EWD692 - 0

A review of the 1977 Turing Award Lecture by John Backus.

The last sentence of the first section (titled: "Conventional Pro-

gramming Languages: Fat and Flabhy")} of this paper [1] captures it well:

"The purpose of this article is twofold; first, io suggest that basic
defects in the framework of conventional languages make their expressive
weakness and their cancerous growth inevitable, and second, to suggest
some alternate [meant is "alternative", EWD] avenues of exploration

toward the design of new kinds of languages.”

Of the 28 pages, about a guarter has been devoted to the first purpose,
and for a justification of the research described in the rest of the paper
that seems a bit too much of a goced thing. (By way of comparison, in the Ph.D
thesis of Martin Rem [2] , who also explored a new kind of language, the

fallowing justification sufficed:

"Present-day programming languages reflect present-day technolagy.
New techniques --associative addressing, large scale integration (LSI)-—
are being developed. These new techniques may very well allow for a

truthful implementation of. radically different programming languages.")

Hesides being too long for a justification, that first part is also in other
respects not fully satisfactory. It bemoans the clumsiness engendered by

the conventional architecture ("In fact, conventional languages create un-
necessary confusion in the way we think about programs.”" and "Surely there
must be a less primitive way of making big changes in the store than by push-
ing vast numbers of words back and forth through the von Neumann bottleneck,™);
but in the second part of the paper, where Backus sketches an alternative,
matters of implementation are hardly touched upon (“EFficiency questions are
beyond the scope of this paper.") He presents "the present condition of
obesity"™ of today's programming languages almost as a historical necessity

--a kind of reasoning I have learned to mis{rust since World War II-- with
"the von Neumann bottleneck™ as its necessary and sufficient cause. But isn't
that a bit too much of a simplification? {He writes "The Department of De-
fense has current plans for a committee-designed language standard that could
require a manual as lang as 1,000 pages.™ as if that manual would then be the

only over-elahorate document within the DoD!) He writes that "smaller, more



EWD692 - 1

elegant languages such as Pascal continue to be popular", where in the case

of Pascal "rapidly gaining in popularity" would be more accurate, He presents
the proving of the correctness of prngrams-as an activity reserved for geniuses:
"The complexity of this axiomatic game of proving facts about von Neumann pro-
grams makes the successes of its practitioners all the more admirable. Their
success rests on two factors im addition to their ingenuity". And then comes
his fundamental complaint "In any case, proofs ahout programs use the language
of logic, not the language of programs. Proofs talk gbout programs but cannot
involve them directly [? EWD] since the axioms of von Neumann languages are

so unusable." and he presents as an advantage --without questioning-- that in
his system "Algebraic transformations and proofs use the language of the
programs themselves, rather than the language of logic, which talks about
programs," I am not quite sure what is meant by talking proofs and talking
logic. But whereas machines must be able to execute programs (without under-
standing them), people must be able to understand them (without executing
them). These two activities are so utterly disconnected --the one can take
place without the other-- that I fail to see the claimed advantage of being

s0 "monolingual”, (It may appear perhaps as an advantage to someone who has
not grasped yet the postulational method for defining programming language
semantics and siill tries to understand programs in terms of an underlying
computational model. Backus's section "Classification of Models" could be

a further indication that he still belongs to that category. If that indi-
cation is correct, his objection is less against von Neumann programs than

against his own clumsy way of trying to understand them.)

The rest of the paper is devoted to "Functional Programming Systems"
(9 columns), "The Algebra of Programs for FP Systems" (15 columns), "Formal
Systems for Functional Programming (6 columns), "Applicative State Trans-

ition Systems" (8 columns) and 4 columns remarks and summary.

Functional Programming Systems are characterized by:

"An FP system has a single operation, application. If f is a
function and x is an object, then fix ds an application and de-
notes the object which is the result of applying f to x .

f is the operator of the application and x is the operand."



EwDegz - 2

Objects are "bottom" (or "undefined"), atoms, or sequences of objects,
and a whole set of primitive functions is suggested that inspect, shorten,
extend, merge, distribute, and massage objects. Most of these operations are
defined in terms of rearranging and/Dr deleting and/ar creating multiple

copies of sequence elements. Collectively I shall call them "shunting operations”.

Next a set of Functional Forms is given, i.e. ways of combining or
modifying functions into new functions --Composition, Construction, Insert,
Apply to All (which applies a function to all elements of its operand sequence
separately) etc.-—~ . The examples are very traditional (facterial, inner-
product, matrix multiplication); but already the matrix multiplication --a
prablem that seems specially designed for such systematic shunting operations--
displays what seems characteristic for this style of functional programming.

