇒ -35
(+ 1 2 3) =⇒ 6

(- n1 n2) −→ number

(SUBTRACT n1 n2) −→ number

Returns the difference of n1 and n2 .

(- n) −→ number

(NEGATE n) −→ number

Returns the additive inverse of n.

(* . numbers) −→ number

(MULTIPLY . numbers) −→ number

Returns the product of the numbers.

(/ n1 n2) −→ number

(DIVIDE n1 n2) −→ number

Returns the quotient of n1 and n2 .

(/ 20 5) =⇒ 4
(/ 5 20) =⇒ 1/4
(/ 5.0 20) =⇒ 0.25

45

(QUOTIENT n1 n2) −→ integer

In T2 called DIV. Integer division; truncates the quotient of n1 and n2 towards zero.

(REMAINDER n1 n2) −→ number

Returns the remainder of the division of n1 by n2 , with the sign of n1 .

(QUOTIENT&REMAINDER n1 n2) −→ integer1 integer2

In T2 called DIV2. Returns the quotient and remainder (respectively) as muiltiple values of dividing n1
by n2 .

(FLOOR n1 n2) −→ number

Returns the greatest multiple of n2 which is less than or equal to n1 ; “round down”. A particularly
useful case is where n2 is 1, in which case FLOOR returns n1 ’s integer part.

(FLOOR 21 8) =⇒ 16
(FLOOR -21 8) =⇒ -24
(FLOOR 2.67 1) =⇒ 2

(CEILING n1 n2) −→ number

Returns the least multiple of n2 which is greater than or equal to n1 ; “round up”.

(CEILING 21 8) =⇒ 24
(CEILING -21 8) =⇒ 16
(CEILING 2.67 1) =⇒ 3

(TRUNCATE n1 n2) −→ number

Returns the greatest multiple of n2 which is less than or equal to the absolute value of n1 , with n1 ’s
sign; “round towards zero”.

(TRUNCATE 21 8) =⇒ 16
(TRUNCATE -21 8) =⇒ -24
(TRUNCATE 2.67 1) =⇒ 1

(ROUND n1 n2) −→ number

Rounds n1 toward the nearest multiple of n2 .

(MOD n1 n2) −→ number

Returns a number k in the range from zero, inclusive, to n2 , exclusive, such that k differs from n1 by
an integral multiple of n2 . If n1 is positive, this behaves like REMAINDER.

(EXPT base exponent) −→ number

46

Returns base raised to the exponent power. Base and exponent may be any numbers.

Bug: In T 3.1, exponent must be a finxnum.

(ABS n) −→ number

Returns the absolute value of n.

(GCD integer1 integer2) −→ integer

Returns the greatest common divisor of integer1 and integer2 .

(GCD 36 60) =⇒ 12

(truncate number) −→ integer

truncate returns the integer of maximal absolute value not larger than the absolute value of number
with the same sign as number. truncate truncates its argument toward zero.

(ADD1 n) −→ number

(1+ n) −→ number

Returns n + 1. (See also INCREMENT, page 50.)

(SUBTRACT1 n) −→ number

Returns n - 1. (See also DECREMENT, page 50.)

(MIN . numbers) −→ number

Returns the number with the least numerical magnitude. (There must be at least one number .)

(MAX . numbers) −→ number

Returns the number with the greatest numerical magnitude. (There must be at least one number .)

8.3 Comparison

(= n1 n2) −→ boolean

(EQUAL? n1 n2) −→ boolean

Returns true if n1 is numerically equal to n2 .

(< n1 n2) −→ boolean

(LESS? n1 n2) −→ boolean

Returns true if n1 is numerically less than n2 .

47

(> n1 n2) −→ boolean

(GREATER? n1 n2) −→ boolean

Returns true if n1 is numerically greater than n2 .

(N= n1 n2) −→ boolean

(NOT-EQUAL? n1 n2) −→ boolean

Returns true if n1 is not numerically equal to n2 .

(>= n1 n2) −→ boolean

(NOT-LESS? n1 n2) −→ boolean

Returns true if n1 is not numerically less than n2 .

(<= n1 n2) −→ boolean

Returns true if n1 is not numerically greater than n2 .

8.4 Sign predicates

(=0? n) −→ boolean

(ZERO? n) −→ boolean

Returns true if n is numerically equal to zero.

(<0? n) −→ boolean

(NEGATIVE? n) −→ boolean

Returns true if n is negative.

(>0? n) −→ boolean

(POSITIVE? n) −→ boolean

Returns true if n is positive.

(N=0? n) −→ boolean

(NOT-ZERO? n) −→ boolean

Returns true if n is not numerically equal to zero.

(>=0? n) −→ boolean

(NOT-NEGATIVE? n) −→ boolean

Returns true if n is non-negative.

(<=0? n) −→ boolean

(NOT-POSITIVE? n) −→ boolean

Returns true if n is non-positive.

48

8.5 Transcendental functions

(EXP float) −→ float

Exponential function (ex).

(LOG float) −→ float

Natural logarithm (logex).

(SQRT float) −→ float

Returns the square root of its argument.

(COS float) −→ float

Returns the cosine of its argument.

(SIN float) −→ float

Returns the sine of its argument.

(TAN float) −→ float

Returns the tangent of its argument.

(ACOS float1) −→ float2

Arccosine. Returns a number whose cosine is float1 .

(ASIN float1) −→ float2

Arcsine. Returns a number whose sine is float1 .

(ATAN2 x y) −→ float

Two-argument arctangent. This computes the angle between the positive x-axis and the point (x , y).
For example, if (x , y) is in the first or third quadrant, (ATAN2 x y) returns the arctangent of y/x .

Bug: ATAN2 isn’t implemented in T 3.1. T 3.1 does implement ATAN (arctangent), however.

8.6 Bitwise logical operators

Bug: In T 3.1, the routines in this section are restricted to take fixnums (see page 130), not arbitrary
integers.

(LOGAND integer1 integer2) −→ integer

49

Returns the bitwise logical and of its arguments.

(LOGAND 10 12) =⇒ 8

(LOGIOR integer1 integer2) −→ integer

Returns the bitwise logical inclusive or of its arguments.

(LOGXOR integer1 integer2) −→ integer

Returns the bitwise logical exclusive or of its arguments.

(LOGNOT integer) −→ integer

Returns the bitwise logical not of its argument.

(ASH integer amount) −→ integer

Shifts integer to the left amount bit positions. If amount is negative, shifts integer right by the absolute
value of amount bit positions.

(BIT-FIELD integer position size) −→ integer

Extracts a bit field out of integer . The field extracted begins at bit position position from the low-order
bit of the integer and consists of size bits. The extracted field is returned as a positive integer.

(BIT-FIELD 27 1 3) =⇒ 5
(BIT-FIELD -1 4 5) =⇒ 31

(SET-BIT-FIELD integer position size value) −→ integer

Inserts a value into a bit field of integer . The field begins at bit position position from the low-order bit
of the integer and consists of size bits. A new integer is returned which is the same as the argument
integer except that this field has been altered to be value.

(SET-BIT-FIELD 32 1 3 5) =⇒ 42

8.7 Coercion

(->INTEGER number) −→ integer

Coerces number to an integer, truncating towards zero if necessary.

(->INTEGER 17) =⇒ 17
(->INTEGER 7/4) =⇒ 1
(->INTEGER 17.6) =⇒ 17
(->INTEGER -17.6) =⇒ -17

(->FLOAT number) −→ float

Coerces number to a floating point number.

(->FLOAT 17) =⇒ 17.0
(->FLOAT 7/4) =⇒ 1.75
(->FLOAT 17.6) =⇒ 17.6

50

8.8 Assignment

INCREMENT and DECREMENT are assignment forms, like SET and PUSH. See section 6.1 for a general discussion.

(INCREMENT location) −→ number

Adds one to the value in location, stores the sum back into location, and yields the sum.

(LSET L 6)
(INCREMENT L) =⇒ 7
L =⇒ 7
(LSET M (LIST 10 20 30)) =⇒ (10 20 30)
(INCREMENT (CAR M)) =⇒ 11
M =⇒ (11 20 30)
(INCREMENT location) ≡ (MODIFY location ADD1)

(DECREMENT location) −→ number

Subtracts one from the value in location, stores the difference back into location, and yields the difference.

(DECREMENT location) ≡ (MODIFY location SUBTRACT1)

Chapter 9

Lists

This section describes routines available for creating, examining, and otherwise manipulating list structure.

9.1 Predicates

(NULL? object) −→ boolean Type predicate

Returns true if object is the empty list (null). Since the empty list is also used for the logical false value,
and non-false objects are considered to be true, it turns out that NULL? is the same as NOT.

(PAIR? object) −→ boolean Type predicate

Returns true if object is a pair.

(PAIR? ’(A B C)) =⇒ true
(PAIR? ’(A . 15)) =⇒ true
(PAIR? ’()) =⇒ false
(PAIR? ’FOO) =⇒ false

(ATOM? object) −→ boolean Type predicate

Returns true if object is an atom. An atom is any object that isn’t a pair.

(ATOM? object) ≡ (NOT (PAIR? object))

(LIST? object) −→ boolean Type predicate

Returns true if object is either a pair or the empty list.

(LIST? ’(A B C)) =⇒ true
(LIST? ’(A . 15)) =⇒ true
(LIST? ’()) =⇒ true
(LIST? ’FOO) =⇒ false

(PROPER-LIST? object) −→ boolean Type predicate

51

52

Returns true if list is a properly formed list, i.e., if its last pair’s cdr is null.

(PROPER-LIST? ’(A B C)) =⇒ true
(PROPER-LIST? ’(A B . C)) =⇒ false
(PROPER-LIST? ’()) =⇒ true

(NULL-LIST? list) −→ boolean

Like NULL?, but has an undefined effect (and may, for example, signal an error) if its argument is not
either a pair or null. (NULL-LIST? x) is roughly the same as (NULL? (ENFORCE LIST? x)).

9.2 Constructors

(CONS object1 object2) −→ pair

Returns a new pair whose car is object1 and whose cdr is object2 .

(CONS ’A ’()) =⇒ (A)
(CONS ’A ’B) =⇒ (A . B)
(CONS ’A ’(B)) =⇒ (A B)
(CONS ’A (CONS ’B ’())) =⇒ (A B)
(CONS ’A (LIST ’B ’C)) =⇒ (A B C)

(LIST . objects) −→ list

Returns a new list of its arguments.

(LIST) =⇒ ()
(LIST ’A) =⇒ (A)
(LIST ’A ’B) =⇒ (A B)
(LIST ’A (LIST ’B ’C)) =⇒ (A (B C))
LIST ≡ (LAMBDA THINGS THINGS)

(CONS* . objects) −→ pair

CONS* is a generalized CONS. It returns a new, possibly improper, list, by consing the initial objects onto
the last object .

(CONS* 1 2 3) =⇒ (1 2 . 3)
(CONS* ’A ’B ’(C D)) =⇒ (A B C D)
(CONS* object) ≡ object
(CONS* object1 object2) ≡ (CONS object1 object2)

(COPY-LIST list) −→ list

Makes a “top-level” copy of a list; that is, returns a new list whose elements are the same as the original.

(COPY-LIST list) ≡
(COND ((NULL-LIST? list) ’())

(ELSE (CONS (CAR list) (COPY-LIST (CDR list)))))
(COPY-LIST list) ≡ (MAP IDENTITY list)

53

9.3 List access

(CAR pair) −→ object Settable

Returns the car of the pair . (CAR () −→ error)’, though, for compatibility, in T3.1 it will evaluate to
().

(CDR pair) −→ object Settable

Returns the cdr of the pair . (CDR () −→ error)’, though, for compatibility, in T3.1 it will evaluate to
().

(C...R pair) −→ object Settable

Compositions of CAR and CDR, up to four deep, are defined.

(CADAR x) ≡ (CAR (CDR (CAR x)))
(CADDDR x) ≡ (CAR (CDR (CDR (CDR x))))

(NTH list n) −→ object Settable

Returns the nth element of list . The first element (the car) is (NTH list 0), the second element is
(NTH list 1), and so on. In general, list must have at least n+1 elements.

(NTH ’(A B) 0) =⇒ A
(NTH ’(A B) 1) =⇒ B
(NTH ’(A B) 2) has an undefined effect
(NTH ’() n) has an undefined effect for any n

(NTHCDR list n) −→ list Settable

Returns the nth tail of list . In general, list must have at least n tails.

(NTHCDR ’(A B) 0) =⇒ (A B)
(NTHCDR ’(A B) 1) =⇒ (B)
(NTHCDR ’(A B) 2) =⇒ ()
(NTHCDR ’(A B) 3) has an undefined effect
(NTHCDR ’() n) has an undefined effect for any nonzero n

Bug: NTHCDR doesn’t handle SETTER (i.e. is not settable) in T 3.1.

(LAST list) −→ object Settable

Returns the last element of list .

(LAST ’(A B C)) =⇒ C
(LAST list) ≡ (CAR (LASTCDR list))

(LASTCDR list) −→ pair Settable

Returns the last pair in list .

(LASTCDR ’(A B C)) =⇒ (C)
(LASTCDR ’(A B . C)) =⇒ (B . C)

Bug: LASTCDR doesn’t handle SETTER (i.e. is not settable) in T 3.1.

54

9.4 Lists as sequences

(LENGTH list) −→ integer

Return the length of list .

(LENGTH ’()) =⇒ 0
(LENGTH ’(A B C)) =⇒ 3

(APPEND . lists) −→ list

Constructs a list which is the concatenation of lists. A new list is constructed, except that the result has
the last non-null argument as a tail.

(APPEND ’(A B C) ’(D E) ’(F G)) =⇒ (A B C D E F G)

(APPEND! . lists) −→ list

Destructive version of APPEND. Splices the lists together, setting the cdr of the last pair in the first list to
the second list, and so on. Returns its first non-null argument.

(DEFINE L1 (LIST ’A ’B ’C))
(DEFINE L2 (LIST ’D ’E))
L1 =⇒ (A B C)
(APPEND! L1 L2) =⇒ (A B C D E)
L1 =⇒ (A B C D E)
(APPEND! ’() L2) =⇒ (D E)

(REVERSE list) −→ list

Returns a new list whose elements are those of list , in reverse order.

(REVERSE ’(A B C)) =⇒ (C B A)

(REVERSE! list) −→ list

This is a “destructive” version of REVERSE; it allocates no storage for the result, but rather recycles the
pairs in the source list ’s to form the result list.

(SUBLIST list start count) −→ list

Returns a list of count elements of list , beginning with element start .

(SUBLIST ’(A B C D E F) 2 3) =⇒ (C D E)

9.5 Lists as sets

(MEMQ? object list) −→ boolean

Returns true if object is an element of list .

55

(MEMQ? ’B ’(A B C)) =⇒ true
(MEMQ? ’B ’(A (B C) D)) =⇒ false
(MEMQ? ’B ’(B)) =⇒ true
(MEMQ? ’B ’()) =⇒ false
(MEMQ? 17 ’(10 17)) =⇒ undefined
(MEMQ? foo ’(foo bar)) =⇒ undefined
(LET ((X foo))
(MEMQ? X (LIST ’B X))) =⇒ true

(MEM? predicate object list) −→ boolean

Returns true if list contains an object which is equal to object according to predicate, which should be
an equality predicate.

(MEM? = 17 ’(10 17)) =⇒ true
(MEM? STRING-EQUAL? foo ’(foo bar)) =⇒ true

(ANY? predicate . lists) −→ boolean

Returns true if any element of list answers true to predicate.

(ANY? NUMBER? ’(FOO 15 BAR)) =⇒ true

(EVERY? predicate . lists) −→ boolean

Returns true if every element of list answers true to predicate.

(EVERY? SYMBOL? ’(A B C)) =⇒ true

(DELQ object list) −→ list

Returns a list which is the same as the argument list with all occurrences of object removed.

(DEL predicate object list) −→ list

Returns a list which is the same as list except that all elements which, according to predicate, are equal
to object , have been removed. Predicate should be an equality predicate.

(DELQ object list) ≡ (DEL EQ? object list)

(DELQ! object list) −→ list

Destructive version of DELQ. Removes all occurrences of object from list , possibly altering it, and returns
the new and/or modified list.

(DEL! predicate object list) −→ list

Destructive version of DEL.

(DELQ! object list) ≡ (DEL! EQ? object list)

56

9.6 Mapping Procedures

(MAP proc . lists) −→ list

Returns a list of the results of applying proc to successive elements of the lists; the nth element of the
result list is the result of calling proc on the nth elements of the lists. The length of the result list is the
same as the length of the shortest of the lists.

(MAP (LAMBDA (X) (LIST ’A X)) ’(CAT DOG)) =⇒ ((A CAT) (A DOG))
(MAP + ’(10 20) ’(5 6)) =⇒ (15 26)
(MAP LIST ’(A B) ’(C D E) ’(F)) =⇒ ((A C F))

(MAPCDR proc . lists) −→ list

MAPCDR is similar to MAP, except that proc is applied to successive tails of the lists.

(MAP! proc list) −→ list

For each pair in list , applies proc to the car of the pair, and then modifies the pair so that its car is the
value of the application.

(DEFINE L (LIST ’CAT ’DOG)) =⇒ (CAT DOG)
(MAP! (LAMBDA (X) (LIST ’A X)) L)
L =⇒ ((A CAT) (A DOG))

(WALK proc . lists) −→ undefined

This is similar to MAP but the result is a value of no particular interest. Thus WALK is useful only for the
side-effects that proc performs.

(WALKCDR proc . lists) −→ undefined

This is similar to MAPCDR but the result is a value of no particular interest.

9.7 Lists as associations

(ASSQ object list) −→ pair or false

(ASSQ object list) ≡ (ASS EQ? object list)

(ASS predicate object list) −→ pair or false

An association list is a list of pairs that represents a “lookup table” where the car of each pair matches
a lookup key. ASS and its related procedures search association lists by comparing (applying predicate)
the key (object) against the car of each element of list (i.e., the caar of each tail). If it finds a match, it
returns that element (the car of the tail). If it finds no match, it returns false.

(ASS EQ? ’B ’((A 10 20) (B 30 40) (C 50 60))) =⇒ (B 30 40)
(ASS = 9 ’((1 Y) (4 Y) (9 Z) (12 P))) =⇒ (9 Z)
(ASS = 10 ’((1 Y) (4 Y) (9 Z) (12 P))) =⇒ false

57

9.8 Lists as stacks

PUSH and POP permit a convenient syntax for the use of lists in implementing simple stacks. They are assignment
forms, like SET and INCREMENT. See section 6.1 for a general discussion of assignment forms.

(PUSH location object) −→ undefined Special form

Cons a pair whose car is object and whose cdr is the value in location (usually a list), and store the
extended list back into location.

(LSET L ’(34 55)) =⇒ (34 55)
(PUSH L 21)
L =⇒ (21 34 55)
(PUSH L ’(A B C))
(PUSH (CAR L) ’D)
L =⇒ ((D A B C) 21 34 55)

In general,

(PUSH location object)
≡ (SET location (CONS object location))
≡ (MODIFY location (LAMBDA (L) (CONS object L)))

(POP location) −→ object Special form

The car of the value in location (this value should be a pair) is returned. As a side-effect, the cdr of the
list is stored back in the location.

L =⇒ (21 34 55)
(POP L) =⇒ 21
L =⇒ (34 55)

In general,

(POP location) ≡
(BLOCK0 (CAR location) (SET location (CDR location)))

≡
(BLOCK0 (CAR location) (MODIFY location CDR))

Chapter 10

Trees

This chapter describes procedures available for manipulating trees. The term tree is used in a technical sense to
refer to non-circular list structure considered as tree data-structures, as contrasted with lists, which use chained
pairs to represent a one-dimensional sequence of objects. Thus one might say either that (A (B C) D) is a list
of three elements, or that it is a tree with four (non-null) leaves.

Trees are used to represent programs. The tree-manipulation procedures and special forms are designed with
this in mind.

10.1 Comparison

(EQUIV? object1 object2) −→ boolean

EQUIV? is an equality predicate, not for comparing trees but for comparing leaves.

If (EQ? object1 object2), then (EQUIV? object1 object2).

If object1 and object2 are both numbers of the same type, then they are EQUIV? iff they have the
same numeric value (see =, page 46).

If object1 and object2 are both strings, then they are EQUIV? if they are STRING-EQUAL? (page 68).

See also the descriptions of EQ? (page 17) and = (page 46).

Bug: In T 3.1, EQUIV? (and ALIKEV?) may return false for two numbers which are =. It will do
the right thing, however, for FIXNUMs.

(ALIKE? predicate tree1 tree2) −→ boolean

Returns true if tree1 and tree2 have the same shape and their corresponding leaves are equal according
to predicate, which must be an equality predicate.

(ALIKE? = ’(1 (2 . 8) 3) ’(1 (2 . 8) 3)) =⇒ true

(ALIKEQ? tree1 tree2) −→ boolean

(ALIKEQ? tree1 tree2) ≡ (ALIKE? EQ? tree1 tree2)

58

59

(ALIKEV? tree1 tree2) −→ boolean

(ALIKEV? tree1 tree2) ≡ (ALIKE? EQUIV? tree1 tree2)

Roughly speaking, two trees are ALIKEV? if they print the same way.

10.2 Tree utilities

(SUBST predicate new old tree) −→ tree

Returns a result tree which is the same as the argument tree, except that leaves in the argument tree
which, according to predicate, are equal to old , have been changed to be new . Predicate must be an
equality predicate.

(SUBST EQUIV? 17 13 ’(10 (20 13) 30)) =⇒ (10 (20 17) 30)

The result returned by SUBST may or may not share structure with its tree argument.

(SUBSTQ new old tree) −→ tree

(SUBSTQ new old tree) ≡ (SUBST EQ? new old tree)

(SUBSTV new old tree) −→ tree

(SUBSTV new old tree) ≡ (SUBST EQUIV? new old tree)

(COPY-TREE tree) −→ tree

Recursively make a copy of the tree.

(COPY-TREE tree) ≡ (SUBSTQ NIL NIL tree)

(TREE-HASH tree) −→ integer

Compute a hash code for tree. The hash computed is a non-negative fixnum with the property that if
tree1 and tree2 are ALIKEV?, then their hashes are the same.

