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D E S C R I P T I O N  OF ZIL 

"ZIL"  is an implementation of Lisp on 
MVS/XA running on an IBM 3090-200 
System/370 mainframe at the Charles Stark 
Draper Laboratory. The system includes a 
full Lisp interpreter and compiler, as well as a 
full-screen dialog user interface developed in 
IBM's ISPF (Interactive System Productivity 
Facility) product. 

ZIL began life as an outgrowth of the 
Lisp 1.5 interpreter written by J. F. Bolce at 
the University of Waterloo, previously the 
only available MVS Lisp at the Laboratory. 
In order for the first ZIL compiler to be 
coded, the Waterloo interpreter was locally 
modified to permit features such as multiple 
input and output files, macro definitions and 
optional arguments to selected functions. 
Once the compiler was able to generate a 
complete top-level Lisp program, it was used 
to build the ZIL interpreter (which was itself 
coded in ZIL),  and then to bootstrap the ZIL 
compiler. This process w a s  then repeated 
using ZIL as its own bootstrapping 
environment. 

As ZIL has been developed, features from 
other dialects (chiefly Maclisp) have been 
added and progress is being made toward the 
goal of  Common  Lisp compatibility. ZIL 
supports a wider variety of features than did 
its parent system, including comprehensive 
reader syntax that permits both Lisp 1.5-style 
code and Common Lisp-style code to be 
loaded. 

Although ZI L is being made 
CL-compatible when possible, there are still 
areas where it differs. For example, ZIL's  
"special" variables do not behave exactly as 
they are supposed to in CL, but more  like 
traditional Lisp "free" variables. 

At this time ZIL  does not have packages, 
hashtables, multiple values, or numerous 
other advanced facilities documented in Steele 
(1984). However, most of  the basic features 
are present, certainly enough to load in the 

typical Lisp source program. In any case, 
incompatibilities with other dialects may be 
overcome by many means, notably the 
DEFLOAD special form (see below). 

Data Typing 

ZIL has the standard data types of 
conses, symbols, fixnums, and flonums; it also 
has bignums, strings, vectors, compiled code 
subroutines, compiled and interpreted lexical 
closures, and structures (used by 
DEFSTRUCT to i m p l e m e n t  user type 
extensions). Functions are available to build 
objects of one type from objects of another, 
as well as to coerce between types. 

Type information is contained in the 
high-order 8 bits of  each ZIL object; this 
technique works better on 370 than a 
typed-pointer architecture, since the hardware 
makes it easier to test bits in memory than to 
test bits in registers. 31-bit addressing 
support is not compromised, since the 
high-order byte of each object is considered to 
contain type information only if the 
high-order bit is one (signifying an "atom"). ~ 
When the high-order bit is zero, the object is 
a cons, and its CAR may easily contain a 
31-bit address, as none of the other bits in the 
high-order byte are meaningful to the type 
scheme in that case. 

System-Specific Functions 

ZIL functions are stored externally as 
MVS load modules, and are brought in by the 
ZIL loader, which uses MVS program fetch 
facilities to load the code and then does its 
own relocation of function pointers. Not only 
does this format permit the same functions to 
be linkedited into top-level ZIL programs, but 
it allows low-level ZIL  functions to be coded 
in assembler and easily integrated into the 
system. 

The DEFLOAD special form is used in 
ZI L to provide "shadowing" and 
compatibility with other Lisp dialects; its main 

The high-order bit is ignored during addressing access in both 24-bit and 31-bit address 
modes in the 370 Extended Architecture. 
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purpose, however, is to map Lisp function 
names to names of compiled code load 
modules that res ide ,on direct access MVS 
libraries. Since IBM restricts load module 
names to 8 alphanumeric characters, it is 
necessary (for pu rposes  of linking and 
automatic loading) to provide alternate 
IBM-compatible names for functions whose 
traditional name does not meet this standard. 
Thus, names of 8 characters or less are 
associated with function symbols via 
DEFLOAD. This works under both the 
interpreter and the compiler; in the latter case 
DEFLOAD is used to assign• an external 
name in the generated code which may be 
resolved at link time or execution time. 
DEFLOAD is intimately related to the ZIL 
autoloading process described later. 

