Copyright Notice
The following manuscript

EWD 215: A Case against the GO TO Statement
was published as a letter entitled

Go-to statement considered harmful

in Commun. ACM 11 (1968), 3: 147-148. It is reproduced here by
permission.

' Ewp215 - 0O

A Case against the GO TO Statement.

by tdsger W,Dijkstra
Technological Urniversity

Eindhoven, The Netherlands

Since a number of years I am familiar with the observation that the
quality of programmers is a decreasing function aof the density of go to
statements in the programs they produce. Later I diseovered why the use of
the go to statement has such disastrous effects and did I become convinced
that the go to statement should be abolished from all "higher level"
programming languages (i.e. everything except -perhaps- plain machine code).
At that time I did not attach too much importance to this discovery; I now
submit my considerations for publication because in very recent discussions

in which the subject turned up, I have been urged to do so.

My first remark is that, although the programmer's activity ends when
he has constructed a correct program, the process taking place under contraol
of his program is the true subject matter of his activity, for it is this
process that has to effectuate the desired effect, it is this process that
in its dynamic behaviour has to satisfy the desired specifications. Yet,
ance the program has been made, the "making™ af the corresponding process is

delegated to the machine.

My second remark is that our intellectual powers are rather geared to
master static relations and that our powers to visiulize processes evolving
in time asre relatively poorly developed. For that reason we should da (as
wise programmers aware of our limitations) our utmost best to shorten the
conceptual gap between the static program and the dynamic process, to make
the correspondence between the program (spread out in text épace) and the

process (spread out in time) as trivial as possible.

' Let us now consider how we can charescterize the progress of a process.
(You may think about this guestion in a very concrete manner: suppose that
@ process, considered as a time succession of actions, is stopped after an
arbitrary action, what data do we have to fix in order that we can redo the
process until the very same point?) If the program text is a pure concatenation

of, say, asaignment statements (for the purpose of this discussion regarded

EwD215 ~ 1

as the descriptions of single actions) it is sufficient to point in the
program text to a point between two successive action descriptions. (In the
absence of go to statements I can permit myself the syntactic ambiguity in

the last three words of the previous sentence: if we parse them as "successive
(action descriptions)" we mean successive in text space, if we parse as
"(successive action) descripticné" we mean successive in time.) Let us

call such a pointer to a suitable place in the text a "textual index",

When we include conditional clauses (ﬁiﬁ B then A"), alternative
clauses ("if B then Al else A2"), choice clauses as introduced by A.R.Heare
(ﬂgggg[i] Ei(A1, A2,.....,An)") or condional expressions as introduced by
J.McCarthy ("Bl - E1, B2 - E2,....., Bn - En"), the fact remains that the

progress of the process remains characterized by & single textual index.

As soon as we include in our language procedures we must admit that a
single textual index is no longer sufficient: in the case that a textual
index points to the interior of a procedure body the dynamic progress is
only characterized when we also give to which call of the procedure we refer.
With the inclusion of procedurss we can characterize the progress af the
process via a sequence of textual indices, the length of this sequence
being equal to the dynamic depth of procedure calling.

Let us now consider repetition clauses (1ike "while B repeat A" or

"repeat A until B"), Logically speaking, such clauses are now superfluous,

because we can express repetition with the aid of recursive procedures.

For reasons of realism I dan't wish to exclude them: on the one hand
repetition clauses can be implemented quite comfortable with present day
finite equipment, on the other hand the reasoning pattern known as "inductien"
makes us well equipped to retain our intellectual grasp on the processes
generated by repetition clauses. With the inclusion of the repetition clauses
textual indices are no longer sufficient to describe the dynamic progress

of the process, With each intry into a repetitien clauses, however, we can
associate a so-called "dynamic index", inexorably couting the ordinal number
of the corresponding current repetition. As repetition clauses (just as
pracedure calls) may be applied nestedly, we find that now the progress of
the process can always be uniquely characterized by a (mixed) sequence of

textual and/or dynamic indices.

EWD215 ~ 2

The main point is that the value of these indices are outside
programmer's control: they are generated (either by the write up of his
program or by the dynmamic evelution of the process) whether he wishes ar
not. They provide independen coordinates in which ti describe the Progress

of the process,

Why do we need such independent coordinates? The reason is -and this
seems to be inherent to sequential processes- that we can interpret the
value of a variable only with respect to the proagress of the process. If
we wish to count the number, "n" say, of people in an initially empty room,
we can achieve this by increasing "n" by 1 whenever we see someone entering
the room: in the in-between moment that we have observed someone entering
the room but have not yet performed the subseguent increase of "n", its

value equals the number of people in the room minus one!

The unbridled use of the go to statement has as an immediate consedquence
that it becomes terribly hard to find a meaningful set of coordinates in
which to describe the process progress. Usually, people take into account
88 well the values of some well chosen vériables, but this is out of the
question becuase it is relative to the progress that the meaning of these
values is to be understood! With the go to statement one can, of course,
still describe the progress uniquely by a counter counting the number of
actions performed since program start (viz. a kind of normalized clock).
The difficulty is that such a coordinate, although unique, is utterly
unhelpful: in such a coordinate system it becomes an extremely complicated
affair to define &ll those points of progress where, say, "n" eguals the

number of persons in the room minus one!

The go to statement as it stands is just too primitive, it is too much
an invitation to make a mess of one's program. One can regard and appreciate
the clauses considered as bridling its use. I do not claim that the clauses
mentioned are exhaustive in the sense that they will satisfy all needs; but
whatéver clauses ars suggested (a.g. zbortion clauses) they shoudd satisfy
the requirement that a programmer independent coordinate system can be

maintained to describe the prucess in a2 helpful and manageable way.

EWD215 - 3

It is hard to end this article with a fair acknowledgement: am I tog
judge by whom my thinking has been influenced? It is fairly obwvious that I
am not uninfluenced by Peter Landin and Christopher Strachey and that I do
not regret their influence upon me. Finally I should like to record {as 1
remember it quite distinctly) how‘Heipz Zemanek at the pre-ALGOL meeting
in early 1959 in Copenhagen quite explicitly expressed his doubts whether
the go to statement should be treated on equal syntactic footing with the
agsignment statemsnt. To & modest extent I blame myself for not having then

drawn therconsequences of his remark.