10.3 Destructuring

(DESTRUCTURE specs . body) −→ value-of-body Special form

Specs has the form ((pattern value) (pattern value) ...) where each pattern is either an identifier
(e.g., X) or a tree (see page 58), all of whose non-null leaves are identifiers (e.g., ((X Y . Z) P Q)).

DESTRUCTURE is similar to LET, and in the case that all the patterns are symbols, DESTRUCTURE and LET
are equivalent. But DESTRUCTURE is especially useful when one wants to bind variables to the various
nodes in a single tree structure. For example, suppose Z has the value (1 (2 3) ((4 5 . 6) 7)), and
we want to bind A to 1, B to 2, C to 3, D to 6, and E to 7. We could write

60

(LET ((A (CAR Z))
(B (CAADR Z))
(C (CDADR Z))
(D (CDDAR (CADDR Z)))
(E (CADADR (CDR Z))))
...)

However, we could also write

(DESTRUCTURE (((A (B . C) ((() () . D) E)) Z))
...)

The ()’s notate ignored positions.

(DESTRUCTURE* specs . body) −→ value-of-body Special form

DESTRUCTURE* is the “serial” form of DESTRUCTURE, just as LET* is the “serial” form of LET.

(DESTRUCTURE* ((pattern1 value1)
(pattern2 value2)
...
(patternn valuen))

code)
≡

(DESTRUCTURE ((pattern1 value1))
(DESTRUCTURE ((pattern1 value1))
...

(DESTRUCTURE ((patternn valuen))
code)...))

10.4 Quasiquote

T’s quasiquote facility, inherited from the Maclisp family of Lisps, is useful for building programs whose form is
determined, but where some of the structure is constant and some is to be filled in. This is especially convenient
in the definitions of macro expanders. It is so useful that a special external syntax is provided for notating
such templates. It takes its name from the name of the character (quasiquote, ‘) which introduces this special
syntax.

The character (”‘ ”) is called quasiquote because it behaves like QUOTE except that one can specify that subforms
of the quasiquote’d form should be evaluated. Inside a form that is preceded by a quasiquote, two additional
pieces of external syntax are active: comma (,), and comma at-sign (,@); these are the ways to indicate that
some subform should be evaluated (i.e., unquoted). A subform preceded by a comma is evaluated and replaced
by the result of the evaluation. A subform preceded by a comma at-sign is evaluated and replaced by splicing
in the result of the evaluation.

Here are some simple examples. Note that the first example shows code equivalence, not evaluation.

‘ (A B ,X Y) ≡ (LIST ’A ’B X ’Y)
(DEFINE X ’(3))
(CDR ‘ (A B ,X C)) =⇒ (B (3) C)
(CDR ‘ (A B ,@X C)) =⇒ (B 3 C)

61

(DEFINE-SYNTAX (REPEAT N . CODE) ;Execute CODE N times
‘ (LET ((COUNT ,N) (THUNK (LAMBDA () ,@CODE)))

(DO ((COUNT COUNT (-1+ COUNT)))
((<=0? COUNT) ’())
(THUNK))))

It is possible to nest quasiquoted forms. This is useful when writing complex source-to-source transformations.

(DEFINE-SYNTAX (FOO X Y)
‘ (LET ((STUFF ,X))

‘ ((STUFF-IS ,STUFF)
(Y-IS ,’,Y))))

(FOO (+ 3 5) BAZ) =⇒ ((STUFF-IS 8) (Y-IS BAZ))

quasiquote now works on vectors. Thus,

‘ #(1 2 ,(+ 1 2)) =⇒ #(1 2 3)

Chapter 11

Structures

A structure corresponds to what is called a record in some other languages: a data structure with a fixed set of
named fields or slots, known in T as components. For example, one might want an “employee” structure, with
slots for the employee’s name, age, and salary. A structure, then, is an organized set of locations, places to store
things.

11.1 Terminology

Every structure has an associated an object called a structure type (sometimes abbreviated stype, pronounced
“ess type”). Structure types are created by the procedure MAKE-STYPE (see below) and by the special form
DEFINE-STRUCTURE-TYPE

Given a structure type S , one can access several things of interest:

Constructor a procedure that will create uninitialized structures of type S (e.g., the structure for a particular
employee).

Predicator a procedure (a type predicate) that returns true if its argument is a structure of type S .

Component selectors procedures that access the various components of structures of type S (one selector
per component).

Handler the mechanism for specifying how a set of generic operations will behave when applied to structures
of type S .

11.2 Defining structure types

The DEFINE-STRUCTURE-TYPE macro is a convenient way to define a new structure type and its associated
constructor, predicator, and component selectors. DEFINE-STRUCTURE-TYPE is a macro defined in terms of
MAKE-STYPE and the other low-level routines described in the next section. One may want to define one’s own
interface to these routines, one that initializes the components when a new instance is constructed, for example.

(DEFINE-STRUCTURE-TYPE typename {components}+ {methods}∗) −→ stype Special form

Creates a structure type (using MAKE-STYPE), and defines a number of variables:

typename-STYPE is defined to be the structure type.

62

63

MAKE-typename is defined to be the constructor.

typename? is defined to be the predicator.

typename-componentname is defined to be a component selector, for each of the componentnames.

For example,

(DEFINE-STRUCTURE-TYPE EMPLOYEE NAME AGE SALARY)

defines

EMPLOYEE-STYPE, a variable whose value is the structure type whose name is EMPLOYEE.

(MAKE-EMPLOYEE), a procedure that creates uninitialized EMPLOYEE-structures.

(EMPLOYEE? object), a type predicate.

(EMPLOYEE-NAME employee)
(EMPLOYEE-AGE employee)
(EMPLOYEE-SALARY employee)

selectors that access the components of EMPLOYEE-structures.

methods is an optional list of method clauses. For example,

(DEFINE-STRUCTURE-TYPE EMPLOYEE
NAME
AGE
SALARY
(((HUMAN? SELF) ’#T)
(PRINT SELF PORT)
(FORMAT PORT "#{Employee (̃A) Ã }"

(OBJECT-HASH SELF)
(EMPLOYEE-NAME SELF)))))

The methods in the methods clauses cannot reference the components directly. They must use the
standard structure accessors. For example, in the print method above the name component of the
employee structure must be accessed as (EMPLOYEE-NAME SELF) not as NAME.

Bug: Structures cannot yet be joined to other objects.

11.3 Manipulating structure types

Caution: The unreleased feature of T2 that allowed handlers for structures to be mutated no longer
exists. Any code using handle-stype, get-method, set-method, etc. will no longer work, but join now
works efficiently.

(MAKE-STYPE typename componentnames method-handler) −→ stype

Returns a new structure type. The typename, which should be a symbol, is used for printing and identi-
fication purposes only. Componentnames should be a list of symbols. The componentnames correspond
to the components that instances of the structure will have. The method-handler should be an object
that handles whatever operations are required, or ’#F, if a handler is not required.

For example:

64

(MAKE-STYPE ’EMPLOYEE ’(NAME AGE SALARY) ’#F) =⇒ #{Stype EMPLOYEE}

This creates a structure type, identified as EMPLOYEE, whose instances have components NAME, AGE, and
SALARY. The object returned, a structure type, is appropriate as an argument to other routines described
in this section. However,

(MAKE-STYPE ’EMPLOYEE
’(NAME AGE SALARY)
(OBJECT NIL

((EMP? SELF) ’#T)))
=⇒ #{Stype EMPLOYEE}

defines an stype that handles the predicate EMP?.

(STYPE-ID stype) −→ typename

Returns the type identifier for stype.

(STYPE-CONSTRUCTOR stype) −→ procedure

Given a structure type stype, returns the procedure which will instantiate (i.e., create instances of) the
structure type. The constructor procedure takes no arguments and creates a structure with uninitialized
components.

Note that the constructor procedure is created at the time the structure type is created, not at the time
that STYPE-CONSTRUCTOR is called.

((STYPE-CONSTRUCTOR stype)) ≡ (COPY-STRUCTURE (STYPE-MASTER stype))

(STYPE-MASTER stype) −→ structure

Returns the “master copy” from which all structures created by the structure type’s constructor-procedure
are made. This can be convenient for establishing default values for components in newly created struc-
tures. The way to do this is by storing into the master copy the desired default values; these values will
be copied into all new instances of the structure type. For example,

(SET (EMPLOYEE-SALARY (STYPE-MASTER EMPLOYEE-STYPE)) 12000)
(EMPLOYEE-SALARY (MAKE-EMPLOYEE)) =⇒ 12000

(STYPE-PREDICATOR stype) −→ procedure

Given a structure type stype, returns the procedure (a type predicate) which will predicate membership
in the structure type. This procedure takes one argument and returns true if that argument is an instance
of the structure type.

Note that the predicator procedure is created at the time the structure type is created, not at the time
that STYPE-PREDICATOR is called.

(STYPE-SELECTOR stype componentname) −→ procedure

Given a structure type stype, returns the procedure which will select the component of the structure
type’s instances identified by componentname. The selector procedure takes one argument, which must
be a structure whose structure type is stype, and returns the appropriate component of the instance.

65

Such selector procedures support SETTER operations, which is to say that one may alter components of
structures by using SET or related special forms.

The effect of selecting a structure component that has not been previously set, or initialized from the
master structure (see STYPE-MASTER, above), is undefined.

Note that the selector procedures are created at the time the structure type is created, not at the time
that STYPE-SELECTOR is invoked.

(STYPE-SELECTORS stype) −→ list of procedures

Given a structure type stype, returns a list of its selector procedures.

(SELECTOR-ID selector) −→ identifier

Given a selector procedure, e.g., as returned by STYPE-SELECTOR, returns its corresponding component-
name.

(STYPE-HANDLER stype) −→ handler Settable

Given a structure type stype, accesses the handler to be used for generic operations applied to instances
of the structure type. For a newly created structure type, this handler handles no operations, but one
may set the handler to be any handler at all.

11.4 Manipulating structures

The primary means for manipulating structures is to call their selector procedures and their setters. For
example, in the context of the examples above, if EMPLOYEE-23 is an EMPLOYEE-structure, then EMPLOYEE-23’s
NAME component may be retrieved by evaluating

(EMPLOYEE-NAME EMPLOYEE-23)

and this value may be set by evaluating

(SET (EMPLOYEE-NAME EMPLOYEE-23) ’FRED)

This works because the selector procedures for EMPLOYEE-STYPE handle the generic operation called SETTER.
Structures may also be manipulated using other generic operations.

(STRUCTURE? object) −→ boolean Type predicate

Returns true if object is a structure.

(COPY-STRUCTURE structure) −→ structure

Makes a copy of structure. The value returned is a new object of the same structure type as structure
whose components are the same (in the EQ? sense) as structure’s.

(COPY-STRUCTURE! destination source) −→ structure

Copies the components of source into destination, which is returned. Source and destination must be
structures of the same type.

Chapter 12

Characters and strings

T has a special data type for representing characters. Characters are objects which may be stored in strings and
communicated between the T system and external media such as files and terminals. Most characters represent
printed graphics such as letters, digits, and punctuation.

The external syntax #\x is used for characters. x may either be a single character or the “name” of a character.
Valid character names SPACE, TAB, FORM, and NEWLINE. For example:

#\b The alphabetic character lower-case b
#\7 The digit 7
#\; The special character semicolon
#\tab The tab character
#\NEWLINE The new-line character

Some graphic characters are also readable by name:

#\LEFT-PAREN ≡ #\(
#\RIGHT-PAREN ≡ #\)
#\LEFT-BRACKET ≡ #\[
#\RIGHT-BRACKET ≡ #\]
#\LEFT-BRACE ≡ #\{
#\RIGHT-BRACE ≡ #\}
#\BACKSLASH ≡ #\\
#\QUOTE ≡ #\’
#\QUASIQUOTE ≡ #\‘
#\DOUBLEQUOTE ≡ #\"
#\COMMA ≡ #\,
#\SEMICOLON ≡ #\;

The syntax #[Ascii n] may also be used for characters, where n is the ASCII code for the character (see
section 12.8). This is not preferred, however, since it is less readable and less abstract than the #\ syntax. T2
used #[Char n] instead of #[Ascii n].

#[Ascii 65] ≡ #\A

Unlike numbers, characters are uniquely instantiated. There is only one object which represents a given graphic
or other character.

66

67

(EQ? #\x #\x) −→ true

Characters and strings are self-evaluating. There is no need to quote them to use them as constants in programs.

Strings are sequences of characters. Strings actually consist of two distinct components, a header and a text ,
which may be manipulated independently of each other. If one doesn’t use the routines in section 12.5even be
aware of this fact, and can treat strings as if they are similar to lists of characters.

Strings are notated simply by enclosing the actual sequence of characters within double quote characters. For
example,

"Horse"

notates a five-character string consisting of the characters #\H, #\o, #\r, #\s, and #\e. The escape character
(also known as backslash: \) may be used to a double-quote or a backslash within a string:

"The \"second\" word in this string is enclosed in double-quotes."
"\\ This string begins with one backslash."

There is no standard way to notate a string which contains non-graphic characters (e.g. control characters).

Strings are not uniquely instantiated; e.g.

(EQ? "Eland" "Eland")

may or may not yield true, depending on the implementation.

12.1 Predicates

(CHAR? object) −→ boolean Type predicate

Returns true if object is a character.

(CHAR? #\X) =⇒ true

(STRING? object) −→ boolean Type predicate

Returns true if object is a string.

(STRING? "Tapir.") =⇒ true

(GRAPHIC? character) −→ boolean

Returns true if character is either the space character (#\SPACE) or it corresponds to a printed graphic
such as a letter, digit, or punctuation mark.

(GRAPHIC? #\X) =⇒ true
(GRAPHIC? #\NEWLINE) =⇒ false

(WHITESPACE? character) −→ boolean

Returns true if character is a whitespace character (blank, tab, newline, carriage return, line feed, or
form feed).

68

(WHITESPACE? #\X) =⇒ false
(WHITESPACE? #\NEWLINE) =⇒ true

(ALPHABETIC? character) −→ boolean

Returns true if character is an alphabetic (upper or lower case) character.

(ALPHABETIC? #\y) =⇒ true
(ALPHABETIC? #\7) =⇒ false

(UPPERCASE? character) −→ boolean

Returns true if character is an upper-case letter.

(UPPERCASE? #\y) =⇒ false
(UPPERCASE? #\Y) =⇒ true
(UPPERCASE? #\COMMA) =⇒ false

(LOWERCASE? character) −→ boolean

Returns true if character is a lower-case letter.

(LOWERCASE? #\y) =⇒ true
(LOWERCASE? #\Y) =⇒ false
(LOWERCASE? #\COMMA) =⇒ false

(DIGIT? character radix) −→ boolean

Returns true if character is a digit with respect to the given radix .

(DIGIT? #\5 10) =⇒ true
(DIGIT? #\a 10) =⇒ false
(DIGIT? #\a 16) =⇒ true

12.2 Comparison

(CHAR= char1 char2) −→ boolean

(CHAR< char1 char2) −→ boolean

(CHAR> char1 char2) −→ boolean

(CHARN= char1 char2) −→ boolean

(CHAR>= char1 char2) −→ boolean

(CHAR<= char1 char2) −→ boolean

Six comparison predicates are defined for characters. CHAR= and CHARN= are defined for all characters.
The others are defined only when the arguments are both upper-case letters, or both lower-case letters,
or both digits.

(STRING-EQUAL? string1 string2) −→ boolean

69

Returns true if the two strings have the same length and characters.

(MAKE-STRING length) −→ string

Makes a string of null characters whose length is length.

(STRING-APPEND . strings) −→ string

Returns a new string which is the concatenation of strings.

(STRING-APPEND "llama" "and " "alpaca") =⇒ "llama and alpaca"

(COPY-STRING string) −→ string

Returns a new string, with new text, whose characters and length are the same as those of string .

(CHAR->STRING character) −→ string

Creates a string of length one whose single element is character .

(CHAR->STRING #\B) =⇒ "B"

(LIST->STRING list) −→ string

Converts a list of characters to a string.

(LIST->STRING ’(#\Z #\e #\b #\u)) =⇒ "Zebu"

(STRING->LIST string) −→ list

Converts a string to a list of characters.

(STRING->LIST "Zebu") =⇒ (#\Z #\e #\b #\u)

12.3 String access

(STRING-LENGTH string) −→ integer Settable

Returns string ’s length. A string’s length may be SET, but the new length must be less than or equal to
the original length.

(STRING-EMPTY? string) −→ boolean

Returns true if string is an empty string.

(STRING-EMPTY? "") =⇒ true
(STRING-EMPTY? "Bharal") =⇒ false
(STRING-EMPTY? string) ≡ (=0? (STRING-LENGTH string))

70

(STRING-ELT string n) −→ character Settable

(NTHCHAR string n) −→ character Settable

Returns the nth character in string (zero-based).

(NTHCHAR "SAIGA" 2) =⇒ #\I

(STRING-HEAD string) −→ character Settable

(CHAR string) −→ character Settable

Returns first character in string .

(STRING-TAIL string) −→ string

(CHDR string) −→ string

Returns the “tail” of string .

(STRING-TAIL "Ibex.") =⇒ "bex."

(STRING-NTHTAIL string n) −→ string

(NTHCHDR string n) −→ string

Returns the nth tail of string .

(NTHCHDR "SAIGA" 2) =⇒ "IGA"

(SUBSTRING string start count) −→ string

Returns a substring of string , beginning with the startth character, for a length of count characters.

(SUBSTRING "A small oryx" 2 5) =⇒ "small"

(STRING-SLICE string start count) −→ string

Returns a substring (slice) of string , beginning with the startth character, for a length of count characters.

(STRING-SLICE "A small oryx" 2 5) =⇒ "small"

Unlike SUBSTRING, the characters returned by STRING-SLICE are shared with the original string; that is,
any changes to characters in the original string which have been selected in the substring are reflected in
the substring, and vice versa.

12.4 String manipulation

(STRING-POSQ character string) −→ integer or false

Returns the index of the first occurrence of character in string , if it is there; otherwise returns false.

71

(STRING-POSQ #\i "oribi") =⇒ 2
(STRING-POSQ #\s "oribi") =⇒ false

(STRING-REPLACE destination source count) −→ string

Copies count characters from the source string to the destination string, destructively, and return the
modified destination.

(DEFINE S (COPY-STRING "The bison"))
(STRING-REPLACE S "Any how" 3) =⇒ "Any bison"

(MAP-STRING procedure string) −→ string

Calls procedure on each character in string , collecting the successive return values which should be
characters in a new string.

(MAP-STRING CHAR-UPCASE "A grisbok") =⇒ "A GRISBOK"

(MAP-STRING! procedure string) −→ string

Calls procedure on each character in string , storing the results which should be characters back into
string .

(WALK-STRING procedure string) −→ undefined

Calls procedure on each character in string .

12.5 String header manipulation

A string header is a structure of fixed size which contains a pointer into a string text, and a length. A string
text is a vector of characters themselves. The string text is not itself a directly accessible object, but can only
be manipulated via a string header. Several string headers may point into the same text. The term string is
used to refer to a header and text considered as a whole.

(CHOPY string) −→ string

Makes a new string header pointing to the same string text, and with the same length, as the header for
string .

(CHOPY! destination source) −→ string

Copies the header for the source string into the header for the destination string, which is returned.

(STRING-TAIL! string) −→ string

(CHDR! string) −→ string

Destructively modifies string ’s header to point to the next character in its text, and decrements its length.

72

(LET ((S (COPY-STRING "String.")))
(CHDR! S)
S)
=⇒
"tring."

(STRING-NTHTAIL! string n) −→ string

(NTHCHDR! string n) −→ string

Destructive version of STRING-NTHTAIL.

12.6 Case conversion

(CHAR-UPCASE character) −→ character

If character is a lower-case character, returns the corresponding upper-case character. Otherwise char-
acter , which must be a character, is returned.

(CHAR-DOWNCASE character) −→ character

If character is an upper-case character, returns the corresponding lower-case character. Otherwise char-
acter , which must be a character, is returned.

(STRING-UPCASE string) −→ string

Returns a copy of string with all lower-case characters converted to upper case.

(STRING-UPCASE string) ≡ (MAP-STRING CHAR-UPCASE string)

(STRING-DOWNCASE string) −→ string

Returns a copy of string with all upper-case characters converted to lower case.

(STRING-DOWNCASE string) ≡ (MAP-STRING CHAR-DOWNCASE string)

(STRING-UPCASE! string) −→ string

Destructive version of STRING-UPCASE.

(STRING-UPCASE! string) ≡ (MAP-STRING! CHAR-UPCASE string)

(STRING-DOWNCASE! string) −→ string

Destructive version of STRING-DOWNCASE.

(STRING-DOWNCASE! string) ≡ (MAP-STRING! CHAR-DOWNCASE string)

73

12.7 Digit conversion

(CHAR->DIGIT character radix) −→ integer

Returns the weight of the character when treated as a digit. Character must be a digit in the given radix .

(CHAR->DIGIT #\A 16) =⇒ 10

(DIGIT->CHAR integer radix) −→ character

Given a non-negative integer less than radix , returns a character (a digit) whose weight is the integer .

(DIGIT->CHAR 10 16) =⇒ #\A

(DIGIT character radix) −→ integer or false

If character is a digit, returns its weight; otherwise returns false.

(DIGIT #\5 10) =⇒ 5

12.8 ASCII conversion

(CHAR->ASCII character) −→ integer

Given a character, returns its ASCII representation as an integer.

(ASCII->CHAR integer) −→ character

Given an integer which is the ASCII code for some character, returns the character.

NUMBER-OF-CHAR-CODES −→ integer

In T2, called *NUMBER-OF-CHAR-CODES*. The value of NUMBER-OF-CHAR-CODES is a number that is 1
larger than the largest value that will ever be returned by CHAR->ASCII. This may be used to make
tables which are to be indexed by ASCII codes.

(DEFINE *TABLE* (MAKE-VECTOR NUMBER-OF-CHAR-CODES)) =⇒ vector
(VSET *TABLE* (CHAR->ASCII #\F) ’COW) =⇒ COW
(VREF *TABLE* (CHAR->ASCII #\F)) =⇒ COW

12.9 Symbols

Symbols are similar to strings, but are instantiated uniquely; only one symbol with a given print name exists.
Symbols are used to identify variables, among other things. The fact that they have a convenient external
representation makes them useful for many purposes.