ZIL has a "TSO" function, providing an 
interface to MVS's native interactive 
time-sharing system (similar to a "DOS" 
function on a microcomputer 
implementation). This permits the execution 
of TSO commands and command procedures 
(CLISTs) inside the ZIL environment. 

Note: MVS provides a service to 
invoke TSO commands from 
within a user program 
running under TSO, available 
only if the TSO/Extensions 
product is purchased. 
However, ZI L's 
implementation of this does 
not require TSO/Extensions 

• to be present. 

There is a group of functions which 
enable the user to write ISPF dialogs in ZIL; 
these invoke ISPF dialog services using the 
"ISPEXEC" syntax familiar to CLIST writers, 
and can retrieve and update values of ISPF 
dialog variables. This facility has been used 
to implement the !SPF dialog writing 
capability available in the MVS 
implementation of DOE-Macsyma. (IBM's 
ISPF version 2 is required for this facility.) 

IBM's VS FORTRAN subroutine library 
is used to implement many numerical 
functions, insuring the highest possible degree 
of accuracy. 

The arbitrary-precision integer (bignum) 
support is coded entirely in highly optimized 

assembler; intermediate consing is virtually 
eliminated. 

A number of PL/l-like string operations 
are present in ZIL, making it useful for 
real-life applications like text processing. 

A unique approach to handling attention 
interrupts (the MVS/3270 equivalent of the 
"break" key) insures recoverability to any 
desired level of  computation without the 
implementation's having to resort to the 
standard MVS means of handling attentions 
(generally either subtasking or the generation 
of polling instructions in compiled and other 
run-time code). 

Lambda list features of both Maclisp 
(FEXPR's, LEXPR's) and Lisp Machine Lisp 
(full nested destructuring of arguments for all 
lambda lists) are supported, including full 
support for &OPTIONAL, &REST, &AUX 
and &KEY variables, in both the interpreter 
and the compiler (well, actually FEXPR's are 
simulated in the compiler). 

IMPLEMENTATION - 

The IBM 370 architecture has an 
undeserved reputation for being an 
impediment to the implementation of 
functional programming languages like Lisp. • 
We have never found any difficulty with the 
architecture, especially since we have been 
programming in it so long, but there are some 
built-in difficulties associated with using the 
MVS operating system, as opposed to VM, 
for example. 

The memory management schemes chosen 
are directly affected by the absence of any 
way under MVS (under the constraint of  
remaining in problem program state) to 
declare pages of memory read-only. Because 
of  this, ZIL cannot rely on tricks like 
protection interrupts to control allocation of 
storage. However, through use of  a handful 
of registers dedicated throughout the ZIL 
environment, we are able to maximize speed 
of most CONS operations by maintaining 
pointers to the beginning and end of the 
current "free list" in registers. 
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In-line compiled lists present another, 
more intractable problem. MVS does not 
provide a way to change the protection status 
of  an area of  memory at run time, and does 
not even allow the programmer to allocate 
read-only pages. Since in-line lists are 
physically part of  loaded compiled code, and 
there is no convenient way to prevent such 
objects from being updated via RPLACA-type 
operations, an exposure exists. We deal with 
the problem at this time by advising users not 
to compile in-line lists unless they are sure 
that they will not be clobbered. The garbage 
collector will not be able to sweep such 
objects. However, a total object,copying 
scheme for loading compiled lists and atoms 
may be implemented at some point • to resolve 
this; although it will not prevent destructive 
updating, it will at least prevent corruption of  
such objects following a GC. 

ZIL Internals and Philosophy 

ZIL was designed from the beginning to 
be as fast as possible without compromising 
maintainability. The function call interface, 
for example, does a minimal amount of 
register saving and restoring, and many 
low-level routines do not save register 
contents at all. Since the IBM 370 does not 
have a hardware stack, stack locations are 
pushed and popped lexically within a 
function, altering the stack frame offset at 
compile time rather than at execution time. A 
three-instruction sequence at the beginning of 
each routine checks for stack overflow. The 
coding of  many functions in assembler reduces 
the need for consing and permits values to be 
kept in registers more frequently. 

