
ZIL: An Implementation of Lisp on MVS/XA at C.S.Draper Laboratory

Stephen E. Bacher

D E S C R I P T I O N OF ZIL

"ZIL" is an implementation of Lisp on
MVS/XA running on an IBM 3090-200
System/370 mainframe at the Charles Stark
Draper Laboratory. The system includes a
full Lisp interpreter and compiler, as well as a
full-screen dialog user interface developed in
IBM's ISPF (Interactive System Productivity
Facility) product.

ZIL began life as an outgrowth of the
Lisp 1.5 interpreter written by J. F. Bolce at
the University of Waterloo, previously the
only available MVS Lisp at the Laboratory.
In order for the first ZIL compiler to be
coded, the Waterloo interpreter was locally
modified to permit features such as multiple
input and output files, macro definitions and
optional arguments to selected functions.
Once the compiler was able to generate a
complete top-level Lisp program, it was used
to build the ZIL interpreter (which was itself
coded in ZIL), and then to bootstrap the ZIL
compiler. This process w a s then repeated
using ZIL as its own bootstrapping
environment.

As ZIL has been developed, features from
other dialects (chiefly Maclisp) have been
added and progress is being made toward the
goal of Common Lisp compatibility. ZIL
supports a wider variety of features than did
its parent system, including comprehensive
reader syntax that permits both Lisp 1.5-style
code and Common Lisp-style code to be
loaded.

Although ZI L is being made
CL-compatible when possible, there are still
areas where it differs. For example, ZIL's
"special" variables do not behave exactly as
they are supposed to in CL, but more like
traditional Lisp "free" variables.

At this time ZIL does not have packages,
hashtables, multiple values, or numerous
other advanced facilities documented in Steele
(1984). However, most of the basic features
are present, certainly enough to load in the

typical Lisp source program. In any case,
incompatibilities with other dialects may be
overcome by many means, notably the
DEFLOAD special form (see below).

Data Typing

ZIL has the standard data types of
conses, symbols, fixnums, and flonums; it also
has bignums, strings, vectors, compiled code
subroutines, compiled and interpreted lexical
closures, and structures (used by
DEFSTRUCT to i m p l e m e n t user type
extensions). Functions are available to build
objects of one type from objects of another,
as well as to coerce between types.

Type information is contained in the
high-order 8 bits of each ZIL object; this
technique works better on 370 than a
typed-pointer architecture, since the hardware
makes it easier to test bits in memory than to
test bits in registers. 31-bit addressing
support is not compromised, since the
high-order byte of each object is considered to
contain type information only if the
high-order bit is one (signifying an "atom"). ~
When the high-order bit is zero, the object is
a cons, and its CAR may easily contain a
31-bit address, as none of the other bits in the
high-order byte are meaningful to the type
scheme in that case.

System-Specific Functions

ZIL functions are stored externally as
MVS load modules, and are brought in by the
ZIL loader, which uses MVS program fetch
facilities to load the code and then does its
own relocation of function pointers. Not only
does this format permit the same functions to
be linkedited into top-level ZIL programs, but
it allows low-level ZIL functions to be coded
in assembler and easily integrated into the
system.

The DEFLOAD special form is used in
ZI L to provide "shadowing" and
compatibility with other Lisp dialects; its main

The high-order bit is ignored during addressing access in both 24-bit and 31-bit address
modes in the 370 Extended Architecture.

LP 1-2.12

purpose, however, is to map Lisp function
names to names of compiled code load
modules that res ide ,on direct access MVS
libraries. Since IBM restricts load module
names to 8 alphanumeric characters, it is
necessary (for pu rposes of linking and
automatic loading) to provide alternate
IBM-compatible names for functions whose
traditional name does not meet this standard.
Thus, names of 8 characters or less are
associated with function symbols via
DEFLOAD. This works under both the
interpreter and the compiler; in the latter case
DEFLOAD is used to assign• an external
name in the generated code which may be
resolved at link time or execution time.
DEFLOAD is intimately related to the ZIL
autoloading process described later.