In order to transform < m, n> into < m, trans:n > we must apply the

function [1, tran502] which leads to the following computational steps:

[1, transe2]: <m, n > = (Construction)
<1: <m, n >, (transe2}: <m, n >3>= (Eumpusition)
<1: <m, n > trans:(2: <m, n >') > o= (SBlection, twice)

< m, trans:n >

In the first step each of the component functions in the construction (nqn
and "transe2" , respectively) is combined with the total operand <m , n >
--a sequence af two matrices-- from which in the last step (SElBCtiDH) each
extracts the half it really needs. If the matrices m and n are sizeable ,
a naive implementation that first copies those matrices and then kicks out
half of it again seems absolutely unacceptable on any machine --von Neumann

or not-- . The guestion should be raised what we have achieved. Have we done
more than creating a new environment for optimizing compilers? (If that op-
timization task were well-understood, such a goal could be defended.) The
first impression that his functional programming style invites implementations
with & lot of concurrency should be complemented by the remark that it invites
a lot of traffic that the von Neumann machine doesn't need. Backus's claim
that his program "does not name its arguments" is a bit silly, as he distin=
guishes explicitly between them by ordinal number. (Why didn't the ALGOL
Committee make it a language rule that formal parameters would always be

identified by "parl, par2, par3, ..." etc. ?)



EWD692 - 3

In the next section "The Algebra of Programs for FP Systems" Backus
repeats himself --~even more sickeningly: in section 9 he did not go further
than referring to "real" programming languages (I was reminded of the general
who stated that "MATO was obviously not interested in artificially simplified
languages such as PASCAL"™), here we even meet our old friend "the average
programmer"-- I guote (rather fully in order to show how repetitive Backus

writes):

"So far, proving a program correct requires knowledge of some moderately
heavy topics in mathematics and logic [...]. But its theoretical level
places it beyond the scope of most amateurs who work cutside this spe-
cialized field.

If the average programmer is to prove his programs correct, he will
need much simpler techniques than those the professionals have so far
put forward. The algebra of programs below may he one starting point
for such a proof discipline and, coupled with current work on algebraic
manipulation, it may also help provide a basis for automating some of
that discipline.

One advantage of this algebra over other pruof technigues is that
the programmer can use his programming language as the language for
deriving proofs, rather than having to state proofs in a separate

logical system that merely [sic!] talks about his programs,"

The section does not present the type of mathematics that I have learned to
appreciate for its effectiveness, as the proofs contain a lot of repetitions
of the same formulase or parts thereof, and are mot free from laboricusly be-

labouring the obvious. He concludes one subsection with:

"This example (by J.H.Morris, Jr,) is treated more elegantly in
[Manna, Z,, Ness, 5., and Vuillemin, J. Inductive methods for proving
properties of programs, Comm.ACM, 16, 8 (Aug. 1973) 491 - 5027 on
p.498. However, some mey find that the above treatment is more con-
structive, leads one more mechanically to the key guestions, and

provides more insight into the bebavior of the two functions."

The use of the expression “the behavior of functions" is telling,

In the next section "Formal Systems for Functional Programming" are

presented, the change being that objects can be used to represent functions.



EwWD692 - 4

The notation gets more complicated; typically here Greek letters enter the
game. In the last section “Applicative State Transition Systems" Backus
seems to try teo have his cake and eat it. The example was more elaborate
than I wished to cope with and seemed to me a good starter for a 1,000

page manual.

from his "Remarks About Computer Design" I quote:

"There are numercus indications that the applicative style of
programming can become more powerful [sic!] than the von Neumann

style."

He may be right, but where are those numerous indicatians? I did not get

them from his article.

In short, the article is a progress report on a valid research effort
but suffers badly from aggressive overselling of its significance, long before
convincing results have been reached. This is the more regrettable as it has

been published by way of Turing Award Lecture.

[1] Backus, J., Can Programming Be Liberated from the wvon Neumann 5tyle?
A Functional Style and its Algebra of Programs,, Comm,ACM, 21, 8
(Aug. 1978) 613 - 641

[2] Rem, M,, Associons and the Closure Statement, Ph.D. Thesis, Eindhoven

University of Technology, 12 Octiober 1976

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL NUENEN Burroughs Research Fellow
The Netherlands