Symbols may be coerced to strings and vice versa. If two strings are equal to each other (e.g. according to
STRING-EQUAL?), then they will both convert to the same symbol.

(EQ? (STRING->SYMBOL string1) (STRING->SYMBOL string2))

74

if and only if

(STRING-EQUAL? string1 string2)

See also sections 3.4 and 14.1.

(STRING->SYMBOL string) −→ symbol

Returns the symbol whose print name is equal to string .

(STRING->SYMBOL "COW") =⇒ COW
(STRING->SYMBOL "123") =⇒ \123
(STRING->SYMBOL "bison") =⇒ \b\i\s\o\n
(STRING->SYMBOL "") =⇒ #[Symbol ""]

Note that it is READ-OBJECT (page 83), not STRING->SYMBOL, which coerces alphabetic characters to
upper case.

(SYMBOL->STRING symbol) −→ string

Returns a string for which SYMBOL->STRING will return symbol .

(SYMBOL->STRING ’COW) =⇒ "COW"

Chapter 13

Miscellaneous features

13.1 Comments and declarations

(COMMENT . comment) −→ undefined Special form

Does nothing and returns no value of interest. COMMENT-expressions may be used to write comments in
code. (The preferred way to write comments, however, is with the semicolon read macro character; see
page 84.)

(IGNORE . variables) −→ undefined Special form

Ordinarily, programs such as compilers which manipulate source programs consider it to be an exceptional
condition when a bound variable is not referenced, and may generate warning messages when they detect
this condition. IGNORE-expressions may be used to suppress such warnings and also to request that a
warning be issued if in fact there are any references to variables.

(LAMBDA (X Y) (IGNORE X) (CAR Y))

(IGNORABLE . variables) −→ undefined Special form

IGNORABLE is like IGNORE except that permission is not given to give warnings if any of variables actually
is referenced. This is not useful for human-generated expressions, but may be useful in the expansion of
a macro invocation where the macro expander may not know whether a bound variable in the expansion
is referenced or not, and wants to declare that it is all right if the variable is not referenced.

13.2 Errors and dead ends

(ERROR control-string . arguments) −→ object

Signals an error. Control-string and arguments should be arguments suitable for a call to FORMAT (page
98). The error is reported in an implementation-dependent manner, and an opportunity is provided to
possibly correct or proceed from the error. (See section 19.1 for details of T’s handling of errors.)

(ERROR "cannot wash the dishes because Ã" EXCUSE-DESCRIPTION-STRING)

75

76

(SYNTAX-ERROR control-string . arguments) −→ object

Similar to ERROR, but signals a syntax error. This should be called, for example, from within macro
expanders when an illegal syntax is encountered.

(READ-ERROR port control-string . arguments) −→ object

Similar to ERROR, but signals a read error. This should be called, for example, from within read macros
when an illegal read syntax is encountered.

(CHECK-ARG predicate object procedure) −→ object

Verifies that an object is of a particular type. Predicate should be a type predicate, and object can be any
object. If predicate, when applied to object , returns false, then an error is signalled. If it returns true,
then the CHECK-ARG returns object . Procedure is a procedure whose name will be given in any message
printed by the error system.

The user interface (see section 19.1) may provide a way to supply a value to use in place of object . If the
user attempts to correct the error in this way, then CHECK-ARG again verifies that the new value answers
true to predicate, and returns it.

For example:

(DEFINE (WASH-DISH DISH)
(LET ((DISH (CHECK-ARG DISH? DISH WASH-DISH)))

...))

(ENFORCE predicate value) −→ value

Returns value which must answer true to predicate. If predicate returns false when applied to value, the
effect is undefined (normally, this means that an error is signalled). If ENFORCE signals an error and enters
a breakpoint, then a new value can be returned using RET. For example,

> (LET ((A (ENFORCE FIXNUM? ’A))) (+ A 1))
∗ ∗ Error: (ENFORCE FIXNUM? A) failed in (anonymous)
>> (RET 1)
2
>

(UNDEFINED-VALUE . arguments) −→ undefined

Has no effect and yields some undefined value. An implementation will endeavor to return some object
which, when printed or otherwise displayed, will show the arguments. This feature may be useful in
debugging, for example in tracking down the origin of the undefined value, if the value has propagated
to an undesirable place.

(UNDEFINED-EFFECT . arguments) −→ undefined

The effect of calling UNDEFINED-EFFECT is undefined. An implementation will endeavor to signal an error
condition if such a call ever occurs; however, an optimizing compiler may make use of the fact that the
control path leading to a call to UNDEFINED-EFFECT will never be taken in a correctly running program,
and so in some cases may eliminate the call.

77

13.3 Early binding

(DEFINE-CONSTANT variable value) −→ undefined Special form

This is semantically identical to DEFINE, but also declares that the value of the variable will not change.
This might permit a compiler to perform constant-folding. Also, if the variable is defined to be a small
integer, this may interact well with SELECT to obtain fast numeric dispatch on “enumerated types”.

(DEFINE-INTEGRABLE variable value) −→ undefined Special form
(DEFINE-INTEGRABLE (variable . arguments) . body) −→ undefined

This is semantically identical to DEFINE, but also declares that the value of the variable is not expected
to change. For example, if a reference to the variable is encountered in functional position in a call, its
definition may be integrated , that is, substituted in-line.

13.4 Symbol generators

(GENERATE-SYMBOL prefix) −→ symbol

Each call to GENERATE-SYMBOL generates a unique identifier. The form which the new identifier’s name
takes is not defined, but the identifier is guaranteed to be different from any identifier created in any
other way. The identifier’s external representation will begin with prefix .

(CONCATENATE-SYMBOL . things) −→ symbol

Creates a symbol whose print name is obtained by appending the printed representations of things
according to the DISPLAY operation.

(CONCATENATE-SYMBOL ’FOO- THING- 34) =⇒ FOO-THING-34

13.5 Combinators

(ALWAYS value) −→ procedure

Returns a procedure which ignores its arguments and always returns value.

(ALWAYS value) ≡ (LAMBDA X (IGNORE X) value)

(IDENTITY object) −→ object

Identity function. Returns its argument.

(PROJN n) −→ procedure

Returns a procedure which returns (projects) its nth argument, ignoring any others.

(PROJN 1) ≡ (LAMBDA (A B . REST) (IGNORE A REST) B)

78

(PROJ0 object . rest) −→ object

Projection function: returns its zeroth argument, ignoring the rest.

PROJ0 ≡ (PROJN 0)

PROJ0 is similar to BLOCK0 (page 30), except that it is a procedure, not a special form.

(PROJ1 object0 object1 . rest) −→ object1

Returns its second argument.

(PROJ2 object0 object1 object2 . rest) −→ object2

Returns its third argument.

(PROJ3 object0 object1 object2 object3 . rest) −→ object3

Returns its fourth argument.

(CONJOIN . predicates) −→ predicate

Returns a predicate which is the logical conjunction of all of the predicates.

((CONJOIN >0? ODD?) 13) =⇒ true
((CONJOIN >0? ODD?) 8) =⇒ false

(DISJOIN . predicates) −→ predicate

Returns a predicate which is the logical disjunction of all of the predicates.

((DISJOIN >0? ODD?) 13) =⇒ true
((DISJOIN >0? ODD?) 8) =⇒ true

(COMPLEMENT predicate) −→ predicate

Returns a predicate which is the logical complement of the predicate.

ATOM? ≡ (COMPLEMENT PAIR?)
((COMPLEMENT MEMQ?) ’A ’(X Y Z)) =⇒ true

(COMPOSE . procedures) −→ procedure

Returns a procedure which is the composition of the procedures. The last of the procedures may take
any number of arguments, and the resulting procedure will take that same number of arguments; all the
other procedures must take one argument.

((COMPOSE CAR CDR) ’(A B)) =⇒ B
(COMPLEMENT predicate) ≡ (COMPOSE NOT predicate)
PROPER-LIST? ≡ (DISJOIN NULL? (COMPOSE NULL? CDR LASTCDR))
NTH ≡ (COMPOSE CAR NTHCDR)

79

(TRUE . arguments) −→ true Type predicate

Ignores its arguments, and always returns true. This may be used as a predicate representing the
“universal type” - the type which subsumes all objects.

(FALSE . arguments) −→ false Type predicate

Ignores its arguments, and always returns false. This may be used as a predicate representing the “null
type” - the type which subsumes no objects.

(TRUE? value) −→ boolean Type predicate

Returns true if value is some true value, false otherwise. This is convenient where one wants to coerce
a truth value to be a standard truth value; that is, TRUE? maps false to itself, and any true value to the
standard true value (T).

(TRUE? object) ≡ (NOT (FALSE? object))
(TRUE? NIL) =⇒ false
(TRUE? T) =⇒ true
(TRUE? 3) =⇒ true

(BOOLEAN? object) −→ boolean Type predicate

This returns true if object is either the standard true value or the standard false value.

(BOOLEAN? NIL) =⇒ true
(BOOLEAN? T) =⇒ true
(BOOLEAN? 3) =⇒ false

13.6 Vectors

Vectors can be thought of as one-dimensional, zero-based arrays, or as fixed-length, random-access lists. They
read and print like lists with a # in front. Like lists, but unlike numbers and strings, vectors are not self-
evaluating. To write a constant vector, quote it: ’#(X Y (1 2)).

(VECTOR? object) −→ boolean Type predicate

Returns true if object is a vector.

(MAKE-VECTOR size) −→ vector

Returns a vector whose length is size. The elements are not initialized to any particular value.

VECTOR-FILL (see below) may be used to fill the vector with some useful value (such as ()).

(LIST->VECTOR list) −→ vector

Converts a list to a vector.

(LIST->VECTOR ’(A B C)) =⇒ #(A B C)

80

(VECTOR->LIST vector) −→ list

Converts a vector to a list.

(VECTOR->LIST ’#(A B C)) =⇒ (A B C)

(VECTOR-ELT vector n) −→ object Settable

(VREF vector n) −→ object Settable

Accesses the nth element of vector (zero-based).

(VECTOR-ELT ’#(A B C) 1) =⇒ B

(VSET vector n object) −→ object

Sets the nth element of vector to object .

(VSET vector n object) ≡ (SET (VREF vector n) object)

(COPY-VECTOR vector) −→ vector

Makes a copy of vector .

(VECTOR-FILL vector value) −→ vector

Sets every element of vector to value, and returns the modified vector .

(VECTOR-REPLACE target source n) −→ vector

Sets the first n elements of target to be the same as the corresponding elements of source, and returns
the (modified) target .

(VECTOR-LENGTH vector) −→ integer

Returns vector ’s length.

(VECTOR-POS predicate object vector) −→ integer or false

Returns index of the first element x of vector such that (predicate object x), or false if there is no such
element.

(VECTOR-POSQ object vector) −→ integer or false

(VECTOR-POSQ object vector) ≡ (VECTOR-POS EQ? object vector)

(WALK-VECTOR procedure vector) −→ undefined

Applies procedure to every element in vector .

81

13.7 Pools

Pools give a convenient way to perform explicit storage management in T. One may obtain an object from a
pool (popping the pool’s free list, or creating a new object if the free list is empty), and later return an object
to a pool. By managing storage allocation in this way, the frequency of garbage collections

All pools are emptied when a garbage collection occurs. Garbage collections occur asynchronously in an
implementation-dependent manner.

(MAKE-POOL identification generator) −→ pool

Creates a pool. Generator should be a procedure, and will be called by OBTAIN-FROM-POOL whenever the
pool’s free list is empty. Identification is only for identification purposes, for example, when the pool is
printed.

(OBTAIN-FROM-POOL pool) −→ object

Obtains an object from pool . If the pool is empty, the pool’s generator is called to obtain an object,
which is then returned directly.

(RETURN-TO-POOL pool object) −→ undefined

Returns object to pool . A future call to OBTAIN-FROM-POOL may yield object .

13.8 Weak pointers

(OBJECT-HASH object) −→ integer

Returns a unique numeric identifier for object . That is,

(EQ? object1 object2)

if and only if

(= (OBJECT-HASH object1) (OBJECT-HASH object2))

Because OBJECT-HASH is invertible (see below), it can be used to create weak pointers to objects, that is,
“pointers” or “references” which are not strong enough to prevent an object from being reclaimed by the
garbage collector. This concept of weak pointer is implemented by the integers returned by OBJECT-HASH,
which can be dereferenced by calling OBJECT-UNHASH.

OBJECT-HASH is used by standard methods for the PRINT operation when printing objects which have no
read syntax.

(OBJECT-UNHASH integer) −→ object or false

Returns the object whose unique identifier is integer , or false if the object is no longer accessible (e.g.
due to garbage collection).

(OBJECT-UNHASH (OBJECT-HASH object)) =⇒ object

82

In T3, “populations” have been renamed to “weak-sets”. This change was made in the belief that “weak-set”
is a more intuitive name than “population”. The old names are still supported, but they will be removed in a
future release.

Weak-Sets provide a way to keep track of a collection of objects. They are sometimes known as weak sets
because they behave much like sets, but an object in a weak-set may go away if the only pointer to the object
is via the weak-set. The garbage collector will remove such objects from weak-sets.

(MAKE-WEAK-SET identification) −→ weak-set

Creates a new weak-set.

(ADD-TO-WEAK-SET weak-set object) −→ undefined

Adds object to weak-set .

(REMOVE-FROM-WEAK-SET weak-set object) −→ undefined

In T2 was REMOVE-FROM-POPULATION. Removes object from weak-set .

(WEAK-SET->LIST weak-set) −→ list

Returns a list of all objects currently in weak-set . Note that as long as this list is accessible, none of the
objects will be implicitly removed from the weak-set, because they will be accessible via this list.

(WALK-WEAK-SET weak-set procedure) −→ undefined

Calls procedure on each member of weak-set .

(WALK-WEAK-SET weak-set procedure)
≡
(WALK procedure (WEAK-SET->LIST weak-set))

(WEAK-SET-MEMBER? object weak-set) −→ boolean

WEAK-SET-MEMBER? returns true if object is a member of weak-set; otherwise, it returns false.

(WEAK-SET-EMPTY? weak-set) −→ boolean

WEAK-SET-EMPTY? returns true if weak-set is empty; otherwise, it returns false.

Chapter 14

Syntax

The T standard environment includes routines which perform syntactic and semantic analysis of T programs.
There are two such subsystems within T, corresponding to the language’s two syntactic levels (see chapter 2).
These are the reader and the compiler .

In an attempt to make each of these subsystems as generally useful and flexible as possible, they are not restricted
to processing the language as described in this manual. Instead, they each operate with respect to parameter
clusters known as read tables, in the case of the reader, or syntax tables, in the case of the compiler.

14.1 The reader

The reader is a procedure available in the standard environment as the value of the variable READ-OBJECT.
Conceptually, the reader coerces a stream of characters (external representation) to a stream of objects (internal
representations) via a mechanism known as parsing .

(READ-OBJECT port read-table) −→ object or end-of-file

READ-OBJECT employs the READ-CHAR (page 95) and UNREAD-CHAR (page 95) operations in order to parse
an object according to the port’s read table.

If the port is empty, the end-of-file token is returned.

READ-OBJECT is called by the default method for the READ operation (page 96), so the reader is usually
invoked indirectly by calling READ, not by calling READ-OBJECT directly. When invoked from READ, the
second argument to READ-OBJECT is obtained by calling the PORT-READ-TABLE operation on the port.

The reader works as follows:

Any whitespace characters (space, tab, newline, carriage return, line feed, or form feed) are read and ignored.
A non-whitespace character is obtained; call it c.

If c is a read-macro character, the reader invokes a specialist routine to handle a syntactic construct introduced
by the read-macro character.

If c is not a read-macro character, then characters are read and saved until a delimiter character is read.
A delimiter character is either a whitespace character, or one of the following: ((left parenthesis),) (right
parenthesis), [,], {, }, or ; (semicolon). If the sequence of characters beginning with c and going up to but not
including the delimiter is parsable as a number, then the sequence is converted to a number, which is returned.
Otherwise the sequence is converted to a symbol.

83

84

The escape character , backslash (\), may be used within a run of constituent characters to unusual characters
in a symbol’s print name. In this case, the escaped character (i.e. the character following the escape character)
is treated as if it were a constituent character, and is not converted to upper case if it is a lower case letter. For
example:

abc\;def reads the same as #[Symbol "ABC;DEF"]
\a\bcdef reads the same as #[Symbol "abCDEF"]
\12345 reads the same as #[Symbol "12345"]
\’12345 reads the same as #[Symbol "12345"’]

The following are standard read-macro characters:

" Doublequote: introduces a string. Characters are read until another doublequote character is found which
does not immediately follow a backslash (\) and a string is returned. Within a string, backslash acts as
an escape character, so that doublequotes and backslashes may appear in strings.

’ Quote: ’object reads the same as (QUOTE object).

(Left parenthesis: begins a list.

) Right parenthesis: ends a list or vector, and is illegal in other contexts.

‘ Quasiquote: see section 10.4. In T2, was called ‘Backquote’.

, Comma: this is part of the backquote syntax.

@ At sign: this is part of the backquote syntax.

; Semicolon: introduces a comment. Characters are read and discarded until a newline is encountered, at which
point the parsing process starts over.

Sharp-sign: another dispatch to a specialist routine is performed according to the character following the #.

Standard sharp-sign forms:

#\ Character syntax. See section 12.

#x Hexadecimal input. An integer following the #x is read in base 16.

#o Octal input. An integer following the #o is read in base 8.

#b Binary input. An integer following the #b is read in base 2.

#(...) Vector. The elements of a vector are read between the parentheses, and the vector is returned.

#[...] This syntax is used for certain kinds of re-readable objects. It also provides an alternate syntax for
characters and symbols. The brackets enclose a sequence of objects; the first should be a symbol which
keys the type of the resulting object, e.g. CHAR or SYMBOL. For example,

#[Ascii 65] represents the same object as #\A
#[Symbol FOO] represents the same object as FOO

T2 used #[Ascii ...] rather than #[Ascii ...]. This syntax is used by the printer when necessary,
for example:

(STRING->SYMBOL) =⇒ #[Symbol]
(ASCII->CHAR 128) =⇒ #[Ascii 128]

#{... } This is the syntax used by the printer for objects which have no reader syntax. When the reader
encounters the sequence #{ it signals an error.

85

14.2 Read tables and read macros

Read tables package a number of parameters for use by programs which parse, generate, or otherwise manipulate
external syntax of programs and objects. In particular, every read table contains a table which maps characters
to objects which describe their lexical properties.

There is a standard read table which contains the standard read syntax for all characters. In order to define non-
standard read syntax, one must create a new read table using MAKE-READ-TABLE, and arrange for READ-OBJECT to
use the new read table instead of the standard read table, e.g. by doing (SET (PORT-READ-TABLE ...) ...).

(MAKE-READ-TABLE read-table identification) −→ new-read-table

Creates a new read table which is a copy of read-table. Identification serves for debugging purposes only.

(DEFINE *MY-READ-TABLE*
(MAKE-READ-TABLE STANDARD-READ-TABLE ’*MY-READ-TABLE*))

STANDARD-READ-TABLE −→ read-table

In T2, called *STANDARD-READ-TABLE*. The standard T read table.

VANILLA-READ-TABLE −→ read-table

In T2, called *VANILLA-READ-TABLE*. The value of VANILLA-READ-TABLE is a read table in which
all all graphic characters have ordinary non-read-macro constituent syntax, whitespace characters have
whitespace syntax, and other characters (e.g. control characters) are illegal.

(WITH-INPUT-FROM-STRING (PORT " FOO () ")
(SET (PORT-READ-TABLE PORT) VANILLA-READ-TABLE)
(LIST (READ PORT) (READ PORT)))

=⇒ (FOO #[Symbol ()])

(READ-TABLE-ENTRY table character) −→ syntax Settable

Access character ’s read syntax in table. The entry for a given character is some object which represents
the character’s lexical properties, for example, whether it is a constituent, whitespace, or read-macro
character. For read-macro characters, the entry is a procedure for parsing the read-macro construct.

Values suitable to be stored in read tables may be obtained by accessing existing entries in the standard
read table. For example:

(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\;)
(READ-TABLE-ENTRY STANDARD-READ-TABLE #\:))

makes the read syntax of semicolon in *MY-READ-TABLE* be the same as the standard read syntax of
colon (which is a contituent character).

To define a read macro, do

(SET (READ-TABLE-ENTRY read-table character) procedure)

where procedure is a procedure taking three arguments: a port, a character, and a read-table. The port
is the port which is currently being parsed by READ-OBJECT. It may be passed as the port argument to
input routines like READC and READ-REFUSING-EOF if the read-macro needs to parse further characters

86

from the input port. The character is the character which caused the read macro to be invoked; that is,
it is the character under which the procedure is stored in the read table. The read-table is the read table
from which the procedure was fetched (i.e. the one that was originally passed to READ-OBJECT. Read
macros which recursively invoke the reader will want to pass that read table as the second argument to
READ-OBJECT.

Example:

(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\’)
(LAMBDA (PORT CH RTABLE)

(IGNORE CH) (IGNORE RTABLE)
(LIST ’QUOTE (READ-REFUSING-EOF PORT))))

Note that the standard read table and the vanilla read table are immutable, and so their entries may not
be changed.

NOTHING-READ −→ object

In T2, called *NOTHING-READ*. Read macros should return this object, which is treated specially by the
reader, if they want to return no object. For example, the semi-colon (comment) read-macro might be
defined as follows:

(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\;)
(LAMBDA (PORT CH RTABLE)

(IGNORE RTABLE)
(ITERATE LOOP ()

(LET ((C (READC PORT)))
(COND ((EOF? C) C)

((CHAR= C #\NEWLINE) NOTHING-READ)
(ELSE (LOOP)))))))

(DELIMITING-READ-MACRO? procedure) −→ boolean Operation

If an object which returns true to the DELIMITING-READ-MACRO? operation is stored in a read table under
a given character, then the reader will treat the character as a delimiter (non-constituent) character. By
default, read-macro procedures return false to this predicate. Thus to make a read-macro character be
a delimiting character also (as are parentheses and semicolon in the standard read table), its read table
entry should handle this operation by returning true.

(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\̃)
(OBJECT (LAMBDA (PORT CH RTABLE)

...)
((DELIMITING-READ-MACRO? SELF) T)))

(MAKE-LIST-READER) −→ list-reader

The two procedures MAKE-LIST-READER and LIST-TERMINATOR can be used together to define read macros
which behave syntactically like parentheses.