The emphasis on efficiency is at the 
expense of  compile-time error checking and 
debugging, Calls from one compiled code 
subroutine to another are not traceable, and 
compiled-to-interpreted code transfers of  
control must be effected via calls to APPLY 
or FUNCALL.  Error checking is minimal in 
compiled code; the interpreter will detect 
errors, and compiled code which calls 
out-of-line functions will detect errors if those 
functions contain such checks. 

gign.ms 

The ZIL internal structure of  bignums is 
as follows: 

A bignum is an object in vector/string 
space which has a l-byte type field and a 
3-byte length field indicating the byte length 
of  the bignum text, much like a string or 
vector. The body of the bignum is a series of 
contiguous 32-bit words, each of which 
contains a digit of the bignum in bass 2"'31 
(31-bit radix). These words are stored in 
reverse order, least significant word first. 

Negative bignums are stored using sign 
and magnitude, with the high-order bit of the 

• leftmost word set to 1. All other high-order 
bits (in positive and negative bignums) are 
zero. 

Bignums are uniquely represented and 
always normalized: this means that (1) a 
bignum can never have a value between 
-2147483648 and 2147483647 inclusive, as this 
is always forced to be held as a fixnum; (2) 
the most significant (rightmost) word is never 
zero, since leading zero "bigits" are always 
removed; and (3) the minimum number of 
31-bit "bigits" in a bignum is 2. The 
combination (-2147483647 1) can never occur, 
since this would represent -2147483648, which 
must be a fixnum. 

Owing to the above architecture, tests like 
ZEROP and MINUSP are extremely f a s t  
(bignums are never ZEROP,  and testing the 
high-order sign bit works for fixnums, flonums 
and bignums equally). The ZIL functions 
BIGLIST, BIGNUM and M A K E - B I G N U M  
exist to convert between bignums and lists of 
fixnums that make them up, mostly for our 
own testing. Automatic conversion of bignum 
to floating-point is done by the arithmetic 
functions when necessary. 

Garbage Collection 

ZIL's  garbage collector combines two 
approaches: a variant of  the Schorr/Waite 
(Winston, 1984) non-recursive pointer-altering 
algorithm for collecting cons space (which 
contains lists, symbols, fixnums and other 
basic objects), and a copying scheme for 
vector/string space (which holds strings, 
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vectors, bignums and structures). The latter 
requires allocating the space in two sections, 
one of  which remains unused while the other 
is active; this method, suggested by Carrette 
(personal communicat ion,  1984), is feasible on 
an MVS system with its vast memory 
resources. The two techniques are closely 
intertwined, as the forwarding and relocation 
of  objects in vector/string space is performed 
whenever the tree-scanning portion of the GC 
encounters an object that does not point back 
into cons space. 

cons space is maintained as a single area 
of  memory divided up into cells of two 32-bit 
words each; these are treated as contiguous 
space until a garbage collection is done, at 
which point the area is reordered into a linked 
list. The pointer to the CONS routine is 
located in a common area and altered after 
the first GC to reference the new data 
structure. In this way first-time initialization 
of  the cons space is avoided, but the free list 
can be maintained without compaction being 
necessary (since Z IL  requires symbol pointers 
to remain unaltered, it is necessary for them 
to reside in a space that does not get 
relocated; thus the use of two schemes). 

The GC is written entirely in assembler 
language and is highly efficient; it can collect 
a typical 5-megabyte space in about 0.2 CPU 
seconds. The sweep phase, generally the 
longest portion of  the GC, uses the 
System/370 Vector Facility for added speed. 

Variable binding 

ZIL is primarily dynamically scoped, 
al though lexical scoping can be effected 
through use of  lexical closures. Variables are 
deep-bound, with their values pushed onto an 
alist-type environment. Compiled functions 
that  reference "free" variables perform a 
single scan of  the environment for values at 
the beginning of  the function; this scan sets 

• stack pointers to the variable/value cells on 
the environment for quick access from the 
code so that  the binding environment need 
not  be searched on each reference. This has 
the disadvantage that non-locally-bound 
variables must have been bound at some 
previous level to be referenced; global variable 
bindings are generally established via a PROG 
or LET just under top level in order to enable 

SETQ's of free variables. For this reason, an 
alternate method of retrieving the values of 
"free" variables in compiled code exists, used 
primarily when compiling "modules" (files). 
This generates inline code to locate an 
existing binding (which may be global) and 
cache it on the stack so that multiple 
references in the same function need not go 
through the overhead of searching for the 
value more than once. 