Each call to MAKE-LIST-READER returns an object which is a procedure of two arguments called a list
reader. Calling LIST-TERMINATOR on a list reader will return another object called its list terminator.

List readers and terminators are suitable for entry in read tables. A list reader acts as a read macro
which reads a sequence of objects, terminated by a character whose read syntax is the corresponding list
terminator. For example, the standard syntax for left and right parentheses might be defined as follows:

87

(LET ((LIST-READER (MAKE-LIST-READER)))
(SET (READ-TABLE-ENTRY STANDARD-READ-TABLE #\LEFT-PAREN)

LIST-READER)
(SET (READ-TABLE-ENTRY STANDARD-READ-TABLE #\RIGHT-PAREN)

(LIST-TERMINATOR LIST-READER)))

Like any read-macro procedure, a list reader is a procedure of two arguments. The first argument must
be a port, and the second is ignored. Thus instead of being stored in a read table, it may be called from
another read-macro procedure. For example, the following makes [...] an alternative read syntax for
vectors:

(LET ((LIST-READER (MAKE-LIST-READER)))
(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\LEFT-BRACKET)

(OBJECT (LAMBDA (PORT CH RTABLE)
(IGNORE RTABLE)
(LIST->VECTOR (LIST-READER PORT CH)))

((DELIMITING-READ-MACRO? SELF) T)))
(SET (READ-TABLE-ENTRY *MY-READ-TABLE* #\RIGHT-BRACKET)

(LIST-TERMINATOR LIST-READER)))

List readers and terminators handle the DELIMITING-READ-MACRO? operation by returning true.

(LIST-TERMINATOR list-reader) −→ list-terminator

Given a list reader, returns its list terminator. See LIST-READER, above.

14.3 Standard compiler

A compiler is a procedure which accepts an expression and a syntax table, and returns a compiled code object.
A compiled code object may be executed in a given environment. Note that the term “compiler” is used in
a technical sense and encompasses not only compilers such as orbit (section 17.5) which produce machine
instructions, but also programs such as the standard compiler (which is called by EVAL) which operate internally
by producing intermediate code or by interpreting source code directly. Often programs like these are called
interpreters instead of compilers.

A given T implementation may have several compilers. STANDARD-COMPILER should be one of these compilers.
T 3.1 also provides a compiler called orbit, which is described in section 17.5.

(EVAL expression environment) −→ object

Evaluates expression in environment . Evaluation is performed as a two-stage process: first, the standard
compiler compiles the expression, producing a compiled code object; then the compiled code object is
invoked in the given environment.

(EVAL expression environment)
≡

(RUN-COMPILED-CODE (STANDARD-COMPILER expression
(ENV-SYNTAX-TABLE environment))

environment)

The evaluation semantics have been extended to allow the valuation of forms whose car’s are syntax
descriptors. such a form is interpreted just as if it were a form whose car was a symbol whose syntax
table entry was the syntax descriptor. For example,

88

(DEFINE-LOCAL-SYNTAX (FOO X)
‘ (,(SYNTAX-TABLE-ENTRY STANDARD-SYNTAX-TABLE ’LAMBDA) () ,X))

((FOO 5)) =⇒ 5

This feature allows control over binding time for reserved words. For example, a syntax descriptor such
as FOO, above, can be sure that its expansion will be treated as an expression that evaluates to a closure,
regardless of what the syntax table entry for the symbol lambda is when the expansion is evaluated or
otherwise analyzed.

(STANDARD-COMPILER expression syntax-table) −→ compiled-code

Compiles expression. T may provide several compilers, of which STANDARD-COMPILER will be the one
which is invoked by EVAL.

(RUN-COMPILED-CODE compiled-code environment) −→ object

Invokes a compiled code object.

Bug: In T 2.7, the environment passed to RUN-COMPILED-CODE must be the same as the one
whose syntax table was passed to STANDARD-COMPILER.

14.4 Syntax Tables

A syntax table maps symbols to syntax descriptors. Every syntax descriptor is itself either a macro expander,
or a unique token identifying a primitive special form type.

Every locale has an associated syntax table. A locale’s syntax table contains definitions of special forms which
are local to the locale. Each such syntax table inherits entries lexically from the syntax tables of enclosing
locales.

Macros provide a mechanism for extending the syntax of T by means of source-to-source transformations. As
in many Lisp dialects, the macro facility in T provides a powerful tool for amplifying the expressiveness of the
language. But like any powerful tool, macros may be abused. They may easily lead to programs that are very
hard to understand.

Macros are defined by entering syntax descriptor objects known as macro expanders into syntax tables; see
SYNTAX-TABLE-ENTRY and DEFINE-SYNTAX, below. Macros may also be defined locally to a file or expression
using DEFINE-LOCAL-SYNTAX or LET-SYNTAX.

Procedure integration is preferable to the use of macros in situations where either would be applicable. See
DEFINE-INTEGRABLE, page 77.

(ENV-SYNTAX-TABLE environment) −→ syntax-table

Returns the syntax table associated with environment .

(MAKE-SYNTAX-TABLE syntax-table identification) −→ syntax-table

Creates a new syntax table inferior to the given syntax table. Note that syntax tables are created
implicitly by MAKE-LOCALE (page 23).

STANDARD-SYNTAX-TABLE −→ syntax-table

89

In T2, called *STANDARD-SYNTAX-TABLE*. A syntax table with entries for all standard T reserved words.

STANDARD-SYNTAX-TABLE ≡ (ENV-SYNTAX-TABLE-ENTRY STANDARD-ENV)

(SYNTAX-TABLE-ENTRY syntax-table symbol) −→ descriptor or false Settable

Accesses the syntax descriptor associated with symbol in syntax-table. Returns false if there is no such
entry.

(SYNTAX-TABLE-ENTRY STANDARD-SYNTAX-TABLE ’QUOTE) =⇒ #{Syntax QUOTE}
(SYNTAX-TABLE-ENTRY STANDARD-SYNTAX-TABLE ’CAR) =⇒ false

Syntax table entries may be created or altered using (SET (SYNTAX-TABLE-ENTRY ...) ...) or by
using DEFINE-SYNTAX. On assignment, descriptor may be false, in which case symbol loses any syntax
table entry it may have had. This allows it to be bound as a variable using DEFINE or LET, for example.

14.5 Defining syntax

(DEFINE-SYNTAX symbol descriptor) −→ undefined
(DEFINE-SYNTAX (symbol . vars) . body) −→ undefined

Sets symbol ’s syntax table entry in the syntax table of the environment in which the DEFINE-SYNTAX
form is being evaluated. The second form is an abbreviation for an equivalent expression of the first form
involving MACRO-EXPANDER:

(DEFINE-SYNTAX (symbol . variables) . body)
≡

(DEFINE-SYNTAX symbol
(MACRO-EXPANDER (symbol . variables) . body))

Macros and MACRO-EXPANDER are explained below.

As with (SET (SYNTAX-TABLE-ENTRY ...) ...), descriptor may be false, in which case symbol loses
any syntax table entry it may have had. This allows it to be bound as a variable using DEFINE or LET,
for example.

Note that DEFINE-SYNTAX forms have no effect at compile time. Using them indiscriminately may lead
to code which behaves differently depending on what compiler is being used. For example, a use of the
special form defined by a DEFINE-SYNTAX form later on in the same file in which the DEFINE-SYNTAX form
occurs may be seen as a valid special form reference by the standard compiler, but may be treated as a
call by orbit.

(DEFINE-SYNTAX (REPEAT N . CODE)
‘ (LET ((COUNT ,N)

(THUNK (LAMBDA () ,@CODE)))
(DO ((COUNT COUNT (- COUNT 1)))

((<= COUNT 0) NIL)
(THUNK))))

90

14.6 Local syntax

Reserved words may be defined at compile time using LET-SYNTAX and DEFINE-LOCAL-SYNTAX. Syntax defined
this way is called local syntax and is in effect only at compile time, not at run time.

Local syntax is block structured, much as variables are. The outermost local syntax contour is the point at
which a compiler is invoked, which usually means a file boundary. Inner contours are introduced by LET-SYNTAX
forms.

Put another way, a local syntax table is created whenever a compiler is invoked (LOAD, COMPILE-FILE, EVAL)
and whenever a LET-SYNTAX form is compiled. Entries are created in a local syntax table at compile time for
syntax defined initially by the LET-SYNTAX form and later when the compiler encounters DEFINE-LOCAL-SYNTAX
forms. The syntax table is used at compile time and is otherwise unavailable.

(LET-SYNTAX specs . body) −→ value-of-body

Defines macros locally to body . Yields the value of body , an implicit block. Each spec should be either

(symbol descriptor)

or

((symbol . vars) . body)

in analogy to DEFINE-SYNTAX.

The descriptor and body forms in specs will not necessarily run in an environment which is at all re-
lated to the environment in which the program in which the LET-SYNTAX form occurred will be run,
because compilation may occur independently of execution. orbit evaluates syntax-descriptors in the
env-for-syntax-definition associated with the syntax table from which the descriptor was obtained,
e.g. (tc-syntax-table). The standard compiler uses the locale with which the syntax table passed to
it is associated. This is implementation-dependent, and subject to change. For this reason, it is best to
write local macros in such a way that no free variables or special forms are used, other than those in the
standard system environment, that is, those defined to be part of the T language.

This disclaimer does not apply to the body of the LET-SYNTAX form, which is evaluated (except for syntax)
exactly as if the LET-SYNTAX expression were a BLOCK expression.

(LET-SYNTAX ((KWOTE (SYNTAX-TABLE-ENTRY STANDARD-SYNTAX-TABLE
’QUOTE)))

(KWOTE (A B C)))
=⇒ (A B C)

(LET-SYNTAX ((SET NIL)) (LET ((SET LIST) (X 5)) (SET X 8))) =⇒ (5 8)
(LET-SYNTAX (((MAC X) ‘ ’(X = ,X))) (MAC Y)) =⇒ (X = Y)

(DEFINE-LOCAL-SYNTAX symbol descriptor) −→ undefined Special form
(DEFINE-LOCAL-SYNTAX (symbol . vars) . body) −→ undefined

DEFINE-LOCAL-SYNTAX defines syntax locally to the body of the nearest enclosing LET-SYNTAX form, or,
if the DEFINE-LOCAL-SYNTAX does not appear inside a LET-SYNTAX form, then to the file or outermost
expression in which it occurs. Forward references are not defined to work; the DEFINE-LOCAL-SYNTAX
form should appear prior to any use of symbol as a reserved word.

The syntax of DEFINE-LOCAL-SYNTAX is analogous to that of DEFINE-SYNTAX.

In general, DEFINE-LOCAL-SYNTAX should be used for syntax which is to be available only within the file
in which it occurs. If a syntax definition is needed for several files, then they should be made available

91

in some locale’s syntax table by evaluating DEFINE-SYNTAX forms in that locale, and then that locale’s
syntax table should be used when compiling or loading the file (see the SYNTAX-TABLE file header clause,
page 89).

Note: To ease incremental debugging, the standard compiler in T 2.7 causes syntax defined with
DEFINE-LOCAL-SYNTAX to be retained indefinitely; that is, they are entered into the syntax table
of the locale which was passed to LOAD. Programs should not rely on this feature, however, or code
may behave differently when compiled using TC.

14.7 Macro expanders

(MACRO-EXPANDER (identification . variables) . body) −→ macro-expander Special form

Yields a macro expander. A macro expander is a kind of syntax descriptor, and may therefore be stored
in a syntax table. When a compiler using a symbol table S encounters a form whose car is a symbol, and
the entry in S for that symbol is the object yielded by a MACRO-EXPANDER-expression, then the macro
expander is invoked; that is, its variables are bound to the rest of form (as with one level of DESTRUCTURE
binding), the body (an implicit block) is evaluated, and the value is returned to the compiler. The
compiler then compiles that form in place of the original one.

The lexical context of body is that of the MACRO-EXPANDER form (augmented by the bindings of variables,
of course), as with LAMBDA.

(DEFINE M (MACRO-EXPANDER (FOO X Y Z) ‘ (LIST ’FIRST ’,X ,Y ,Z)))
(INVOKE-MACRO-EXPANDER M ’(BAR QUOTED (+ 1 2) (* 3 4)))

=⇒ (LIST ’FIRST ’QUOTED (+ 1 2) (* 3 4))
(DEFINE L (MAKE-LOCALE STANDARD-ENV NIL))
(SET (SYNTAX-TABLE-ENTRY (ENV-SYNTAX-TABLE L) ’BAR) M)
(EVAL ’(BAR QUOTED (+ 1 2) (* 3 4)) L) =⇒ (FIRST QUOTED 3 12)
(DEFINE-SYNTAX FOO

(MACRO-EXPANDER (FOO THING FORM)
‘ (LIST ,FORM ’,THING)))

(FOO (CONS 1 2) (CONS 3 5)) =⇒ ((3 . 5) (CONS 1 2))

DESTRUCTURE (page 59) and quasiquote (page 60) are useful in writing macro expansion procedures, the
first for taking apart the form which is to be expanded, the second for constructing the resultant code
from templates.

Note that for a macro definition to take effect at compile time, it must either be present in the syntax table
being used by the compiler (see page 89), or defined locally using LET-SYNTAX or DEFINE-LOCAL-SYNTAX.

(MACRO-EXPANDER? descriptor) −→ boolean

Returns true if descriptor , which must be a syntax descriptor, is a macro expander.

(MACRO-EXPANDER? (MACRO-EXPANDER (FOO X) X)) =⇒ true

(INVOKE-MACRO-EXPANDER descriptor form) −→ new-form

Invokes the macro expansion procedure for descriptor , which must be a macro expander. (See MACRO-EXPANDER,
above.)

92

(INVOKE-MACRO-EXPANDER (MACRO-EXPANDER (FOO X) ‘ (LAMBDA () ,X))
‘ (BAZ (+ 1 2)))
=⇒

(LAMBDA () (+ 1 2))

(MACRO-EXPAND form syntax-table) −→ new-form

Performs one macro expansion on the form, if it is a list whose car is a symbol, there is an entry in the
given syntax-table for that symbol, and that entry is a macro expander.

Chapter 15

Ports

A port is any object which handles port operations. In general, ports are objects which contain pointers into
sequences of objects. The port operations provide for obtaining objects from such a sequence, advancing a port’s
pointer, performing side effects on the sequence itself, and so forth.

T programs communicate with the external world via ports. Ports may access file systems or terminals. They
may also be used to implement filters and buffers of various sorts.

Ports are manipulated using generic operations. Most of the procedures described below are generic operations,
and their descriptions either specify the behavior of their default methods or of the methods for system-supplied
ports. Users may create ports to their own specifications using OBJECT-expressions. As long as a user port
supports READ-CHAR and UNREAD-CHAR (for input ports) or WRITE-CHAR (for output ports), most of the other
I/O operations will work with them.

15.1 General

(PORT? object) −→ boolean Type predicate operation

Returns true if object is a port.

(INPUT-PORT? object) −→ boolean Type predicate operation

Returns true if object is an input port.

(OUTPUT-PORT? object) −→ boolean Type predicate operation

Returns true if object is an output port.

(INTERACTIVE-PORT? object) −→ boolean Type predicate operation

Returns true if object is an interactive port. An interactive port is any input port which is likely to have
a human being at the other end, for example, a terminal input port.

(EOF? object) −→ boolean Type predicate

Returns true if object is the end-of-file token. (“End-of-port” would be a more appropriate term.)

93

94

EOF −→ end-of-file

In T2 was called *EOF*. This global variable holds the end-of-file token.

(WITH-OPEN-PORTS specs . body) −→ object Special form

WITH-OPEN-PORTS has the same syntax as LET, and similar semantics. Each spec should be of the form
(variable port). Each port expression is evaluated, and should evaluate to a port; for example, port
would typically be an expression involving OPEN or MAYBE-OPEN. The body , an implicit block, is evaluated
in a lexical context in which each variable is bound to the value of the corresponding port expression.
The ports are closed, and the value of body is returned.

WITH-OPEN-PORTS is the preferred way to use port creation operations such as OPEN. It ensures that the
ports will be closed, even if there is a non-local exit (a (RESET) or any other kind of throw) out of body
or any of the port expressions. (See UNWIND-PROTECT, page 37.)

For an example, see OPEN, page 104.

(CLOSE port) −→ undefined Operation

Closes port ; indicates that no more input or output is intended, and that any resources associated with
it may be freed.

(STRING->INPUT-PORT string) −→ port

Returns an input port which yields successive characters of string on successive READ-CHAR’s.

(WITH-INPUT-FROM-STRING (variable string) . body) −→ value-of-body Special form

Opens an input port to string , binds variable to that port, and evaluates body , returning whatever body
returns.

(WITH-INPUT-FROM-STRING (variable string) . body)
≡
(WITH-OPEN-PORTS ((variable (STRING->INPUT-PORT string)))LNL . body)

(WITH-OUTPUT-TO-STRING var . body) −→ string Special form

Binds var to an output port. The body (an implicit block) is evaluated, and any characters written to
the port are collected in a string, which is returned as the value of the WITH-OUTPUT-TO-STRING form.

(WITH-OUTPUT-TO-STRING FOO (WRITE FOO ’(A B))) =⇒ (A B)

15.2 Port switches

(TERMINAL-INPUT) −→ port Settable

Accesses the default port for input from the terminal.

Note that an end-of-file condition on the terminal input port (see page 114) will cause the end-of-file
token to be returned as the value of the next input operation on that port, but will not cause the port to
become closed. This is an exception to the normal rule that no input is available from a port following
an end-of-file condition on it.

95

(TERMINAL-OUTPUT) −→ port Settable

Accesses the default port for output to the terminal.

(STANDARD-INPUT) −→ port Settable

Accesses the default standard input port. Initially, this is the same as the value of (TERMINAL-INPUT).

The intent is that a program could do all its input from the standard input port. By default, input would
come from the terminal. But some procedure could set the standard input port to be a file, for example,
and then call the program, which would automatically read from the file. This same idea is used for all
the following predefined ports.

(STANDARD-OUTPUT) −→ port Settable

STANDARD-OUTPUT accesses the default standard output port. Initially, this is the same as the value of
(TERMINAL-OUTPUT).

(ERROR-OUTPUT) −→ port Settable

Initially, yields the same value as (TERMINAL-OUTPUT).

(DEBUG-OUTPUT) −→ port Settable

Initially, yields the same value as (TERMINAL-OUTPUT).

15.3 Input

(READ-CHAR port) −→ character or end-of-file Operation

(READC port) −→ character or end-of-file Operation

Reads a single character from port , advances the port pointer, and returns the character read. If no
character is available, then the end-of-file token is returned.

(MAYBE-READ-CHAR port) −→ character or false

MAYBE-READ-CHAR when invoked on a port will return the next character if one is available; otherwise, it
will return immediately with a value of false.

(CHAR-READY? port) −→ boolean

CHAR-READY? returns true if a character is available for input; otherwise, it returns false.

(UNREAD-CHAR port) −→ undefined Operation

(UNREADC port) −→ undefined Operation

96

Backs up port ’s pointer into its corresponding sequence of characters by one character. This causes the
next READ-CHAR from port to return character instead of actually reading another character. Character
is returned. UNREAD-CHAR is convenient for implementing one-character-lookahead scanners. Only the
previous character READ-CHAR’ed from port may be put back, and it may be put back only once.

(PEEK-CHAR port) −→ character or end-of-file Operation

(PEEKC port) −→ character or end-of-file Operation

Returns the next character available on port without advancing the port’s pointer. If no character is
there then the end-of-file token is returned.

(PEEK-CHAR port) ≡
(BLOCK0 (READ-CHAR port) (UNREAD-CHAR port))

(READ-LINE port) −→ string or end-of-file Operation

Reads a line of input from port and returns it as a string. If no input is available then the end-of-file
token is returned.

(READ port) −→ object or end-of-file Operation

Reads an object from port . The default method simply calls READ-OBJECT, passing it the port and the
port’s current associated read table. See READ-OBJECT, page 83, and PORT-READ-TABLE, page 98.

(READ-REFUSING-EOF port) −→ object

This is like READ but should be used in cases where an end-of-file is not appropriate or is not handled,
such as within the definition of a read macro.

(READ-OBJECTS-FROM-STRING string) −→ list

Returns a list of all the objects that could be read from the string.

(READ-OBJECTS-FROM-STRING "A B C ") =⇒ (A B C)
(READ-OBJECTS-FROM-STRING " 015 (Foo) ") =⇒ (15 (FOO))
(READ-OBJECTS-FROM-STRING "") =⇒ ()

(CLEAR-INPUT port) −→ undefined Operation

Discards any buffered input for port . The precise action of this operation is implementation-dependent.

15.4 Output

(PRINT object port) −→ undefined

Prints object on port according to the current read-table. This is an operation, so objects may decide
how they would like to print.

97

(WRITE port object) −→ undefined Operation

Prints the object on port . This is like PRINT with the argument order reversed. This is an operation, so
particular ports may decide how they want to write objects to themselves.

(WRITE-CHAR port character) −→ undefined Operation

(WRITEC port character) −→ undefined Operation

Writes a single character to port .

(WRITE-STRING port string) −→ undefined Operation

(WRITES port string) −→ undefined Operation

Writes string to port .

(WRITE-LINE port string) −→ undefined Operation

Writes string to port (like WRITE-STRING), then does a NEWLINE operation.

(WRITE-SPACES port count) −→ undefined

Writes count space characters to port .

(DISPLAY object port) −→ undefined

Prints object on port , but omits any slashes, delimiters, etc., when printing strings, symbols, and char-
acters.

(PRETTY-PRINT object port) −→ undefined

Pretty-prints object on port .

(NEWLINE port) −→ undefined Operation

Begins a new line on the given output port .

(FRESH-LINE port) −→ undefined Operation

If not at the beginning of a line, begins a new line on the given output port .

(SPACE port) −→ undefined Operation

Write whitespace to port . Ordinarily this will simply write a space character, but if the current output
line has overflowed a “reasonable” right margin, this will do a NEWLINE.

(FORCE-OUTPUT port) −→ undefined Operation

Makes sure any buffered output to port is forced out. This is useful especially with terminal output ports.
The precise behavior of this operation is implementation-dependent.

98

15.5 Formatted output

(FORMAT destination control-string . rest) −→ string or undefined

Performs formatted output. Characters in the control-string other than tilde (̃) are simply written to
destination. When a tilde is encountered, special action is taken according to the character following the
tilde.

Destination should be one of the following:

A port. In this case, output is simply written to the port. The value returned by the call to FORMAT
is undefined.

The standard true value. (This is the value of the system variable T.) This is equivalent to a port
argument of (STANDARD-OUTPUT). The value returned by the call to FORMAT is undefined.

Null. In this case the output is collected in a string, as with WITH-OUTPUT-TO-STRING. This string
is returned as the value of the call to FORMAT.

The FORMAT control sequences are as follows. (Case is irrelevant, so Ã and ã behave identically.)

Ã DISPLAY the next format argument.

B̃ Print the next argument in binary.

D̃ Print the next argument in decimal (radix ten).

Õ Print the next argument in octal (radix eight).

P̃ Write the character ”s” if the next argument, which must be a number, is not equal to 1 (for plurals).

R̃ ñR prints the next argument in radix n.

S̃ PRINT the next format argument.

T̃ ñT tabs to column n (HPOS).

X̃ Print the next argument in hexadecimal (radix sixteen).

%̃ Go to a new output line (NEWLINE).

&̃ Go to a fresh output line (FRESH-LINE).

˜ Print a space, or go to a fresh output line (SPACE).

˜̃ Write a tilde.

A tilde followed by any whitespace character is ignored, along with all following whitespace.

(FORMAT NIL "The s̃ eats grass." ’ELAND) =⇒ "The ELAND eats grass."
(FORMAT NIL "The Ã eats grass." "kudu") =⇒ "The kudu eats grass."
(FORMAT NIL "̃S had X̃ goat P̃." ’(SANDY SMITH) 31 31)
=⇒ "(SANDY SMITH) had 1F goats."

15.6 Miscellaneous

(PORT-READ-TABLE port) −→ read-table Settable operation

Accesses the read table associated with port . See section 14.2.

(LINE-LENGTH port) −→ integer Settable operation

99

Returns the maximum width that lines read from port are likely to take, or that lines written to port
ought to take.

Bug: In T 2.7, the LINE-LENGTH of system-supplied ports is not settable.

(HPOS port) −→ integer Settable operation

Accesses the current horizontal position (column number) of port . The leftmost position on a line is
column 0. When assigned, as many spaces as necessary are written to bring the horizontal position to
the assigned value.

(VPOS port) −→ integer Settable operation

Accesses the current vertical position (line number) of port . The uppermost vertical position is line 0.

(MAKE-OUTPUT-WIDTH-PORT variable . body) −→ integer Settable

Binds variable to an output port, and evaluates body in the augmented lexical environment. The char-
acters sent to the output port are not accumulated, but merely counted, and the total is returned as the
value of WITH-OUTPUT-WIDTH-PORT.

(PRINTWIDTH object) −→ integer

Returns the number of WRITEC’s which would be performed were object to be printed using PRINT.

(PRINTWIDTH object)
≡
(WITH-OUTPUT-WIDTH-PORT PORT (PRINT object PORT))

(DISPLAYWIDTH object) −→ integer

Returns the number of WRITEC’s which would be performed were object to be printed using DISPLAY.

(DISPLAYWIDTH object)
≡
(WITH-OUTPUT-WIDTH-PORT PORT (DISPLAY object PORT)

(MAKE-BROADCAST-PORT . output-ports) −→ port

Returns a port which will “broadcast” all output operations to all of the output-ports. For example, if
the port s is the value of a call

(MAKE-BROADCAST-PORT q r)

then any WRITEC (WRITES, SPACE, etc.) operation to s will result in WRITEC operations on both q and r .

100

15.7 Example

Here is an example of a user-defined port. MAKE-PREFIXED-PORT returns a port which prefixes each line written
to a given port with a given string.

(DEFINE (MAKE-PREFIXED-PORT PORT PREFIX)
(JOIN (OBJECT NIL

((NEWLINE SELF) (NEWLINE PORT) (WRITES PORT PREFIX))
((PRINT SELF OPORT)
(FORMAT OPORT

#{Prefixed-port̃ S̃̃ S̃}
PORT
PREFIX)))

PORT))

Chapter 16

Files

An executing T system interacts with the world outside by communicating with various external entities,
including:

people, via keyboards and displays;

file systems, via operating system calls, possibly over a communications network;

and processes, running on the same machine or on different machines.

The language provides simple standardized interfaces to the first two of these. Particular implementations may
provide more complete interfaces.

Standard access to a terminal is provided by the ports TERMINAL-INPUT and TERMINAL-OUTPUT (page 94). Access
to file systems is provided by the facilities described in this chapter.

16.1 File systems

A file system is a collection of named permanent objects called files, and a mechanism for manipulating this
collection. A file system object is a T object which names or represents an actual file system. Where the
distinction is unimportant, a file system object is referred to simply as a file system.

A given T implementation may provide access to multiple file systems; such a facility is not described in this
manual. However, one may assume that at least one file system, known as the local file system, is accessible.

(LOCAL-FS) −→ file-system

Returns the local file system object.

The following type predicates are defined to query the type of a file system.

(AEGIS-FS? file-system) −→ boolean Type predicate

Returns true if file-system represents an Aegis file system.

(UNIX-FS? file-system) −→ boolean Type predicate

Returns true if file-system represents a Unix file system.

101

102

(VMS-FS? file-system) −→ boolean Type predicate

Returns true if file-system represents a VMS file system.

16.2 Filenames

A filename is an object which names a file. Filenames are immutable record structures with the following
components:

File system: the file system object via which the named file is accessible.

Directory: a collection of files within the file system to which the named file belongs.

Name: the name of the file within the directory, or of a family of files, as further specified by the file type
and generation components of the filename.

Type: the type of the file (also known as “extension”).

Generation: a positive integer specifying a particular version or incarnation of the file. Larger generation
numbers indicate newer versions.

In general, the directory, name, and type components of a file are usually symbols, the file system component is
a file system object, and the generation component is an integer. The file system component may be a symbol
which names a file system in an implementation-dependent manner.

Filenames may be incompletely specified; missing components are represented by having null (false) as their
value. An omitted file system is usually interpreted to be the same as the local file system, an omitted directory
component means the current working directory. The name component may not be omitted.

The external representation of a filename has the form

#[Filename file-system dir name type gen]

where gen and type may be omitted, if null.

(MAKE-FILENAME file-system dir name type gen) −→ filename
(MAKE-FILENAME file-system dir name . type) −→ filename

Returns a filename. The arguments become the components of the filename object. Type and gen may
be omitted, in which case they default to null (absent).

(->FILENAME filespec) −→ filename

Coerces filespec to a filename.

If filespec is a filename, then it is returned.

If filespec is a list l , then MAKE-FILENAME is called, passing null as the file system argument, and the
elements of the list as the rest of the arguments.

If filespec is a symbol x , then it is treated the same as the list (() x).

If filespec is a string, then it is converted to a filename in an implementation-dependent way, such
that FILENAME->STRING applied to the filename will return a string which is equal to filespec.

103

For example:

->FILENAME ’(MATH FACT T)) =⇒ #[Filename () MATH FACT T]
->FILENAME ’(MATH FACT)) =⇒ #[Filename () MATH FACT]
->FILENAME ’FACT) =⇒ #[Filename () () FACT]
->FILENAME "fact.t") =⇒ #[Filename () () FACT T]

The last example is plausible, but it will not necessarily hold in all T implementations, since the coercion
of strings to filenames is not defined here. (In T 2.7, strings are not parsed into separate filename
components.)

(FILENAME? object) −→ boolean Type predicate

Returns true if object is a filename.

(FILENAME-FS filename) −→ file-system or false

Returns the file system component of filename, or false (null) if it has none.

(FILENAME-DIR filename) −→ symbol or false

Returns the directory component of filename.

(FILENAME-NAME filename) −→ symbol

Returns the name component of filename.

(FILENAME-NAME ’#[Filename () MATH FACT T]) =⇒ FACT

(FILENAME-TYPE filename) −→ symbol or false

Returns the type component of filename.

(FILENAME-GENERATION filename) −→ integer or false

Returns the generation component of filename.

(FILENAME->STRING filename) −→ string

Returns a string representing filename in the native syntax of filename’s file system (or of the local file
system if filename is null).

In T2.7, if the directory component of filename is a symbol, then it is interpreted as a “logical name” in
a manner idiosyncratic to the type of the file system:

Aegis: a T logical name is interpreted as being a link in the naming directory.

Unix: a T logical name is an environment variable.

VMS: a T logical name is a VMS logical name.

For example:

104

(FILENAME->STRING ’#[Filename AN-AEGIS-FS MATH FACT T])
=⇒ "̃math/fact.t"
(FILENAME->STRING ’#[Filename A-UNIX-FS MATH FACT T])
=⇒ "/usr/math/fact.t"
(FILENAME->STRING ’#[Filename A-VMS-FS MATH FACT T])
=⇒ "MATH:FACT.T"

(In the Unix example, we assume that environment variable MATH was defined to be /usr/math, e.g. by
a “setenv MATH /usr/math” shell command.)

16.3 Files

A file is an external permanent object stored in a file system. Files are accessed in T via ports. Ordinarily,
files are sequences of characters, similar to strings. An input port open on an existing file delivers successive
characters (or lines, or parsed objects) out of the file. An output port open on a new file deposits successive
characters (or lines, or printed representations of objects) into the file.

OPEN and MAYBE-OPEN obtain ports which access files. Any port created by OPEN or MAYBE-OPEN should be closed
(using the CLOSE operation, page 94) when no further access to the file is required. This is guaranteed if OPEN
and MAYBE-OPEN are always used in conjunction with WITH-OPEN-PORTS (page 94), which ensures that any port
opened actually gets closed, even if there is a throw out of the body of the WITH-OPEN-PORTS form.

(OPEN filespec mode-list) −→ port

Opens an external file for reading or for writing, and returns a port which accesses it. Filespec should be
a filename or any other object which can be coerced to one (see ->FILENAME, page 102). Mode-list should
be a list of keywords (symbols) specifying what kind of access to the file is desired. The only keywords
currently recognized are IN, OUT, and APPEND, indicating reading, writing, and appending, respectively.
It is an error condition if the file cannot be opened for some reason.

(WITH-OPEN-PORTS ((PORT (OPEN file.txt ’(IN))))
(READ-LINE PORT))

(MAYBE-OPEN filespec modes) −→ port or false

Like OPEN, but returns false if for any reason it cannot open the file.

(PORT-NAME port) −→ filename Operation

In T2 named STREAM-FILENAME. Returns the filename of the file on which port is open. This operation
is not handled by any system-created ports other than those created by OPEN and MAYBE-OPEN.

(FILE-EXISTS? filespec) −→ boolean

Returns true if the specified file exists.

(FILE-MOVE source-filespec dest-filespec) −→ undefined

Moves the file named by source-filespec to a new location given by dest-filespec. In some cases, this
operation can be performed without actually copying the file, for example, if the two locations are on the
same “volume” of the same file system. In this case, FILE-MOVE is simply a rename operation. In other
cases, it may be more expensive.

105

Bug: Not all versions of T 3.1 implement FILE-MOVE.

(FILE-DELETE filespec) −→ undefined

Deletes the specified file.

Bug: Not all versions of T 3.1 implement FILE-DELETE.

Chapter 17

Program structure

This chapter provides information about organizing, loading, and compiling programs.

17.1 Environment structure

Lexical environments in T are hierarchically arranged. Variable bindings are inherited from outer (superior)
contours to inner (inferior) ones. At the top of the hierarchy is a root environment, which has no bindings in
it. Inferior to that is a standard environment which has bindings for all standard system variables, for example,
CAR and +. (See section 2.3.) Inferior to the standard environment are environments into which programs have
been or are to be loaded. In the standard environment, the variable STANDARD-ENV is bound to the standard
environment itself.

When a T system starts up, it sets up an initial environment configuration which has one environment inferior
to the standard environment, called the user environment. The variable USER-ENV is bound in the standard
environment to the user environment. The user environment has no variable bindings in it at first; however, the
initial read-eval-print loop (section 18.3) is started in this environment, so that if no other provision is made,
user global variable (i.e. definitions) will be made in the user environment.

In T 3.1, there is another environment called the implementation environment (page 121). This is the value of
T-IMPLEMENTATION-ENV in the standard environment. The implementation environment is not inferior to the
standard environment, but instead is inferior to the root.

In T 3.0, the initial locales look like:

<root>
/ | \

/ | \
/ | \

/ | \
/ | \

t-implementation-env standard-env scheme-env
/ | \

/ | \
/ | \

user-env orbit-env scheme-internal-env

106

107

<root> The <root> locale is the conceptual root of the locale tree. It does not actually exist. The <root>
locale is empty, it contains no variable bindings.

t-implementation-env The t-implementation-env is the environment which contains the system internals.

standard-env The standard-env is the environment defined by the T manual.

user-env The user-env is the default environment for the read-eval-print-loop on system startup.

orbit-env The orbit-env is the environment which contains the internals of the orbit compiler.

scheme-internal-env The scheme-internal-env contains the system internals for the Scheme environment.

scheme-env The scheme-env is the environment defined by Revised3 Report on Scheme.

Empty environments may be created using MAKE-EMPTY-LOCALE (page 23). For example:

(DEFINE *ALMOST-USELESS-ENV* (MAKE-EMPTY-LOCALE ’*ALMOST-USELESS-ENV*))
(*DEFINE *ALMOST-USELESS-ENV* ’+ +)
(*DEFINE *ALMOST-USELESS-ENV* ’- -)
(EVAL ’(+ 5 (- 21 13)) *ALMOST-USELESS-ENV*) =⇒ 13

STANDARD-ENV −→ locale

In T2 called *STANDARD-ENV*. The value of STANDARD-ENV is an environment (a locale) in which all sys-
tem variables have appropriate values, as described in this manual. That is, it is a standard environment
in the sense of section 2.3.

USER-ENV −→ locale

In T2 called *SCRATCH-ENV*. The value of USER-ENV is an environment (a locale) inferior to STANDARD-ENV.
It is provided by a T implementation as an environment in which a user may evaluate expressions and
write programs. Other evaluation environments may be created inferior to STANDARD-ENV, however, with
MAKE-LOCALE (page 23).

17.2 Source files

T programs are usually represented by collections of one or more text files resident in a file system. Text files
containing T programs are called source files.

A source file consists of a sequence of (external representations of) T expressions. Source files may be loaded
into a T environment. When a file is loaded, the expressions in the file are evaluated. Typically, this means
that useful side-effects, such as procedure definitions, occur which then make the program available in that T
environment.

A compilation (semantic analysis) step must occur either as a file is being loaded, or prior to loading the file.
In the former case, compilation is typically performed by a compiler such as the “standard compiler” (page 88)
which itself runs relatively quickly and produces intermediate code which must then be interpreted. In the latter
case, an auxiliary file known as an object file is involved; the compilation step need only be performed once,
even if the file is to be loaded many times. (The term object file is completely unrelated to the term object.)

A file compiler (such as orbit; see section 17.5) takes a source file as input and produces an object file as
output. The object file may then be loaded in lieu of the source file, with the same effect.

108

Note: In the current implementation, the standard compiler cannot be used as a file compiler, and orbit
cannot be used as an “on-the-fly” compiler. In principle, the two dimensions of compiler and compilation
mode are orthogonal: it should be possible to use either compiler in either manner. In practice, this is
not the case, but it turns out not to be too much of a problem.

17.3 File syntax

The first form in a source file must be a list whose car is the symbol HERALD. This form is not an expression,
but rather is part of the syntax of the file. It provides information relevant to programs which operate on the
source file (such as readers, compilers, and loaders). The syntax of a HERALD-form is as follows:

(HERALD identification . items)

Identification should be either () or a symbol identifying the file (usually the same as the root of the name of
the file). It is for documentary purposes only.

Items is a sequence of lists. Each item should be a list beginning with a valid keyword symbol, as described
below.

Example:

(HERALD FACT
(READ-TABLE *MATH-READ-TABLE*)
(ENV T (MATH MATHMACROS)))

(READ-TABLE expression) Herald item

Expression should evaluate to a read table, which is used in reading the expressions which follow the
HERALD-form from the source file. The environment in which expression is evaluated depends on the
program processing the file (but might be, e.g., the scratch environment).

If this item is absent, then expressions are read using the standard read table.

(SYNTAX-TABLE expression) Herald item

Expression should evaluate to a syntax table, which is used in compiling (evaluating) the expressions in
the source file. The environment in which expression is evaluated depends on the program processing
the file (but might be, e.g., the scratch environment).

If this item is absent, then expressions are compiled according to an appropriate syntax table: the syntax
table associated with the locale into which the file is being loaded, if the file is being loaded, or the
current value of (TC-SYNTAX-TABLE) (see below), if the file is being compiled using orbit .

(ENV support-env-name . filespecs) Herald item

Specifies a support (early binding) environment for compiling the file. The support environment con-
sists of the support environment named by support-env-name, augmented by information obtained from
support files named by filespecs.

If this item is absent, then the standard support environment, whose name is T, is used. The ability to
create and name other support environments is not yet documented.

109

17.4 Loading files

(LOAD filespec environment) −→ undefined

Loads the file named by filespec. If the file is a source file, then each expression in the file is compiled
(with the standard compiler) and run in environment . If the file is an object file, as produced by TC,
then the compiled object code is simply run in environment .

If no explicit file type is given in the filespec, then LOAD will load either an object file (file type BIN), if
one exists, or a source file (file type T) otherwise.

(LOAD-OUT-OF-DATE-ACTION) −→ symbol

LOAD-OUT-OF-DATE-ACTION is a switch that controls what the loader does with a filespec without an
extension. The options are:

binary load the object file.

source load the source file.

newer load the most recent of object and source files.

recompile recompile the file if the source is newer than the object file.

warn give a warning if the source is newer than the object file.

query offer to recompile if the source is newer than the object file.

The default is WARN.

17.5 File compilation

In addition to the standard compiler invoked when EVAL or LOAD is called, T provides an optimizing compiler.
This compiler, known as orbit, trades compilation speed for execution speed: STANDARD-COMPILER tries to
compile quickly, while orbit tries to generate executable code which will run fast.

To help produce more efficient code, orbit makes assumptions about the values that some variables will have at
run-time. These assumptions are called early bindings. For example, it will ordinarily assume that the variable
PAIR? will have the standard PAIR? predicate as its top-level value. This means that if an object file produced
under this assumption is loaded into a lexical environment where this is not the case, then calls to PAIR? will
not execute the same as they would if the source file had been loaded.

Early bindings are obtained from support environments. The support environment to be used in compiling a
file may be specified by an ENV clause in the file’s header. (See page 108.) A support environment may contain
user-defined integrable procedure and constant definitions.

Besides early binding, another source of improved efficiency is a difference in the handling of undefined effects
(that is, run-time program errors). When code compiled using the standard compiler incurs an error, an error
is signalled, and the error system is entered, giving the user an opportunity to debug the problem at the point
where it occurs. Code compiled using orbit has less error-checking, so the effect of an error may go unnoticed
until long after the error occurred, or a secondary error of an obscure or unexpected kind will occur.

orbit can be invoked from within T by using the following functions.

(COMPILE-FILE filespec) −→ undefined

In T2 called COMFILE. To compile a source file, say, fact.t, use (COMPILE-FILE "fact"). orbit writes
three output files, all having the same file name as the T source, and distinguished by extension:

110

The noise file is a transcript of what orbit wrote to the terminal in the course of the compilation.
orbit also writes some additional statistics and cross-referencing information to noise files.

The support file contains early binding information useful for compiling other files with orbit. See
the ENV file header clause, page 108

The object file contains the native code for the target machine that can be loaded into T.

The file extensions for the output files depend on the target architecture. For MC68000, VAX, and
Encore, the extensions are as follows:

Architecture Support Noise Object
68000 .mi .mn .mo
VAX11 .vi .vn .vo
Encore .ni .nn .no

(ORBIT expression . locale) −→ undefined

ORBIT does expression at a time compilation, e.g. (ORBIT (DEFINE (F X) (+ X 1))’) will cause the
expression to be compiled and loaded into the (REPL-ENV).

(CL expression) −→ undefined

(CL expression) prints out assembly code for expression.

(TC-SYNTAX-TABLE) −→ syntax-table Settable

This is the basic syntax table from which orbit obtains macro definitions. orbit obtains additional
macro definitions from the support environment set up by an (ENV ...) HERALD clause. Its default
value is the syntax table of the user environment.

Warning: This may change in the future.

(ENV-FOR-SYNTAX-DEFINITION syntax-table) −→ environment Settable

The environment in which macro definition bodies themselves are evaluated, either as a result of encoun-
tering a DEFINE-LOCAL-SYNTAX or LET-SYNTAX expression, or by loading macro definitions from a support
file. orbit evaluates syntax-descriptors in the ENV-FOR-SYNTAX-DEFINITION associated with the syntax
table from which the descriptor was obtained, e.g. for (tc-syntax-table), the default environment is
USER-ENV.

Chapter 18

User interface

This chapter describes the user interface to the T system, which is the current implementation of the T language.
Also part of the user interface are the various debugging facilities, which are described in chapter 19.

The features described in this chapter are highly volatile and implementation-dependent.

18.1 Invoking T

To invoke a T system, one typically gives a command to the system command processor, as appropriate to the
operating system and installation. For example, under Aegis, the following interaction might take place:

$ t
524280 bytes per heap, 131071 bytes reserved
T 3.1 (5) MC68000/UNIX Copyright (C) 1988 Yale University
;Loading /usr/local/lib/t/tfix5.t into T-IMPLEMENTATION-ENV
T Top level
> (list ’planner ’conniver)
(PLANNER CONNIVER)
>

The interaction may look slightly different in the other implementations. The above illustrates the startup
sequence, which proceeds as follows:

The user invokes T with an appropriate command.

The T system identifies itself by giving the processor and operating system under which it believes itself
to be running, the major and minor system version numbers, and the system edit number. The version
numbers identify which release of T is running. The edit number is useful to the system implementors
and should be provided in any bug reports sent to them.

T loads a patch file, if one exists. The patch file consists of forms which fix bugs in the current release of
the system.

T loads a user initialization file, if one exists. The user initialization file consists of any forms which the
users wants to have evaluated when T starts up. The location in the file system where the initialization
file is found is system-dependent, but is usually the file init.t in the user’s home directory.