ZIL also possesses a "symbol-autoload" 
facility. If a symbol is not currently bound, 
and it has an AUTOVALUE property, the 
value of  the AUTOVALUE property is used 
to "autoload" the value of the symbol, 
similarly to the way function definitions are 
autoloaded. This feature permits the loading 
in of a file which contains a DEFVAR for the 
symbol, for example, or delaying the 
execution of some arbitrary form that 
initializes the symbol until it is actually asked 
for. 

The Compiler 

The ZIL Compiler is a separate top-level 
program, rather than a function that can be 
invoked from within ZIL. While this may 
appear to be an inconvenience, it has the 
advantage of avoiding the 
environment-bashing problems associated 
with LISPs that invoke the compiler from 
within a LISP session. The compiler 
generates assembler source code that is then 
assembled into an object module, which is in 
turn processed by the linkage editor. 

ZIL's  compiler is a three-pass operation. 
The first pass reads all the forms in the source 
file, collecting function and macro definitions 
and processing declarations, compile-time 
directives and D E F L O A D s .  The second pass 
transforms the function code into intermediate 
lists of pseudocode; during this time all 
macros are expanded, instances of tail 
recursion are flagged for conversion to 
iteration, and unbound variables are detected 
and added to internal tables (using this 
scheme ZIL is able to determine which 
variables are "free" without the user having to 
provide declarations). The third pass converts 
the pseudocode into assembler language 
source output; this is subsequently processed 
by the IBM assembler to form an object 
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module, which is in turn input to the IBM 
linkage editor, producing the load module 
which i s  the compiled code in its final, 
loadable form. 

There are three kinds of entities that can 
be compiled: functions, modules and 
programs. 

In program mode, the input to the 
compiler is a sequence of  forms to be 
executed as a program; a module is created 
that appears to the operating system as a 
separate program and ~an be invoked in the 
foreground (under TSO) or in batch (via 
JCL). The ZIL interpreter and compiler are 
instances of  this mode, as are the OPS5 and 
Macsyma interpreters. 

In function mode, the input consists of  a 
function definition (DEFUN)  along with 
accompanying auxiliary function definitions 
and macro definitions if needed. Other 

• top-level forms are not permitted. The output 
of  this compilation is a module which cannot 
be executed by itself, but may be loaded by 
the interpreter's autoloader or linked in with a 
program that was compiled in program mode. 
This is equivalent to the Common Lisp 
C O M P I L E  function, although it is used 
externally rather than from within the 
interpreter. This technique is used primarily 
to compile ZIL 's  built-in defined functions 
that are too complex to code in assembler. 

In module mode, the input is a file of 
Lisp code that includes function definitions, 
random forms and declarations. Because 
loadable entities in ZIL must be executable 
functions, the file is treated as one huge 
function that envelopes all the code to be 
loaded while establishing compiled definitions 
for the D E F U N ' s  contained therein. All 
non-defining forms in the file are converted to 
compiled format, to be executed at load time. 
Loading the file consists of  bringing in the 
huge function (via the autoloading process) by 
executing it one time only. This is the 
equivalent of  Common Lisp's 
COMPILE-FILE.  

Compile-time Operations 

Compile-time operations are generally 
specified via EVAL-WHEN,  although certain 
forms (like D E F M A C R O )  are handled 

specially to side-effect the compiler's 
environment. A D E F M A C R O  (in fact, any 
form that defines a macro) creates a "compiler 
macro" definition (called a CMACRO)  that 
the compiler sees when it processes the source 
forms. Facilities like SETF that need to see 
true macro definitions at macroexpansion 
time require conventional macro definitions to 
be made available at compile time as well; this 
must be done by enclosing the relevant 
DEFMACRO' s  in an (eval-when (compile ...) 
...). The effect of a D E F M A C R O  inside 
(eval-when (compile)) is to establish a 
MACRO property known at compile time, as 
opposed to the C M A C R O  property 
established by D E F M A C R O  outside of the 
EVAL-WHEN. In addition, there is an 
X D E F M A C R O  form, which compiles into 
code that establishes a macro definition at 
load time. Other forms (like DEFSTRUCT)  
which need to establish compile-time 
properties usually do so by being macros 
which expand into DEFMACRO's  enclosed in 
the appropriate EVAL-WHEN wrappings. 

Since source transforms have not been 
implemented yet, CMACRO's  are the way the 
compiler transforms, say, ( +  A B C) into 
(ZILADD (ZILADD A B) C), where 
Z I L A D D  is the built-in two-operand addition 
function, without affecting the definition of '5' 
in the compiler's own LISP evaluation 
environment. In previous releases of ZIL, the 
compiler would not even recognize 
conventional macro definitions when 
expanding source forms to be compiled; part 
of  compiler initialization consisted of copying 
MACRO properties to CMACRO properties 
for all built-in symbols, so that a user could 
define a macro that side-effected the 
compiler's run-time LISP environment 
without affecting compilation. This proved to 
be unworkable, particularly for the way that 
Macsyma macros are loaded at compile time. 
It was discovered that such a feature was 
relatively useless anyhow, so the compiler was 
modified to see both MACRO and C M A C R O  
definitions. 

Autoloading 

The evaluator will automatically search 
for a function definition when it FUNCALL's ,  
or when it attempts to evaluate a list whose 
CAR is, a symbol for which no function 
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definition currently exists. It d o e s  this by 
inspecting the symbol's A U T O L O A D  
property.  I f  the value of  this proper ty  is a 
string, it is assumed to be the name of  a file 
("data  set") which is then loaded 
interpretively into the ZIL  environment;  this 
file is assumed to cause the Symbol to receive 
a funct ion definition. I f  the A U T O L O A D  
proper ty  value is a list, it is evaluated as a 
form; this form is assumed to cause the 
symbol to become defined. I f  the 
A U T O L O A D  property value is a symbol, it i s  
assumed to be the value assigned by the 
D E F L O A D  special form; if so, or if there is 
no A U T O L O A D  property,  the ZIL  loader is 
invoked to locate the module  of  that  name (or 
the symbol name itself, if there is no 
A U T O L O A D  property) on the ZIL  load 
library (i.e. the librari(es) from which the main 
ZIL  module  was loaded, which consti tute the 
task library setup). I f  it is found, it is brought  
into main  storage by the ZIL  loader, which 
searches for and resolves all references to 
external compiled functions in the code (this 
results in recursive loading and resolution of  
other  compiled code at load time).: The code 
is then made the SUBR property o f  the 
function; and the F U N C A L L  proceeds or the 
evaluation is retried. The A U T O L O A D  
proper ty  is removed when necessary to 
prevent  infinite iterative a t tempts  at 
evaluation; an "undefined function" error is 
signalled when all a t tempts  to resolve the 
funct ion definition fail. 

Compi led  programs generally have their 
subfunct ions l inked  in with them by the 
linkage editor in one large load module;  thus 
there is no need to have ZIL  load these 
functions at run time. To prevent duplication 
of  compiled code in storage, the ZIL  loader 
keeps a lookaside table of  module names that  
are likely to be hard-linked with the 
interpreter,  which it searches before it goes to 
the operat ing system to locate the code. In 
cases where functions must  be loaded from 
the library, Z IL  uses the operating system's 
own control  blocks to keep track o f  which 
modules  are currently in storage. 

I / 0  

The term "file" has a different meaning to 
IBM t h a n - t o  the rest of  the world; what  
everyone else calls a "file" IBM calls a "data 
set", and a "file" (also known as a "ddname")  
refers to a symbolic 8-character name 
associating a particular data set allocation 
with a program OPEN request. This fits into 
Lisp rather well, as a "file" is what  is returned 
by tl~e OPEN function (and passed to READ, 
PRINT,  CLOSE, and other I/O functions), 
whereas what  gets passed to OPEN is a 
system-dependent name (a "dsname" in 
MVS). 