T enters a read-eval-print loop. Read-eval-print loops are described in section 18.3.

111

112

(STOP) −→ undefined

Exits T in such a way that it may be resumed later. Control returns to the context from which T was
invoked. Under Unix, this usually means the shell. Under VMS, this means the command interpreter
(DCL). STOP is not defined in Aegis T because the Aegis environment makes it unnecessary.

(EXIT)

Exits T, returning control to the context in which T was invoked in the first place (usually a shell or other
command processor). Any resources associated with the T process will be freed; EXIT is not reversible.
A call to EXIT cannot return.

(COMMAND-LINE) −→ list

In T2 called *COMMAND-LINE*. This variable has as its value the command line which was used to invoke
T, represented as a list of strings.

18.2 Suspending T

Caution: The following is somewhat Sun specific.

A system is suspended as follows:

% t -h 8000000 # as big as possible
> ;; load stuff
> (gc)
> ((*value t-implementation-env ’system-suspend) filespec nil)
> (exit)

If a GC occurs during the suspend it will hang. This means that the heap was not big enough.

The binary distributions are a directory called “tsystem”. In that directory are a bunch of files including a
script called “linkt” which takes a .o file produced by suspend and creates an executable.

% cd tsystem
% linkt filespec.o newimage

If the code to be loaded before suspending a system contains DEFINE-FOREIGN forms, files containing these forms
should be loaded inside of:

(bind (((*value t-implementation-env ’make-foreign-procedure)
(*value t-implementation-env ’make-foreign)))

(load file1)
...)

In this case, the linkt script must be modified to .o files that are referenced by the DEFINE-FOREIGN expressions.

System building:

It is possible to build a system from the sources. The tsystem directory contains a file, i.e. “sunbuild.t” which
explains how.

113

18.3 Read-eval-print loops

The user usually interacts with the T system via a read-eval-print loop. As illustrated above, this is a command
loop which repeatedly reads an expression, evaluates it, and prints the value.

The read-eval-print loop is a simple command processor; it prints a prompt, reads a command from the terminal,
executes the command, then prints another prompt, ad infinitum. A command is any executable T form, and
executing the command consists of evaluating the form and printing the result.

−→ object

In T2 called **. The variable ## always has as its value the last object which was printed by the
read-eval-print loop, that is, the value of the last expression typed by the user.

++ −→ object

Removed in T3. The variable ++ always has as its value the last expression read by the read-eval-print
loop. It is not assigned this value, however, until after the expression has been evaluated, so that a new
expression may refer to the previous one.

Expressions are read from the terminal by applying the READ operation (actually, the value of (REPL-READ); see
page 114) to the terminal input port. Initially, that port’s read table is the standard read table, but this may
be changed using SET, for example:

(SET (PORT-READ-TABLE (TERMINAL-INPUT)) *MY-READ-TABLE*)

Evaluation is performed with respect to a particular variable environment and its syntax table. The read-eval-
print loop may move from place to place within the environment hierarchy; one may control the evaluation
environment and syntax table by setting (REPL-ENV).

(REPL-ENV) −→ environment Settable

Accesses the environment passed to (REPL-EVAL) by the read-eval-print loop. Initially, this is the scratch
environment (see page 107).

18.4 Command levels

Read-eval-print loops may be invoked recursively. Each currently running read-eval-print loop is said to be at a
different command level. The initial read-eval-print loop is at top level , and recursive read-eval-print loops are
at successively deeper levels.

The level of the current command loop is reflected in the way the loop prompts for input. At top level, the
prompt is a single greater-than sign (>). At deeper command levels, the prompt contains as many greater-than
signs as there are active read-eval-print loops; for example, >>> if there are two recursive read-eval-print loops
beneath the top level one.

Deeper command levels are usually entered as the result of program execution errors, but may also be entered
because of a keyboard interrupt or an explicit call to BREAKPOINT.

Interrupts: Issuing a keyboard interrupt will asynchronously enter a read-eval-print loop. One may proceed
from this breakpoint, at the point where computation was interrupted, by doing (RET). Keyboard interrupts
are normally issued under Aegis by giving a Display Manager DQ command (normally assigned to control-Q),
under VMS by typing control-C, or under Unix by typing the interrupt character (normally control-C or DEL).

114

End-of-file: An end-of-file condition on the terminal input port (see page 94) which occurs at a read-eval-print
loop will cause control to transfer up one command level to the next read-eval-print loop. End-of-file can usually
be generated under Aegis with the display manager EEF command (normally assigned to control-Z), under VMS
by typing control-Z, or under Unix by typing the end of file character (normally control-D).

(RESET)

Transfers control directly to the top-level read-eval-print loop by performing a throw (see page 30).

(BREAKPOINT . message) −→ object or undefined

Enters a read-eval-print loop. If message is non-null, then it is printed on (ERROR-OUTPUT) using DISPLAY.
If (RET object) is called, then the loop terminates and object is returned as the value of the call to
BREAKPOINT. If an end-of-file condition occurs, then control is thrown to the read-eval-print loop at the
next higher level, which continues.

18.5 Transcripts

A transcript is a record of the user’s interaction with the T system. Transcripts are necessary in T implementa-
tions under operating systems which do not natively provide transcript facilities. Transcripts are not necessary,
for example, when running under the Aegis Display Manager.

(TRANSCRIPT-ON filename) −→ undefined

Starts writing a transcript to the specified file. All output to (TERMINAL-OUTPUT) and input from
(TERMINAL-INPUT) between calls to TRANSCRIPT-ON and TRANSCRIPT-OFF is written to the file. A sub-
sequent call to TRANSCRIPT-OFF will terminate the transcript, closing the file.

(TRANSCRIPT-OFF) −→ undefined

Closes the active transcript file.

18.6 Customization

The various phases of the read-eval-print loop may be customized by assigning values to switches.

(REPL-READ) −→ procedure Settable

Accesses the READ part of the read-eval-print loop. Initially, this is READ.

(REPL-EVAL) −→ procedure Settable

Accesses the EVAL part of the read-eval-print loop. Initially, this is EVAL.

(REPL-PRINT) −→ procedure Settable

Accesses the PRINT part of the read-eval-print loop. Initially, this is PRINT.

(REPL-PROMPT) −→ procedure Settable

115

Accesses the prompting routine used in the read-eval-print loop. This should be a procedure of one
argument, which is a nonnegative integer giving the command level (zero at top level, one at the next
deeper level, and so on). The procedure should return a string. Initially, (REPL-PROMPT) is a procedure
that returns > at the top level, >> at the level below that, etc.

(LOAD-NOISILY?) −→ boolean Settable

If (LOAD-NOISILY?) is true (which it is initially), then LOAD and REQUIRE will print the value of each
top-level expression in the file (standard compiler only). The output goes to the terminal output port.

(REPL-WONT-PRINT? object) −→ boolean Operation

Read-eval-print loops will not print any object which answers true to this operation. Note that this is
unrelated to the functioning of PRINT itself.

REPL-WONT-PRINT −→ object

In T2 called *REPL-WONT-PRINT*. Its value is an object which answers true to the REPL-WONT-PRINT?
predicate.

REPL-WONT-PRINT ≡ (OBJECT NIL ((REPL-WONT-PRINT? SELF) T))

Chapter 19

Debugging

The facilities described in this chapter are highly implementation-specific, and subject to change without no-
tice. Facilities described here are intended either for use directly as commands, or as utilities for user-written
debugging subsystems.

19.1 Errors

When the implementation detects an error condition, a message is printed and a read-eval-print loop is entered in
the dynamic context in which the error occurred. A number of facilities are available at this point for debugging
and for recovering from the error.

Errors are usually detected in conditions which are left undefined by the manual (see sections 2.4 and 13.2).
These conditions the following:

An unbound variable is referenced.

A procedure is called with too few or too many arguments.

A non-procedure is called.

An object of the wrong type is passed to a system procedure.

A string or vector index is out of range.

A generic operation is invoked on an object with no method to handle it.

The external representation of an object being parsed by READ-OBJECT or a read macro is syntactically
incorrect. (This kind of error is called a read error .)

An object being interpreted as an expression by a compiler or a macro expander is syntactically incorrect.
(This kind of error is called a syntax error .)

A call to ERROR or UNDEFINED-EFFECT occurs.

Once inside the read-eval-print loop, one may examine the current environment (e.g., examining variables or
the stack) using the read-eval-print loop (section 18.3) or the inspector (section 19.3).

Typical actions after an error occurs :

The user corrects the error by returning a new value with RET.

116

117

The user goes up one command level by typing the end-of-file character (see page 114).

The user throws to top level by calling (RESET) (page 114).

Example:

> (CADR 3)
∗ ∗ Error: attempting to take CADR of 3
>> (RET ’(A B))
BA
> (PLUS 3 4)
∗ ∗ Error: variable PLUS has no value
>> (RET ADD)
7

19.2 Debugging utilities

(TRACE variable) −→ undefined Special form

Reassigns variable, whose value should be a procedure, to be a new procedure which prints information
on the (DEBUG-OUTPUT) port whenever it is called or returns a value.

(UNTRACE variable) −→ undefined Special form

If variable has a traced procedure as its value, UNTRACE restores it to its original value. Otherwise it
prints a warning and does nothing.

(PP procedure) −→ undefined Special form

Prints the definition of procedure on the terminal output port. If the source code is not available, then it
prints the name of a file where it can be found. (See also PRETTY-PRINT, page 97, and WHERE-DEFINED,
page 120.)

(BACKTRACE) −→ undefined

Prints a one-line summary describing each continuation on the stack. See also DEBUG, page 118.

19.3 The inspector

CRAWL, also known as the inspector, is a stack and structure inspector. It consists of a command loop and a set
of commands. The inspector keeps track of a current object , and a stack of objects which have previously been
current objects. Some inspector commands move from one object to another.

The command loop operates as follows: the current object is “summarized” (that is, printed or displayed
somehow); a prompt is printed; a line is read; and any commands on the line are executed. One can give one or
more commands on a single input line.

The current object may be any object. If it is a continuation (stack frame), the name of the procedure which
contains the continuation’s return point is printed, and the prompt is “debug:”. Otherwise, the object is printed
(up to a maximum of one line of output), and the prompt is “crawl:”.

118

The meanings of some commands vary depending on what kind of object the current object is, and not all
commands are appropriate for all kinds of objects.

(DEBUG) −→ undefined

(DEBUG) enters the inspector. The current object becomes a continuation near the top of the stack (more
precisely, the continuation to which the value passed to RET will be given).

(CRAWL object) −→ undefined

Enters the inspector. The current object becomes object .

Inspector commands:

? Help: prints a list of inspector commands, with one-line summaries.

Q Quit: exits out of the inspector, usually back to the read-eval-print loop.

U Up: pops the stack of saved objects. The current object is forgotten, and the inspector moves to the previous
current object.

D Down: if the current object is a continuation, moves to the next continuation deeper in the stack, that is, to
the continuation that was pushed prior to the current continuation.

X Exhibit: prints useful information about the current object. The exact behavior of this varies depending on
the type of the object. For structures, all of the structure’s components are displayed. For continuations,
any saved values are printed. Integers are printed in various radices.

For some kinds of object, such as structures and vectors, the contents of an object will be displayed in a
menu form, as a sequence of lines of the form

"[key] component"

In this case, giving key as an inspector command will move to component , which then becomes the current
object.

integer Select element: in the case of a list or vector, this moves to the appropriate component. For example,
if the current object is a list, then 3 as an inspector command is the same as A CADDDR: it moves to the
list’s fourth element.

selector Select component: if the current object is a structure, typing a selector name will move to that com-
ponent of the structure.

B Breakpoint: enters a read-eval-print loop. Executing (RET) will return back into the inspector. The read-
eval-print loop will execute either in (REPL-ENV), or, if the current object is a continuation or procedure
created by interpreted code (i.e. code compiled by the standard compiler, as opposed to TC), in the lexical
environment of the object. Inside the breakpoint loop, the system variable *OBJ* is bound to the current
object.

C Crawl: moves to a new object. The object is obtained by evaluating an input expression, which is read either
from the command line or in response to a prompt. The environment of the evaluation is one appropriate
to the current object, as with the B command.

E Evaluate: evaluates an expression. The expression is read and evaluated as with the C command. The result
of the evaluation is printed, but the current object remains the same.

119

A Apply: applies a procedure to the current object, and move to the result of that call. An expression evaluating
to the procedure is read as with the C command.

M Macroexpand: performs one macro expansion on the current object, which should be a list, and the current
object becomes the result of the macro expansion.

P Pretty-print: prints the current object using the pretty printer. If the current object is a continuation, then
this command tries to print the expression to which the value returned by the continuation is to be
supplied.

R Return: if the current object is a continuation, returns a value to it. The value is obtained as with the C, E,
and A commands.

W Where-defined: prints the result of calling WHERE-DEFINED on the current object.

V Unit: moves to a template’s or procedure’s unit. Units are not documented, but the X command works with
them. This command is intended primarily for the use of the T implementors.

The control stack which one inspects by invoking the inspector with (DEBUG) is a sequence of continuations, or
stack frames. These differ from activation records in implementations of languages such as C or Lisp in that they
represent future computations rather than past calls. A full call history is not easily available in tail-recursive
languages such a T and Scheme. This is implementation-dependent, of course, and future T implementations
may maintain call histories for debugging purposes.

Each continuation represents a control point which will make use of the value returned to the continuation.
Usually these control points correspond to the arguments in a call, the predicate in an IF or COND, or any
but the last subform of a block. For example, when evaluating a call, a continuation is constructed for each
argument in the call, because these values will be used when the call actually occurs. In the example below, the
continuations into FACT were mostly delivering values to the second argument position in the call to *.

The three-column synopsis that the inspector prints for continuations is the same as that printed by BACKTRACE
(page 117). The first column is the name of the procedure into which control will return, or (anonymous) if no
procedure name is available (as for procedures created by anonymous top-level LAMBDA-expressions instead of
by DEFINE). The second column is the name of the source file containing the procedure, and the third column
is relevant source code, if available.

Here is a sample interaction with the inspector. Commentary is in Roman font on the right. The terms “frame”,
“stack frame”, and “continuation” are used interchangeably.

> (define (fact n) Define factorial function.
(cond ((= n 0) i) Bug: i instead of 1.
(else (* n (fact (- n 1))))))
#{Procedure 120 FACT }
> (fact 4)
** Error: variable I is unbound Error detected by interpreter.
>> (debug)
#{Continuation 121} Current object is this frame.
BIND-INTERNAL THROW Internal to the implementation.
debug: d Go down one frame.
#{Dynamic-state-transition 122} Also internal
debug: d
#{Continuation 123}
FACT () I Okay
debug: d
#{Continuation 124}

120

FACT () (* N (FACT (- N 1)))
debug: e n Evaluate N in this frame.
1 Value is 1.
debug: d
#{Continuation 125}
FACT () (* N (FACT (- N 1)))
debug: e n Value is 2 in this frame.
2 debug: d d Go down two frames.
#{Continuation 126}
FACT () (* N (FACT (- N 1)))
debug: d
#{Continuation 127}
READ-EVAL-PRINT-LOOP REPL FACTs caller (i.e. top level).’
debug: u u u u u Up five frames.
#{Continuation 123}
FACT () I
debug: r 1 Return the value 1 to this frame.
24 Execution proceeds
> 24 comes out.

19.4 Debugging primitives

This section describes routines which may be useful in writing debugging aids. Note that they are not part of
the language, and therefore should be avoided in “ordinary” programs. Relying on these routines may lead to
programs which behave differently depending on how the programs are compiled (TC or standard compiler), or
which fail to work across releases.

(WHERE-DEFINED object) −→ filename Operation

Tries to find a filename for the source file wherein object (usually a procedure) is defined.

(IDENTIFICATION object) −→ symbol or false Operation

If appropriate, this returns a symbol naming a variable which, in some environment, might be defined to
be the object . If no such identification is appropriate, IDENTIFICATION returns false. This behavior is
heuristic, not contractual; for no value is IDENTIFICATION required to return non-null.

(IDENTIFICATION CADR) =⇒ CADR
(LET ((X CADR)) (IDENTIFICATION X)) =⇒ CADR

(ARGSPECTRUM procedure) −→ pair Operation

Returns an argspectrum for procedure. An argspectrum is a pair (min . max) which describes the
number of arguments that procedure expects to receive when called. Min is always an integer giving
the minimum number of arguments expected; max is either an integer giving a maximum, or it is (),
meaning that exactly min arguments are required, or it is T, meaning that any number of arguments (but
at least min) are acceptable.

(DISCLOSE procedure) −→ list or false

121

Attempts to reconstruct a source expression from which procedure may have been compiled. This may
work for code compiled using the standard compiler, but is likely to fail to work for code compiled using
orbit. Returns false if no source code can be obtained.

(GET-ENVIRONMENT procedure) −→ environment or false

Attempts to reconstruct an environment in which procedure may have been loaded (or run). This may
work for code compiled using the standard compiler, but is likely to fail to work for code compiled using
TC. Returns false if no environment can be obtained.

(STRUCTURE-TYPE object) −→ stype or false

If object is a structure, this returns the structure type of which it is an instance. If object is not a structure,
it returns false. STRUCTURE-TYPE is to be used with care since it may violate the data protection otherwise
provided by structure types. That is, anyone who is given a structure may find out about its internals.

(WALK-SYMBOLS procedure) −→ undefined

Calls procedure on every accessible symbol.

19.5 Miscellaneous

T-VERSION-NUMBER −→ integer

An integer which gives the version number of the currently running T implementation. The integer has
the form

(+ (* major-version-number 10) minor-version-number)

For example, in T3.1, *T-VERSION-NUMBER* is 31. Knowledge of the version number may be useful in
dealing with incompatibilities between T releases, so that programs may conditionally adjust their state
according to the version, and thus be able to run in both older and newer releases.

Caution: This may soon change to T-VERSION-NUMBER.

T-IMPLEMENTATION-ENV −→ locale

In T2 called *T-IMPLEMENTATION-ENV*. This environment contains variables internal to the implemen-
tation of T.

(IMPORT T-IMPLEMENTATION-ENV %%PAIR-TAG)

ORBIT-ENV −→ locale

In T2 called *TC-ENV*. This environment contains variables internal to the implementation of orbit.

(GC) −→ undefined

122

Invokes the garbage collector. Garbage collection is a low-level process by which the memory used by
objects which are no longer accessible is reclaimed for use by new objects. Ordinarily, garbage collection
is invoked asynchronously as the need arises, so explicit calls to GC are unnecessary.

A side-effect of garbage collection is that any ports created by OPEN which are both inaccessible and still
open, are closed.

See also section 13.8.

(GC-STATS) −→ undefined

Prints some statistics about the most recent garbage collection.

(GC-NOISILY?) −→ boolean Settable

Switch, initially true. If true, then the garbage collector will print messages when invoked. If false, it
will do its work silently.

(TIME expression count) −→ undefined

(TIME expression count) computes expression count times and prints the virtual time used. The count
argument is optional.

Appendix A

Foreign-function Interface

The interface between T3 and the local operating system is the define-foreign special form:

(DEFINE-FOREIGN T-name
(foreign-name parameters)
return-type)

DEFINE-FOREIGN defines a foreign procedure, i.e. a T procedure which will call a procedure defined by the
operating system or in another language.

T-name is the name of the T procedure being defined.

foreign-name is the name of the foreign procedure to which the T-name corresponds.

parameters specifies the representation of the parameters to the foreign procedure or function.

return-type indicates the representation of the value returned by the foreign procedure.

parameter =⇒ (parameter-type foreign-type [parameter-name])
parameter-type =⇒ { in | out | in/out | var | ignore }
foreign-type =⇒ { rep/integer |

rep/integer-8-s |
rep/integer-8-u |
rep/integer-16-s |
rep/integer-16-u |
rep/value |
rep/extend |
rep/extend-pointer |
rep/string |
rep/string-pointer }

parameter-name =⇒ symbol used for identification
return-type =⇒ Aegis: { foreign-type | ignore | rep/address }

Unix: { foreign-type | ignore }

For example, on the Apollo a procedure to do block reads from a stream would be defined as follows:

123

124

(DEFINE-FOREIGN aegis-read
(stream $get buf (in rep/integer-16-u stream-id)

(in rep/string bufptr)
(in rep/integer buflen)
(ignore rep/integer retptr)
(out rep/integer retlen)
(ignore rep/extend seek-key)
(out rep/integer status))

ignore)

The following code will use AEGIS-READ to read in a string from standard input:

(let ((stream 0)
(buf (make-string 128)))

(receive (5 status) (aegis-read stream buf 128 nil nil nil nil)
(cond ((= 0 status)

(set (string-length buf) 5)
5)

(error ...))))

On a Unix machine a similar procedure would be defined as,

(define-foreign unix-read-extend (read (in rep/integer)
(in rep/string)
(in rep/integer))

rep/integer)

To read a string from standard input on Unix the T code would look something like:

(let ((buf (make-string 128)))
(receive (5 status) (unix-read 0 buf 128)

(cond ((> 0 status)
(set (string-length buf) 5)
5)
(error ...))))

A.1 Foreign Type Specification

The foreign-type tells the compiler how to interpret a T data type in order to pass it to the foreign call. The
general categories of Pascal data types are numeric, string, record, enumerated, set of.

125

Pascal Type T3 Type Foreign Type Spec
Numeric

integer8 fixnum rep/integer-8-s
binteger fixnum rep/integer-8-u
integer16 fixnum rep/integer-16-s
pinteger fixnum rep/integer-16-u
integer fixnum rep/integer
linteger fixnum rep/integer
real unimplemented
double flonum rep/extend

String
string string rep/string
string text rep/extend
univ pointer string rep/string-pointer
univ pointer text rep/extend-pointer

Record
record extend rep/extend

Miscellaneous
char char rep/char
boolean boolean rep/integer-8-s

Beware that if a T string is being used as an out parameter the offset field of the string must be 0 (the string
must never have been chdr!’ed).

Record structures are represented by byte-vectors of the appropriate size.

A.2 Pascal (Apollo) Enumerated Types

Pascal enumerated types are defined using the DEFINE-ENUMERATED special form:

(DEFINE-ENUMERATED type-name {element}∗) −→ undefined Special form

Here type-name is just for identification, and the elements are the enumerated types. For example,

(define-enumerated ios $create mode t
ios $no pre exist mode
ios $preserve mode
ios $recreate mode
ios $truncate mode
ios $make backup mode
ios $loc name only mode
)

The foreign procedure is called with the enumerated type name just as in Pascal.