When a "data set" is opened, it is 
dynamically allocated using MVS dynamic 
allocation services, and then opened; ZIL  
assigns a file name ("ddname")  which is used 
to construct  a file object that  ZIL  returns as 
the value of  the OPEN function. This object, 
which is actually a symbol whose print name 
is the final 4 characters of  the "ddname",  is 
used in READ and P R I N T  calls, and is also 
used to close the file. 

I f  a file name (4-character symbol) is 
requested in an I/O operation for a file that  
has never been opened, ZIL  searches for an 
existing file name as follows ~. 

I f  the function needs an input  file, Z IL  
concatenates "ZILI"  to the file name and 
looks for an MVS ddname of  that  form. 

If  the function needs an output  • file, Z IL  
concatenates "ZILO" to the file name and 
looks for an MVS ddname of  that  form. 

ZIL  then automatically opens the file 
(except that  if the ddname is allocated to the 
terminal, Z IL  makes it a terminal file). The 
constraint  on the ddname is a throwback to 
the modified Lisp 1.5 interpreter, which was 
f ruga lwi th  memory,  and therefore required all 

This applies only to "built-in" ZIL  functions, or those that  have been declared "built-in" 
by the D E F A R G S  compiler directive. Other functions are invoked dynamically by a 
F U N C A L L - t y p e  interface. 
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files to be known at s tartup time. With ZIL 's  
use o f  memory  above the 16-megabyte line, 
such pars imony is no longer necessary, but  
overhauling the file system is too radical a 
change to make at this time. 

Terminal  input  and ou tpu t  in an IBM 
3270 environment  is radically different in its 
demands  from typical ASCII  terminal 
processing. TSO provides a line-mode 
transparency to the application, but because 
o f  the nature o f  3270"s some operations are 
not  possible. For example, carriage returns 
are meaningless in the EBCDIC environment.  
For  this reason, new-line conditions are 
simulated in ZIL  by detecting probable 
end-of-line situations during terminal input  
(a l though lines longer than the terminal line 
size can be typed in if desired). This also 
presents problems with file I/O. Under  MVS, 
a "data  set" consists o f  "records", which may 
be fixed-length or variable-length; in either 
case they do not  terminate with carriage 
returns. The new-line simulation applies here 
as well. Z IL  has a function N E W L I N E P  
which returns true if the most  recent 
character-retrieving operat ion on a file "ran 
off  the end" o f  the record; the nex t  such 
operat ion will return the first character of  the 
next record. The R E A D C H  function will 
return NI L  in this circumstance, while the 
TYI funct ion returns the equivalent o f  hex 0D 
("carriage return"). Similarly, strings that  
extend acro.ss record boundaries have 
EBCDIC "carriage return" characters 
(hexadecimal 0D) inserted in them; the printer 
recognizes these characters when writing to 
the terminal and generates the proper  control 
sequence to cause the data to be printed out 
on a new line on the 3270. 

When  Z IL  writes to the terminal, it uses 
assembler-language-level TSO terminal 
communica t ion  interfaces to maintain control  
over the presence or absence of  carriage 
returns, and to pad the ou tput  line with null 
characters to the end of  the terminal row. 
This enables optimal overtyping of  ou tput  
lines wi thout  having to use the ERASE EOF 
key to clear blanks, or having to worry about  
stray attr ibute bytes. Terminal  input  is 
similarly managed  with an eye toward keeping 
an accurate count  o f  characters actually typed 
and retention of  alphabetic case. 

EBCDIC VS. ASCII  

Since IBM/370 software uses the 
EBCDIC encoding scheme rather than ASCI I, 
some differences necessarily exist between ZI L 
code and code in other Lisps. Instead of  an 
ASCII  function, Z IL  has a n  E B C D I C  
function to convert  a f ixnum to a character; 
and an U N E B C D I C  function to do the 
reverse. Most  Lisp code that  uses the #/n or 
#\n syntax works correctly under  ZIL; only 
code that  has hard-coded ASCII  numbers  in it 
loses. 

Fortunately,  C o m m o n  Lisp does not  
mandate  reader support  for square brackets, 
which are missing from EBCDIC.  However,  
F O R M A T  does make use o f  them; we have 
not  yet determined the best way to deal with 
this. (The ZIL implementat ion of  F O R M A T  
does not  include the options that  use either 
braces or brackets at this time.) 

Mainly for Macsyma, ZIL  at tempts  to 
support  square brackets in every way possible. 
Square brackets input  f rom fi les as hex AD 
and hex BD are supported; for ou tput  to a 
file, they may be written as the same hex 
characters or translated to another  character 
configuration (via use o f  the ZIL  SETBRACK 
function). Terminal ou tput  is more 
problematic. Z IL  will a t tempt  to send the 
proper character sequences to the terminal to 
print brackets, if it can determine that  such is 
possible. In Macsyma, for the appearance o f  
consistency to the user, brackets d isp lay  as 
curly braces by default, a l though the user may 
change this by setting the Macsyma variable 
BRACKETS.  We have also extended the 
Macsyma parser to accept curly braces as 
being syntactically equivalent to square 
brackets. 

EXTENDED A R C H I T E C T U R E  (XA) 
S U P P O R T  

ZIL ' s  largest memory  areas are cons 
space, the control  stack, and the "oblist" hash 
table for interning symbols. Storage for all of  

LP 1-2.18 



these is acquired above the 16MB line (i.e. in 
memory accessible in 31-bit addressing mode 
only) to allow for sufficient size to perform 
huge computations efficiently. Due to 
architectural limitations which have not been 
overcome in the current release, vector/string 
space and all ZIL executable code must reside 
below 16MB. ZIL itself, however, runs in 
31-bit addressing mode (leaving that mode 
only to invoke I/O operations, which require 
24-bit addressing). 

The sizes of cons  space, the control stack, 
and vector/string space are all settable at run 
time by passing initialization specifications to 
the top-level ZIL program in the OS PARM 
field (or in the command operand field if the 
top-level is invoked as a TSO command 
processor). Initialization specs, if present, are 
enclosed in backslashes at the beginning of 
the parameter field. The remainder of the 
parameter field is passed to ZIL and is 
accessible via the ZIL GETPARM function. 

the heap into a space of 64-bit objects, 
consisting mainly of  cons cells, and a 
vector-string space of unequal-length objects 
has permitted fast vector operations on 64-bit 
object-space. 

B E N C H M A R K S  • 

Of course, running on one of  the fastest 
hardware processors around means that "ZIL 
would run fast even if it were not designed 
well. But we ran some standard benchmarks, 
including some from Gabriel (1985), and 
results were favorable in terms of  processor 
time used, despite the lack of high compiler 
sophistication. The performance of  ZIL  using 
variables that are not locally bound (based on 
Gabriel's STAK benchmark) compares 
favorably with other implementations 
(including PSL on an IBM 370), attesting to 
the efficacy of ZIL's  deep-binding scheme. 

THE SYSTEM/370 VECTOR FACILITY 

The vector facility on the IBM 3090 is an 
integral pa r t  of  the CPU, and has a few 
instructions which are particularly interesting 
in Lisp applications. For example, a single 
machine instruction can load or store a 
vector-register pair consisting of 128 64-bit 
cons cells in locations pointed t o  by a third 
vector-register containing 128 pointers. 
Speedup is typically a factor of 2-4, and up to 
10 with floating-point. 

To some degree, the vector facility has 
influenced the design of ZIL. Separation of 

USABILITY FEATURES 

Although ZIL has tended to stress 
internal development at the expense of 
user-friendliness at times 3, many features 
helpful to the interactive ZIL user have been 
added. A "dribble" capability allows the user 
to copy all terminal input and output to a file 
or to a stream that can be printed off by the 
operating system. 4 The ED function interfaces 
to the ISPF editor; this works in conjunction 
with the PP (pretty-print) function to allow 
the user to create and modify function 
definitions on the fly.S 

For example, there is no interactive debugging other than tracing, and that works on 
interpreted code only. The compiler cannot be accessed within the LISP environment, 
a l though the assembler-code-outputting part of the compilation process has been 
successfully invoked inside ZIL. There is no fancy full-screen windowing or graphics, 
which says more about the IBM environment than anything else. 