A.3 Pascal Sets (Apollo)

The Pascal type set-of is defined using the DEFINE-SET-OF special form:

(DEFINE-SET-OF type-name {element}∗) −→ undefined Special form

There, again, type-name is just for identification, and the elements are the names of the set members. For
example,

126

(define-set-of ios $put get opts t
ios $cond opt
ios $preview opt
ios $partial record opt
ios $no rec bndry opt
)

A.4 Returned Values and Out Parameters

For languages which have output parameters, e.g. Pascal, multiple values are returned. The first value is the
return-value of the foreign procedure, unless it is of return-type ignore, followed by the out parameters. Thus
a call to the T procedure AEGIS-READ, defined above, would return two values: retlen and status. For a Pascal
procedure the return spec will always be ignore. The argument to a foreign procedure should usually be of
type ignore if it is an out parameter to the foreign procedure that is bigger than a longword. Also, the value
of any out parameters which are not needed can be specified as ignore.

Pascal functions which return addresses must have return-type of type rep/address. If this value is passed to
another foreign call it should be with rep/integer.

DEFINE-FOREIGN does not allocate storage for out parameters. This means that you must allocate your own
object and pass it to the foreign procedure even if it is only an out parameter. If it is an out parameter which
is other than an integer then its foreign-type should be ignore and the variable passed in should be used to
reference the parameter.

Appendix B

Libraries

This appendix describes various software packages which are not officially part of the T language but which
are of general utility. Some are available within the implementations directly, while others must be loaded from
external files using LOAD.

B.1 Tables

T3.1 contains generalized hash tables. A table associates a key with a value. MAKE-HASH-TABLE is the most
general way to make a hash table. In addition, the most common types of tables have been predefined.

Caution: This feature is experimental and may go away or change in future releases.

Tables should be used in place of property lists.

(MAKE-HASH-TABLE type? hash comparator gc? id) −→ table

MAKE-HASH-TABLE creates a table which associates keys to values. Any object may be a key or a value.

type? — is a predicate. All keys in the table must answer true to the predicate type?.

hash — is a procedure from keys to fixnums which is used to hash the table entries.

comparator — is an equality predicate on keys.

gc? — is a boolean value which specifies whether the hash procedure is dependent on the memory
location(s) occupied by the object, i.e. whether or not the table must be rehashed after a garbage
collection.

id — is an identifier used by the print method of the table.

(HASH-TABLE? object) −→ boolean

HASH-TABLE? returns true if the object is a hash table.

(TABLE-ENTRY table key) −→ object Settable

TABLE-ENTRY returns the object associated with the key in the table if there is an entry for key, otherwise
returns false.

127

128

(WALK-TABLE proc table) −→ undefined

WALK-TABLE invokes proc, a procedure of two arguments, on each keyvalue association in the table. Note
that it is an error to perform any operations on the table while walking it.

The following common table types have been predefined as follows:

(MAKE-TABLE . id) −→ table

MAKE-TABLE creates a table in which any object can be a key and EQV? is used as the equality predicate
on keys.

(TABLE? object) −→ boolean

TABLE? returns true if the object is an EQ? table.

(MAKE-STRING-TABLE . id) −→ table

MAKE-STRING-TABLE creates a table in which the keys must be strings and STRING-EQUAL? is used as the
equality predicate on keys.

(STRING-TABLE? object) −→ boolean

STRING-TABLE? returns true if the object is a string-table.

(MAKE-SYMBOL-TABLE . id) −→ symbol-table

MAKE-SYMBOL-TABLE creates a table in which the keys must be symbols and EQ? is used as the equality
predicate on keys.

(SYMBOL-TABLE? object) −→ boolean

SYMBOL-TABLE? returns true if the object is a symbol-table.

B.2 Random Integers

(MAKE-RANDOM seed) −→ thunk

MAKE-RANDOM takes a seed which is a fixnum and returns a thunk. The thunk returns a new pseudo-random
integer, x , in the range

MOST-NEGATIVE-FIXNUM ≤ x ≤ MOST-POSITIVE-FIXNUM

each time it is invoked.

129

B.3 List utilities

(MEM predicate object list) −→ list

Returns the first tail of list such that (predicate object (CAR tail)).

(MEM EQ? ’A ’(B A D E)) =⇒ (A D E)

(MEMQ object list) −→ list

(MEMQ object list) ≡ (MEM EQ? object list)

(ANY predicate . lists) −→ object

Calls the predicate on successive elements of the lists, stopping as soon as the predicate returns a value
other than false. This value is returned as ANY’s value.

(ANY NUMBER? ’(A B 3 FOO)) =⇒ true
(ANY NUMBER? ’(A B C FOO)) =⇒ false
(ANY < ’(1 2 3) ’(6 6 6)) =⇒ true
(ANY MEMQ ’(A B C) ’((X B) (U B Z) (C D E F))) =⇒ (B Z)

(ANYCDR predicate . lists) −→ object

Like ANY, but the predicate is called on successive tails of the lists instead of successive elements.

(EVERY predicate . lists) −→ object

Calls the predicate on successive elements of the lists, stopping as soon as the predicate returns false. If
for every element predicate returns true, EVERY returns the value of the last call.

(EVERY NUMBER? ’(1 2 3 -15.7)) =⇒ true
(EVERY NUMBER? ’(1 2 3 FOO)) =⇒ false
(EVERY ASSQ ’(A B C)
’(((A X) (X Y)) ((A J) (B K)) ((C D) (T U))))
=⇒ (C D)

(EVERYCDR predicate . lists) −→ object

Like EVERY, but the predicate is called on successive tails of the lists instead of successive elements.

(EVERYCDR? predicate . lists) −→ boolean

(EVERYCDR? predicate . lists) ≡ (TRUE? (EVERYCDR predicate . lists))

(ANYCDR? predicate . lists) −→ boolean

(ANYCDR? predicate . lists) ≡ (TRUE? (ANYCDR predicate . lists))

(POS predicate object list) −→ integer or false

130

Returns the position of the first item in list such that (predicate object item), or false if there is no such
item.

(POSQ object list) −→ integer or false

(POSQ object list) ≡ (POS EQ? object list)

(APPEND-REVERSE list ending) −→ list

(APPEND-REVERSE list ending) ≡
(APPEND (REVERSE list) ending)

(APPEND-REVERSE ’(A B C) ’(D E)) =⇒ (C B A D E)

(APPEND-REVERSE! list ending) −→ list

(APPEND-REVERSE! list ending) ≡
(APPEND! (REVERSE! list) ending)

B.4 Type-specific arithmetic

A fixnum is an integer whose magnitude lies within an implementation-dependent range. This range is guaran-
teed to all integers which are acceptable as array, string, or vector indices. T guarantees that fixnums will have
at least 24 bits. In T3.1, this range is the half-open interval

[2-29,229).

(FIXNUM? object) −→ boolean Type predicate

Returns true if object is a fixnum.

MOST-POSITIVE-FIXNUM −→ integer

In T2 called *MAX-FIXNUM*. Returns the largest integer value within the fixnum range. No integer
answering true to FIXNUM? is greater than MOST-POSITIVE-FIXNUM.

MOST-NEGATIVE-FIXNUM −→ integer

In T2 called *MIN-FIXNUM*. Returns the smallest integer value within the fixnum range. No integer
answering true to FIXNUM? is less than MOST-NEGATIVE-FIXNUM.

(FIXNUM? x)
≡

(AND (INTEGER? X)
(>= x MOST-NEGATIVE-FIXNUM)
(<= x MOST-POSITIVE-FIXNUM))

The following procedures are defined for performing type-restricted arithmetic. These procedures should be
considered specializations of their corresponding generic arithmetic procedures. They assume restrictions on the
types of their arguments and results. The prefix FX means “fixnum-specific” and FL means “flonum-specific.”
For example,

131

(FX+ x y)
≡ (ENFORCE FIXNUM? (+ (ENFORCE FIXNUM? x) (ENFORCE FIXNUM? y)))

T will implement calls to these type-specific procedures in a more efficient manner than calls to the corresponding
generic procedures.

The following list catalogs the available routines. In most case the effect of the procedure should be analogous
to the example above. The one exception is FX/, which is a specialization of the truncated (integer) division
routine QUOTIENT, not of the division routine /.

(FX+ fixnum1 fixnum2) −→ fixnum
(FL+ fixnum1 fixnum2) −→ flonum
(FX- fixnum1 fixnum2) −→ fixnum
(FL- flonum1 flonum2) −→ flonum
(FX* fixnum1 fixnum2) −→ fixnum
(FL* fixnum1 fixnum2) −→ flonum
(FX/ fixnum1 fixnum2) −→ fixnum
(FL/ flonum1 flonum2) −→ flonum
(FX= fixnum1 fixnum2) −→ boolean
(FL= flonum1 flonum2) −→ boolean
(FX< fixnum1 fixnum2) −→ boolean
(FL< flonum1 flonum2) −→ boolean
(FX> fixnum1 fixnum2) −→ boolean
(FL> flonum1 flonum2) −→ boolean
(FXN= fixnum1 fixnum2) −→ boolean
(FLN= flonum1 flonum2) −→ boolean
(FX>= fixnum1 fixnum2) −→ boolean
(FL>= flonum1 flonum2) −→ boolean
(FX<= fixnum1 fixnum2) −→ boolean
(FL<= flonum1 flonum2) −→ boolean
(FIXNUM-REMAINDER fixnum1 fixnum2) −→ fixnum
(FX-REM fixnum1 fixnum2) −→ fixnum T3: ≡ FIXNUM-REMAINDER
(FXREM fixnum1 fixnum2) −→ fixnum T2: ≡ FIXNUM-REMAINDER
(FIXNUM-ODD? fixnum) −→ boolean
(FIXNUM-EVEN? fixnum) −→ boolean
(FIXNUM-ABS fixnum) −→ fixnum
(FIXNUM-MIN fixnum1 fixnum2) −→ fixnum
(FIXNUM-MAX fixnum1 fixnum2) −→ fixnum
(FIXNUM-LOGAND fixnum1 fixnum2) −→ fixnum
(FIXNUM-LOGIOR fixnum1 fixnum2) −→ fixnum
(FIXNUM-LOGNOT fixnum) −→ fixnum
(FIXNUM-ASHR fixnum) −→ fixnum
(FIXNUM-ASHL fixnum) −→ fixnum
(FIXNUM->FLONUM fixnum) −→ flonum
(FLONUM->FIXNUM flonum) −→ fixnum

Appendix C

Other Lisps

T is a dialect of Lisp derived from Scheme and influenced by Common Lisp and NIL. T3 provides an environment
with a Scheme emulation.

C.1 Scheme Environment

Scheme is specified by Revised3 Report on Scheme. T3 provides the environment SCHEME-ENV which supports
some subset of Scheme.

The Scheme interpreter is entered using SCHEME-RESET and SCHEME-BREAKPOINT, and is left using T-RESET.

(SCHEME-BREAKPOINT) −→ undefined

Enters a Scheme read-eval-print-loop in the Scheme environment. Similar to the T procedure BREAKPOINT.

(SCHEME-RESET) −→ undefined

Enters a top level Scheme read-eval-print-loop in the Scheme environment. This is equivalent to doing
SCHEME-BREAKPOINT followed by RESET.

(T-RESET) −→ undefined

Enters a top level T read-eval-print-loop in the T USER-ENV.

When in Scheme, RESET is rebound to SCHEME-RESET.

(RESET) −→ undefined

Transfers control directally to the top-level Scheme read-eval-print loop by performing a throw.

Switching between SCHEME-ENV and USER-ENV does not alter the bindings made in SCHEME-ENV.

The value of symbols in the SCHEME-ENV can be accessed from other environments using *VALUE, but it is not
posible to do the reverse from SCHEME-ENV.

132

Appendix D

ASCII character conversion

The ASCII character set has nothing inherently to do with the T language or its implementations. Internally,
any implementation is free to use any convenient encoding for characters, for example, a modified ASCII (such as
that of the Lisp Machine), or EBCDIC. However, the language does provide conversions between characters and
ASCII codes (CHAR->ASCII and ASCII->CHAR), so this correspondence is, for the purposes of those routines, a
part of the language definition. The table below is also provided as a general reference, because people using T
are also likely to be using computers, and this information may often be useful in that context.

133

134

8 10 16 character
0 0 0 NULL
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7 BELL

10 8 8 BS
11 9 9 TAB
12 10 A LFD
13 11 B
14 12 C FORMFEED
15 13 D RET
16 14 E
17 15 F
20 16 10
21 17 11
22 18 12
23 19 13
24 20 14
25 21 15
26 22 16
27 23 17
30 24 18
31 25 19
32 26 1A
33 27 1B ESC
34 28 1C
35 29 1D
36 30 1E
37 31 1F

8 10 16 character
40 32 20 SPC
41 33 21 !
42 34 22 ”
43 35 23 #
44 36 24 $
45 37 25 %
46 38 26 &
47 39 27 ’
50 40 28 (
51 41 29)
52 42 2A *
53 43 2B +
54 44 2C ,
55 45 2D -
56 46 2E .
57 47 2F /
60 48 30 0
61 49 31 1
62 50 32 2
63 51 33 3
64 52 34 4
65 53 35 5
66 54 36 6
67 55 37 7
70 56 38 8
71 57 39 9
72 58 3A :
73 59 3B ;
74 60 3C <
75 61 3D =
76 62 3E >
77 63 3F ?

135

8 10 16 character
100 64 40 @
101 65 41 A
102 66 42 B
103 67 43 C
104 68 44 D
105 69 45 E
106 70 46 F
107 71 47 G
110 72 48 H
111 73 49 I
112 74 4A J
113 75 4B K
114 76 4C L
115 77 4D M
116 78 4E N
117 79 4F O
120 80 50 P
121 81 51 Q
122 82 52 R
123 83 53 S
124 84 54 T
125 85 55 U
126 86 56 V
127 87 57 W
130 88 58 X
131 89 59 Y
132 90 5A Z
133 91 5B [
134 92 5C \
135 93 5D]
136 94 5E ^
137 95 5F

8 10 16 character
140 96 60 ‘
141 97 61 a
142 98 62 b
143 99 63 c
144 100 64 d
145 101 65 e
146 102 66 f
147 103 67 g
150 104 68 h
151 105 69 i
152 106 6A j
153 107 6B k
154 108 6C l
155 109 6D m
156 110 6E n
157 111 6F o
160 112 70 p
161 113 71 q
162 114 72 r
163 115 73 s
164 116 74 t
165 117 75 u
166 118 76 v
167 119 77 w
170 120 78 x
171 121 79 y
172 122 7A z
173 123 7B {
174 124 7C |
175 125 7D }
176 126 7E ˜
177 127 7F DEL

Appendix E

Friendly advice

E.1 Comparison with other Lisp dialects

Some of the terminology may take some getting used to. We always say procedure instead of function, for
example. Special form and reserved word have special meaning. Syntax usually refers not to what the reader
does but to what the compiler does.

As in Common Lisp, but unlike most familiar Lisp dialects besides Scheme, T is lexically scoped.

As in Scheme, there is full support for lexical closures, and tail-recursive calls are reliably performed as jumps.

Generic operations are like message-passing. JOIN can be used to implement object systems analogous to the
Lisp Machine’s flavor system.

See also the equivalences appendix for some rough functional analogues.

E.2 Incompatibilities

The empty list is distinguished from the symbol whose print name is NIL. That is, (NEQ? NIL NIL)’. The value
of the variable NIL is the empty list. The empty list is the same as the logical false value currently, but these
two will be differentiated in the future.

All “global” variables must be declared using LSET before they are assigned using SET or BIND. This is quite
unlike most Lisp dialects where the first SETQ causes a variable to come into existence.

T has no FEXPR or NLAMBDA mechanism. Their effect may be accomplished using procedures or macros.

There are no SPECIAL declarations and no implicit dynamic binding. BIND must be used explicitly when a
variable is to be dynamically bound.

COND and CASE don’t yield nil in the fall-through case; they yield undefined values.

RETURN and GO-tags are not supported in DO. Lisp RETURN may be simulated using (CATCH RETURN ...).

NTH is incompatible with Maclisp’s function of the same name. Maclisp’s takes the index as the first argument
and the list as the second, instead of the other way around.

LAST returns the last element of the list, not the last pair , as in Maclisp. Maclisp’s LAST is like T’s LASTCDR.

APPEND isn’t defined to copy all but the last list. I.e. the language definition allows the implementation to yield
X, and not a copy of it, for (APPEND X ()’).

136

137

PUSH’s syntax is incompatible with that of PUSH in Maclisp and Common Lisp.

Locatives aren’t as cheap as they are in Lisp Machine Lisp; creating a locative may involve consing.

Appendix F

Future work

This appendix catalogs some ideas about T’s future development. It is provided as a stimulus for user input,
and as an assurance that these problems are known and are being addressed.

F.1 Language design problems

A system for managing multiple namespaces - loading files into appropriate environments, and communicating
names from one module to another in a controlled way - is sorely needed.

Better aggregate structures are needed (arrays, hash tables).

A condition/error signalling system is needed.

Each special form should be marked as being either primitive or a macro. This would allow users to write robust
program-manipulating programs using only the released language.

There should be a way to remove bindings from locales.

There ought to be able to have variables named by objects other than symbols. Maybe there ought to be a
generalized INTERN which creates a unique instance of any object, or something like OWL’s UCONS (unique cons)
primitive.

Should reintroduce DEFINE-LOCALE?

MEMQ, ASSQ, POSQ, etc. are inconsistent with the other aggregate accessing routines in that the aggregate
argument follows the index argument and not vice versa.

Ideas for list routines: SUBSET, FILTER, FIND, set operations.

Need a term more specific than “tree” for whatever those things are.

The tree manipulation routines (e.g. ALIKEV?) should be user-extensible. Big problem with what TREE-HASH
should do with unusual leaf nodes.

There should be a general way to do generic dispatches based on more than one argument.

There should be a non-side-effecting way to define methods for structures.

SYNONYM is a misleading name.

SETTER is inadequate. Why not PUSHER, SWAPPER, etc.? Is there any way to do this that’s at the same time
convenient, general, and efficient?

CASE and SELECT should use EQUIV? instead of EQ?.

138

139

Method-clauses aren’t incrementally redefinable. What to do about this. Objects handling many operations
become quite unmanageable. Maybe this is an implementation and editor problem, not a language problem.

The looping/iteration constructs are maybe a little too simple. Figure out some better ones without compro-
mising principles, if possible. Waters’ LetS looks sort of good.

CHECK-ARG is ad hoc. Need type inference and other compiler smarts. Need better type declaration syntax.

There should be case-ignoring character and string comparison predicates.

STRING-POSQ is not a good name.

STRING-REPLACE should probably be called STRING-REPLACE!, or flushed. Similarly with VECTOR-FILL, VECTOR-REPLACE.

The name DIGIT? is nconsistent with DIGIT->CHAR - does the term digit mean a character or an integer?

What about UPPERCASE? −→ UPPER-CASE?? Ugh.

Enumerated types.

Infinities?

Should NOT-ZERO? and friends be renamed to be NONZERO? etc.?

Divulge expression syntax for quasiquote?

Maybe release BOUND?.

Need a way to make read tables be read-only.

Need LET-SYNTAX-TABLE and LET-READ-TABLE features?

Maybe flush the random not-parsable-as-number-implies-symbol syntax feature. It can be a real pain to catch
typos in numbers.

I/O system improvements needed:

Streams are pretty random. How does a stream differ from a sequence? There should be ways to coerce
from streams to (infinite) sequences, and vice versa. Maybe the term stream should follow Sussman’s
usage (infinte sequence), not Common Lisp’s (pointer into same).

The FORMAT sublanguage is random and unextensible.

Block-mode and/or “binary” I/O, for database or whatever applications.

There ought to be a way to make the printer complain if it comes across an object which isn’t re-readable.

Ought to be a way to establish the line-length of a stream.

HPOS and VPOS aren’t precisely defined.

SPACE operation needs a better definition.

Structure package improvements needed:

DEFINE-STRUCTURE-TYPE features: initializers, variant record types, arguments to constructor procedure,
type-restricted fields, alternate name construction.

Maybe structures should have an official external syntax.

Structures ought to be callable.

COPY-STRUCTURE and COPY-STRUCTURE! ought to take as an additional argument the structure type to
which the structure belongs. Alternatively, a copying procedure could be associated with the structure
type object itself.

Maybe there ought to be a way to test initializedness of structure components.

140

F.2 Common Lisp influence

The design and implementation of T began around the same time that the Common Lisp design effort started
in earnest. Some of the goals of the projects have been similar; in many cases, the T designers left certain
problems for the Common Lisp designers to work out, intentionally ignoring many sticky issues, such as numeric
routines, sequences, and arrays, in order to work on other areas.

Now that the Common Lisp language has matured, and portable implementations are approaching reality,
two distinct integration projects are in order: importing ideas and facilities from Common Lisp into T (with
appropriate customization); and building a Common Lisp emulation package in T.

T itself will never contain Common Lisp as a subset, but it should be suitable as an implementation language
for a Common Lisp. This will probably take the form of alternate evaluator, reader, printer, and namespace,
together with a Common Lisp-to-T translator.

The following Common Lisp features, at least, should be incorporated into T in some form:

Arrays.

Sequences. (These would clean up a lot of the current clutter with the string and vector routines, but
introduce a new level of implementation hair.)

Multiple values. These can be simulated now with continuation-passing, but the syntax is clumsy.

Numeric routines. Ratios and complexes. Multiple floating point precisions.

SHIFTF and ROTATEF. (These are generalized versions of T SWAP and EXCHANGE.)

Hash tables.

FORMAT enhancements: floating-point formats, etc.

File dates. Time and date manipulation. Time and date parsing.

F.3 Bugs in the implementation

This implementation (T3.1) doesn’t implement everything described in this manual.

Not implemented: ATAN2, ROUND, PORT-POSITION, and TRUNCATE.

Many things are implemented incorrectly.

Deficiencies in syntax environments (they don’t exist per se) and in locales (shadowing loses).

GENERATE-SYMBOL: The implementation generates obscure names, but doesn’t guarantee uniqueness. That
is, the symbols are interned.