Unfortunately, dribbling cannot be turned on and offwithin ZIL; it must be specified on 
entry to ZIL, and remains active until exit from ZIL. 

An ISPF edit macro (coded in PL/1) enables parenthesis matching under the ISPF 
editor; the user can place the cursor under a parenthesis or brace and press a PF key, 
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SOFTWARE PORTING 

The first successful installation of a 
Lisp-coded software product on MVS via ZIL 
was Carnegie-Mellon's expert system builder, 
OPS5. An MVS interface (also using ISPF) 
was developed to make the system easy to use 
for IBM mainframe users. A number of 
experimental expert systems have been 
developed under ZI L and OPS5, including: 

an interface between OPS5 and IPCS 
(MVS's Interactive Problem Control 
System, a full-screen dump-analyzer); 

an expert system which generates and 
submits JCL to unload the contents of a 
tape file onto MVS disk files; 

a DCF- to -GML text processing conversion 
program. 

A complete implementation of 
DOE-Macsyma (the symbolic algebra 
program) is available to MVS users under 
ZIL, including full support for translating and 
compiling Macsyma and Lisp code, a facility 
for coding ISPF dialogs in Macsyma, and 
interfaces to TSO and the local Draper 
electronic mail system. DOE-Macsyma has 
been the driving force behind many of the 
improvements in Zil since its inception. 

In addition, an implementation of 
FLAVORS (apparently the most popular 
object-oriented programming facility in Lisp) 
is available in ZIL which follows Weinreb and 
Moon's  original Lisp Machine FLAVORS 
paper very closely, as well as containing some 
features present in the NIL  FLAVORS 
implementation. 

FUTURE OF ZIL 

We are working on a new architecture 
that will be 100% Common Lisp compatible, 
while retaining the features that enable 

software like DOE-Macsyma to run 
successfully. This will probably make heavy 
use of  extended data types (through 
DEFSTRUCT)  and more varied binding 
techniques. A "fluid" variable binding 
mechanism will be used to effect 
"pseudolexical" scoping, while "special" 
binding will be available simultaneously. 
Multiple control stacks . for interactive 
debugging are also a possibility. 

Native support for 3270 features such as 
extended attributes is a possibility; full-screen 
and graphics interfaces might be useful as 
well. This is not urgent, however, since we 
have access to both ISPF and the TSO 
Session Manager. 

An interface to FORTRAN is in the 
planning stages, allowing FORTRAN 
programs to be used as ZIL functions. 

The compiler will probably be rewritten, 
providing support for additional features of  
Common Lisp. For example, the compiler 
currently utilizes compile-time-only macro 
definitions, which in conjunction with 
D E F L O A D  provide ~ a simple source 
transformation capability. However, true 
source transforms would be desirable, as well 
as a better declaration scheme which would 
allow more control over the type of code 
generated for various functions. 

The System/370 Vector Facility might be 
used more extensively by the GC as well as by 
library functions and compiled code. 
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mentioned that a ZlL-based Macsyma runs many Macsyma benchmarks at about 5 times the speed of 
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COMING IN 1987! 

LISP AND SYMBOLIC COMPUTATION: 
An International Journal 

Coming in late 1987, the new LISP AND SYMBOLIC COMPUTATION: An International 
Journal will present a forum for current and evolving symbolic computing, focusing on Lisp and 
object-oriented programming. The scope includes: 

• Programming language notations for symbolic computing (e.g., data abstraction, paral- 
lelism, l u y  evaluation, infinite data objects, self.reference, message-passing, generic func- 
tions, inheritance, encapsulation, protection, metaohjects). 

• Implementations and techniques (e.g., specialised architectures, compiler design, combi- 
natory models, garbage collection, storage management, performance analysis, smalltalks, 
R~tvors, common loops, etc.). 

• Programming logics (e.g., semantics and reasoning ~bout programs, types and type infer- 
ence  ). 

• Programming environments and tools (e.g., knowledge-based programming tools, pro~am 
transformations, specifications, debugging tools). 

• Appli~:ations and experience with symbolic computing (e.g., real-time programming, artifi- 
cial intelligence tools, experience with LISP, object-oriented programming, window systems, 
user interfaces, operating systems, parallel/dlstributed computing). 
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