ANY? and EVERY? of more than one list don’t work.

GET and PUT work only on symbols.

READ-LINE and UNREAD-CHAR interact badly.

There is no way to trace an operation.

Many things are implemented less efficiently than they ought to be.

141

The garbage collector is slow. This should be fixed.

There ought to be an option to invoke the standard compiler on demand, as code is run, instead of all at
once, as code is loaded.

BIND is implemented in a pretty cons-intensive way; there’s a bigger performance penalty for dynamic
binding than one would find in other Lisp implementations.

“Lexprs” are inefficient because they always cons a list for the rest-variable.

The i/o system doesn’t do any buffering; this really slows down reading and printing a lot, most notably
the loading of code files.

Operation dispatch could be done using hash tables. DEFINE-OPERATION needs to do early binding. This
is feasible, but the implementation could become quite hairy.

Locales are permanent (!), and forward references to shadowed variables will lose big, especially with the
standard compiler.

The interpreter conses a lot more than it ought to. It ought to do some small amount of closure analysis,
or else use McDermott’s dynamic migration hack.

The combinator routines are pretty useless since TC doesn’t know anything about them. This should
be fixed. For example, ((COMPOSE CAR CDR) (A B C)’) is evaluated, even in compiled code, by actually
consing a procedure, and then invoking it.

Many things in the system are implemented less smoothly than they ought to be.

Many system routines still don’t check their argument types.

Redefining DEFINE-CONSTANT’ed and DEFINE-INTEGRABLE’d should report an error condition.

Newline characters following input lines come out at the wrong place in transcript files.

LOAD ought to be smarter about file dates, checking for recompilation, etc.

Interpreted QUOTE ought to enforce read-only-ness.

There ought to be a way to enforce the downwards-only-ness of escape procedures.

Missing features.

Help system.

More system self-knowledge: who calls x, who does x call, type analysis, etc. Masterscope-like stuff.

There should be a version of TRACE which destructively modifies a procedure so that it acts traced.

Appendix G

Notes on the 4th edition

This document is still far from finished. Future work required includes the following projects.

The preface ought to have a paragraph or two describing the organization of the manual.

The “language overview” and “language principles” sections need to be expanded. There should be a
description of the memory model of objects, in which objects are modeled by pointers into memory.

The form of procedure and special form description should be explained.

The section on types needs expansion and examples.

Tail recursion should be explained.

MAKE-ECHO-PORT should be described.

The external syntax of numbers should be described. Chapter 14 needs to give more detail.

Need to document HANDLER so that people know what to set a structure handler to. Need to describe
keyword clauses in OBJECT syntax.

There should be examples of the use of JOIN in implementing type hierarchies and heterarchies.

The introduction to the port chapter needs work. Also, port positions should be documented and imple-
mented.

There should be a section giving a brief description of how the implementation works at the machine level.
A full description should be relegated to an independent document, which should be written.

Need to discuss the VM system and reorganize the presentation of the user interface. Many more remarks
on error handling and debugging are in order.

142

Bibliography

[RA82] Jonathan A. Rees and Norman I. Adams IV. T: A dialect of lisp or, LAMBDA: The ultimate software
tool. In Proceedings of the 1982 ACM Symposium on Lisp and Functional Programming, pages 114–122,
August 1982.

[SS78] Guy Lewis Steele Jr. and Gerald Jay Sussman. The revised report on scheme, a dialect of lisp. Technical
report, AI Lab, MIT, Cambridge, Mass., January 1978.

[Ste84] Guy L. Steele Jr. Common Lisp: The Language. Digital Press, 1984.

[Whi79] Jon L. White. Nil: A perspective. In 1979 Macsyma Users’ Conference Proceedings, Washington, D.C.,
June 1979. Macsyma Users’ Conference.

[WM81] Daniel Weinreb and David Moon. Lisp Machine Manual. Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Cambridge, Massacusetts, third edition edition, 1981.

143

Index

—Symbols—
<, 59
<0?, 59
<=, 59
<=0?, 60
>, 59
>0?, 60
>=, 59
>=0?, 60
(), 24
*, 56
**, 133
*AND, 35
COMMAND-LINE, 132
*DEFINE, 31
EOF, 112
*IF, 36
*LSET, 31
MAX-FIXNUM, 152
MIN-FIXNUM, 152
NOTHING-READ, 104
*OR, 36
REPL-WONT-PRINT, 135
SCRATCH-ENV, 126
STANDARD-ENV, 126
STANDARD-READ-TABLE, 103
STANDARD-SYNTAX-TABLE, 107
T-IMPLEMENTATION-ENV, 142
T-VERSION-NUMBER, 142
TC-ENV, 143
*VALUE, 31
VANILLA-READ-TABLE, 103
+, 56
++, 133
->FLOAT, 62
->INTEGER, 62
-1+, 58
->FILENAME, 120
/, 56
=, 59
=0?, 59
##, 133
#F, 24

#T, 24
-, 56
1+, 58

—A—
ABS, 58
ACOS, 61
ADD, 56
ADD-TO-WEAK-SET, 100
ADD-TO-WEAK-SET!, 100
ADD1, 58
AEGIS-FS?, 119
ALIKE?, 73
ALIKEQ?, 73
ALIKEV?, 74
ALPHABETIC?, 85
ALWAYS, 95
AND, 35
ANY, 151
ANY?, 69
ANYCDR, 151
ANYCDR?, 151
APPEND, 68
APPEND!, 68
APPEND-REVERSE, 152
APPEND-REVERSE!, 152
application, 19
APPLY, 38
ARGSPECTRUM, 141
arguments, 19
ASCII codes, 157
ASCII->CHAR, 90
ASH, 61
ASIN, 61
ASS, 71
association list, 71
ASSQ, 71
ATAN2, 61
ATOM?, 65

—B—
backquote, 75
backquote, 102

144

145

BACKTRACE, 138
BIND, 46
binding, 27
BIT-FIELD, 62
BLOCK, 38
BLOCK0, 38
boolean, 24
BOOLEAN?, 97
BREAKPOINT, 134

—C—
C...R, 67
call by need, 41
CALL-WITH-CURRENT-CONTINUATION, 25
calling, 19
calls, 18, 19, 38
CAR, 67
CASE, 34
CATCH, 39
CDR, 67
CEILING, 57
CHAR, 87
CHAR<, 85
CHAR<=, 85
CHAR>, 85
CHAR>=, 85
CHAR->ASCII, 90
CHAR->DIGIT, 90
CHAR->STRING, 86
CHAR-DOWNCASE, 89
CHAR-READY?, 114
CHAR-UPCASE, 89
CHAR=, 85
CHAR?, 84
characters, 102
CHARN=, 85
CHDR, 87
CHDR!, 89
CHECK-ARG, 94
CHOPY, 88
CHOPY!, 88
CL, 129
CLEAR-INPUT, 114
CLOSE, 112
closure, 22
combinators, 95
COMFILE, 129
command, 133
command level, 133
COMMAND-LINE, 132
COMMENT, 93
comments, 102

COMPILE-FILE, 129
compiler, 106
compilers, 128
COMPLEMENT, 96
COMPOSE, 96
CONCATENATE-SYMBOL, 95
COND, 33
conditionals, 24, 33
CONJOIN, 96
CONS, 66
CONS*, 66
constituent characters, 102
CONTENTS, 46
continuations, 138, 139
contours, 27
COPY-LIST, 66
COPY-STRING, 86
COPY-STRUCTURE, 81
COPY-STRUCTURE!, 81
COPY-TREE, 74
COPY-VECTOR, 98
core language, 17
COS, 60
CRAWL, 139

—D—
DEBUG, 139
DEBUG-OUTPUT), 113
DECREMENT, 63
default method, 49
DEFINE, 30
DEFINE-CONSTANT, 95
DEFINE-ENUMERATED, 147
DEFINE-INTEGRABLE, 95
DEFINE-LOCAL-SYNTAX, 109
DEFINE-OPERATION, 52
DEFINE-PREDICATE, 52
DEFINE-SET-OF, 147
DEFINE-SETTABLE-OPERATION, 52
DEFINE-STRUCTURE-TYPE, 77
DEFINE-SYNTAX, 108
DEL, 69
DEL!, 70
DELAY, 41
delays, 41
delimiter characters, 102
DELIMITING-READ-MACRO?, 104
DELQ, 69
DELQ!, 70
destructive, 69
DESTRUCTURE, 74
DESTRUCTURE*, 75

146

DIGIT, 90
DIGIT->CHAR, 90
DIGIT?, 85
DISCLOSE, 142
DISJOIN, 96
DISPLAY, 115
DISPLAYWIDTH, 117
DIV, 57
DIV2, 57
DIVIDE, 56
DO, 36
dynamic binding, 46
dynamic state, 39, 46

—E—
early bindings, 95, 128
early bindings., 128
ELSE, 33, 34
end-of-file, 134
ENFORCE, 94
ENV, 128
ENV-FOR-SYNTAX-DEFINITION, 129
ENV-SYNTAX-TABLE, 107
Environments, 27
environments, 18
EOF, 112
EOF?, 111
EQ?, 23
EQUAL?, 59
equality predicate, 24
equality predicates, 23, 73
EQUIV?, 73
ERROR, 93
ERROR-OUTPUT), 113
errors, 94, 137
EVAL, 106
evaluation, 18
evaluator, 18
EVEN?, 56
EVERY, 151
EVERY?, 69
EVERYCDR, 151
EVERYCDR?, 151
EXCHANGE, 44
EXIT, 132
EXP, 60
expression syntax, 17, 106
expressions, 18
EXPT, 58
external representation, 17, 101

—F—

FALSE, 97
false, 24
FALSE?, 35
file, 122
file system, 119
file system object, 119
file systems, 119
FILE-DELETE, 123
FILE-EXISTS?, 122
FILE-MOVE, 123
filename, 120
FILENAME-DIR, 121
FILENAME-FS, 121
FILENAME-GENERATION, 121
FILENAME-NAME, 121
FILENAME-TYPE, 121
FILENAME->STRING, 121
FILENAME?, 121
files, 119
filespec, 120
fixnum, 152
FIXNUM->FLONUM, 153
FIXNUM-ABS, 153
FIXNUM-ASHL, 153
FIXNUM-ASHR, 153
FIXNUM-EVEN?, 153
FIXNUM-LOGAND, 153
FIXNUM-LOGIOR, 153
FIXNUM-LOGNOT, 153
FIXNUM-MAX, 153
FIXNUM-MIN, 153
FIXNUM-ODD?, 153
FIXNUM-REMAINDER, 153
FIXNUM?, 152
FL<, 153
FL<=, 153
FL*, 153
FL+, 153
FL-, 153
FL/, 153
FL=, 153
FL>, 153
FL>=, 153
FLN=, 153
FLOAT?, 55
FLONUM->FIXNUM, 153
FLOOR, 57
FORCE, 41
FORCE-OUTPUT, 116
FORMAT, 116
forms, 18
frames, 139

147

free lists, 99
FRESH-LINE, 115
functions, 22, 161
FX<, 153
FX<=, 153
FX*, 153
FX+, 153
FX-, 153
FX-REM, 153
FX/, 153
FX=, 153
FX>, 153
FX>=, 153
FXN=, 153
FXREM, 153

—G—
garbage collection, 99, 100, 143
GC, 143
GC-NOISILY?, 143
GC-STATS, 143
GCD, 58
GENERATE-SYMBOL, 95
GET-ENVIRONMENT, 142
GRAPHIC?, 84
GREATER?, 59

—H—
handler, 49
hash code, 74
HASH-TABLE?, 149
Hexadecimal, 102
hexadecimal, 116
HPOS, 117

—I—
IDENTIFICATION, 141
identifiers, 27
IDENTITY, 95
identity, 23
IF, 34
IGNORABLE, 93
IGNORE, 93
implementation environment, 125
IMPORT, 31
INCREMENT, 62
initialization file, 132
INPUT-PORT?, 111
inspector, 138
INTEGER?, 55
interactive, 111
INTERACTIVE-PORT?, 111
interrupts, 134

INVOKE-MACRO-EXPANDER, 110
invoking, 19
ITERATE, 37
iteration, 36

—J—
JOIN, 52
joined object, 53

—K—
KWOTE, 109

—L—
LABLES, 28
LAMBDA, 22
LAST, 67
LASTCDR, 68
lazy evaluation, 41
LENGTH, 68
LESS?, 59
LET, 28
LET*, 28
LET-SYNTAX, 108
lexical scoping, 22
LINE-LENGTH, 117
LIST, 66
LIST->STRING, 86
LIST->VECTOR, 98
LIST-TERMINATOR, 105
LIST?, 65
lists, 18
literals, 18, 21
LOAD, 128
LOAD-NOISILY?, 135
LOAD-OUT-OF-DATE-ACTION, 128
loading, 126
local file system, 119
local syntax, 108
LOCAL-FS, 119
locale, 30
LOCALE?, 31
locations, 43
LOCATIVE, 45
LOCATIVE?, 46
locatives, 43
LOG, 60
LOGAND, 61
LOGIOR, 61
LOGNOT, 61
LOGXOR, 61
loops, 36
LOWERCASE?, 85
LSET, 30

148

—M—
macro expanders, 107
MACRO-EXPAND, 110
MACRO-EXPANDER, 110
MACRO-EXPANDER?, 110
macros, 107, 140
MAKE-BROADCAST-PORT, 118
MAKE-EMPTY-LOCALE, 31
MAKE-FILENAME, 120
MAKE-HASH-TABLE, 149
MAKE-LIST-READER), 105
MAKE-LOCALE, 31
MAKE-OUTPUT-WIDTH-PORT, 117
MAKE-POOL, 99
MAKE-RANDOM, 150
MAKE-READ-TABLE, 103
MAKE-STRING, 86
MAKE-STRING-TABLE, 150
MAKE-STYPE, 78
MAKE-SYMBOL-TABLE, 150
MAKE-SYNTAX-TABLE, 107
MAKE-TABLE, 150
MAKE-VECTOR, 97
MAKE-WEAK-SET, 100
MAP, 70
MAP!, 70
MAP-STRING, 88
MAP-STRING!, 88
MAPCDR, 70
MAX, 58
MAYBE-OPEN, 122
MAYBE-READ-CHAR, 113
MEM, 151
MEM?, 69
MEMQ, 151
MEMQ?, 69
method, 49
MIN, 58
MOD, 58
MODIFY, 44
MODIFY-LOCATION, 44
MOST-NEGATIVE-FIXNUM, 152
MOST-POSITIVE-FIXNUM, 152
MULTIPLY, 56

—N—
N=, 59
N=0?, 60
NEGATE, 56
NEGATIVE?, 59
NEQ?, 23
NEWLINE, 115

NIL, 25
noise file, 129
NOT, 35
NOT-EQUAL?, 59
NOT-LESS?, 59
NOT-NEGATIVE?, 60
NOT-POSITIVE?, 60
NOT-ZERO?, 60
NOTHING-READ, 104
NTH, 67
NTHCDR, 67
NTHCHAR, 87
NTHCHDR, 87
NTHCHDR!, 89
NULL-LIST?, 66
NULL?, 65
number, 17
NUMBER-OF-CHAR-CODES, 90
NUMBER?, 55
numbers, 55, 102

—O—
OBJECT, 50
object file, 129
OBJECT-HASH, 99
OBJECT-UNHASH, 99
objects, 17, 21, 50
OBTAIN-FROM-POOL, 99
octal, 102, 116
ODD?, 56
OPEN, 122
OPERATION, 51
operation, 49
OPERATION?, 52
OR, 35
ORBIT, 129
ORBIT-ENV, 143
OUTPUT-PORT?, 111

—P—
PAIR?, 65
parentheses, 102
patch file, 131
PEEK-CHAR, 114
PEEKC, 114
pools, 99
POP, 71
PORT-NAME, 122
PORT-READ-TABLE, 117
PORT?, 111
ports, 111
POS, 152

149

POSITIVE?, 60
POSQ, 152
PP, 138
predicate, 24
PRETTY-PRINT, 115
PRINT, 115
PRINTWIDTH, 117
PROCEDURE?, 38
procedures, 22, 37
PROJ0, 96
PROJ1, 96
PROJ2, 96
PROJ3, 96
PROJN, 95
PROPER-LIST?, 66
PUSH, 71

—Q—
quasiquote, 75
quasiquote, 102
QUOTE, 21, 102
QUOTIENT, 57
QUOTIENT&REMAINDER, 57

—R—
RATIO?, 56
RATIONAL?, 55
READ, 114
read macros, 104
read tables, 101, 103
READ-CHAR, 113
READ-ERROR, 94
read-eval-print loop, 132, 133
READ-LINE, 114
READ-OBJECT, 101
READ-OBJECTS-FROM-STRING, 114
READ-REFUSING-EOF, 114
READ-TABLE, 127
READ-TABLE-ENTRY, 103
READC, 113
reader, 101
RECEIVE, 40
RECEIVE-VALUES, 40
REMAINDER, 57
REMOVE-FROM-WEAK-SET, 100
REMOVE-FROM-WEAK-SET!, 100
REPL-ENV, 133
REPL-EVAL, 135
REPL-PRINT, 135
REPL-PROMPT, 135
REPL-READ, 134
REPL-WONT-PRINT, 135

REPL-WONT-PRINT?, 135
reserved word, 18
reserved words, 107
RESET, 134, 155
RET, 38
RETURN, 39
RETURN-TO-POOL, 99
REVERSE, 68
REVERSE!, 68
ROUND, 57
routines, 22
RUN-COMPILED-CODE, 106

—S—
SCHEME-BREAKPOINT, 155
SCHEME-RESET, 155
scope, 22, 27
SELECT, 34
SELECTOR-ID, 80
SET, 43
SET-BIT-FIELD, 62
SETTER, 44
shadowing, 27
side-effect, 43
side-effects, 18
SIN, 60
source files, 126
SPACE, 116
special forms, 18, 107
SQRT, 60
stack, 139
standard environment, 17, 126
STANDARD-COMPILER, 106
STANDARD-ENV, 126
STANDARD-INPUT, 113
STANDARD-OUTPUT, 113
STANDARD-READ-TABLE, 103
STANDARD-SYNTAX-TABLE, 107
state, 18, 43
STOP, 132
string header, 88
string text, 88
STRING->INPUT-PORT, 112
STRING->LIST, 86
STRING->SYMBOL, 91
STRING-APPEND, 86
STRING-DOWNCASE, 89
STRING-DOWNCASE!, 89
STRING-ELT, 87
STRING-EMPTY?, 87
STRING-EQUAL?, 86
STRING-HEAD, 87

150

STRING-LENGTH, 86
STRING-NTHTAIL, 87
STRING-NTHTAIL!, 89
STRING-POSQ, 88
STRING-REPLACE, 88
STRING-SLICE, 87
STRING-TABLE?, 150
STRING-TAIL, 87
STRING-TAIL!, 89
STRING-UPCASE, 89
STRING-UPCASE!, 89
STRING?, 84
strings, 102
structure type, 77
STRUCTURE-TYPE, 142
STRUCTURE?, 80
structures, 77
stype, 77
STYPE-CONSTRUCTOR, 79
STYPE-HANDLER, 80
STYPE-ID, 79
STYPE-MASTER, 79
STYPE-PREDICATOR, 79
STYPE-SELECTOR, 80
STYPE-SELECTORS, 80
SUBLIST, 69
SUBST, 74
SUBSTQ, 74
SUBSTRING, 87
SUBSTV, 74
SUBTRACT, 56
support environments, 128
support file, 129
SWAP, 44
symbol, 17, 18, 95
SYMBOL->STRING, 91
SYMBOL-TABLE?, 150
SYMBOL?, 24
symbols, 24, 102
syntax descriptors, 107
syntax tables, 101, 107
SYNTAX-ERROR, 94
SYNTAX-TABLE, 127
SYNTAX-TABLE-ENTRY, 107

—T—
T, 25
T-IMPLEMENTATION-ENV, 142
T-RESET, 155
TABLE-ENTRY, 149
TABLE?, 150
TAN, 60

TC-SYNTAX-TABLE, 129
TERMINAL-INPUT, 113
TERMINAL-OUTPUT, 113
test, 24
throws, 39
TIME, 143
TRACE, 138
transcript, 134
TRANSCRIPT-OFF, 134
TRANSCRIPT-ON, 134
tree, 73
TREE-HASH, 74
TRUE, 97
true, 24
TRUE?, 97
TRUNCATE, 57
truncate, 58
truth value, 24
type, 25, 94
type predicate, 25

—U—
undefined, 19, 94
undefined effects, 129
UNDEFINED-EFFECT, 94
UNDEFINED-VALUE, 94
UNIX-FS?, 120
UNREAD-CHAR, 114
UNREADC, 114
UNTRACE, 138
UNWIND-PROTECT, 47
UPPERCASE?, 85
user environment, 125
USER-ENV, 126

—V—
values, 27
VANILLA-READ-TABLE, 103
variables, 18, 27
VECTOR->LIST, 98
VECTOR-ELT, 98
VECTOR-FILL, 98
VECTOR-LENGTH, 98
VECTOR-POS, 98
VECTOR-POSQ, 98
VECTOR-REPLACE, 98
VECTOR?, 97
vectors, 97, 102
version numbers, 131
VMS-FS?, 120
VPOS, 117
VREF, 98

151

VSET, 98

—W—
WALK, 70
WALK-STRING, 88
WALK-SYMBOLS, 142
WALK-TABLE, 150
WALK-VECTOR, 98
WALK-WEAK-SET, 100
WALKCDR, 70
weak pointers, 99
weak sets, 100
WEAK-SET->LIST, 100
WEAK-SET-EMPTY?, 100
WEAK-SET-MEMBER?, 100
weight, 90
WHERE-DEFINED, 141
whitespace, 85, 101
WHITESPACE?, 85
WITH-INPUT-FROM-STRING, 112
WITH-OPEN-PORTS, 112
WITH-OUTPUT-TO-STRING, 112
WITH-OUTPUT-WIDTH-PORT, 117
WRITE, 115
WRITE-CHAR, 115
WRITE-LINE, 115
WRITE-SPACES, 115
WRITE-STRING, 115
WRITEC, 115
WRITES, 115

—X—
XCASE, 34
XCOND, 34
XSELECT, 35

—Y—
yield, 18

—Z—
ZERO?, 59