ZIL has a "TSO" function, providing an
interface to MVS's native interactive
time-sharing system (similar to a "DOS"
function on a microcomputer
implementation). This permits the execution
of TSO commands and command procedures
(CLISTs) inside the ZIL environment.

Note: MVS provides a service to
invoke TSO commands from
within a user program
running under TSO, available
only if the TSO/Extensions
product is purchased.
However, ZI L's
implementation of this does
not require TSO/Extensions

• to be present.

There is a group of functions which
enable the user to write ISPF dialogs in ZIL;
these invoke ISPF dialog services using the
"ISPEXEC" syntax familiar to CLIST writers,
and can retrieve and update values of ISPF
dialog variables. This facility has been used
to implement the !SPF dialog writing
capability available in the MVS
implementation of DOE-Macsyma. (IBM's
ISPF version 2 is required for this facility.)

IBM's VS FORTRAN subroutine library
is used to implement many numerical
functions, insuring the highest possible degree
of accuracy.

The arbitrary-precision integer (bignum)
support is coded entirely in highly optimized

assembler; intermediate consing is virtually
eliminated.

A number of PL/l-like string operations
are present in ZIL, making it useful for
real-life applications like text processing.

A unique approach to handling attention
interrupts (the MVS/3270 equivalent of the
"break" key) insures recoverability to any
desired level of computation without the
implementation's having to resort to the
standard MVS means of handling attentions
(generally either subtasking or the generation
of polling instructions in compiled and other
run-time code).

Lambda list features of both Maclisp
(FEXPR's, LEXPR's) and Lisp Machine Lisp
(full nested destructuring of arguments for all
lambda lists) are supported, including full
support for &OPTIONAL, &REST, &AUX
and &KEY variables, in both the interpreter
and the compiler (well, actually FEXPR's are
simulated in the compiler).

IMPLEMENTATION -

The IBM 370 architecture has an
undeserved reputation for being an
impediment to the implementation of
functional programming languages like Lisp. •
We have never found any difficulty with the
architecture, especially since we have been
programming in it so long, but there are some
built-in difficulties associated with using the
MVS operating system, as opposed to VM,
for example.

The memory management schemes chosen
are directly affected by the absence of any
way under MVS (under the constraint of
remaining in problem program state) to
declare pages of memory read-only. Because
of this, ZIL cannot rely on tricks like
protection interrupts to control allocation of
storage. However, through use of a handful
of registers dedicated throughout the ZIL
environment, we are able to maximize speed
of most CONS operations by maintaining
pointers to the beginning and end of the
current "free list" in registers.

LP 1-2.13

In-line compiled lists present another,
more intractable problem. MVS does not
provide a way to change the protection status
of an area of memory at run time, and does
not even allow the programmer to allocate
read-only pages. Since in-line lists are
physically part of loaded compiled code, and
there is no convenient way to prevent such
objects from being updated via RPLACA-type
operations, an exposure exists. We deal with
the problem at this time by advising users not
to compile in-line lists unless they are sure
that they will not be clobbered. The garbage
collector will not be able to sweep such
objects. However, a total object,copying
scheme for loading compiled lists and atoms
may be implemented at some point • to resolve
this; although it will not prevent destructive
updating, it will at least prevent corruption of
such objects following a GC.

ZIL Internals and Philosophy

ZIL was designed from the beginning to
be as fast as possible without compromising
maintainability. The function call interface,
for example, does a minimal amount of
register saving and restoring, and many
low-level routines do not save register
contents at all. Since the IBM 370 does not
have a hardware stack, stack locations are
pushed and popped lexically within a
function, altering the stack frame offset at
compile time rather than at execution time. A
three-instruction sequence at the beginning of
each routine checks for stack overflow. The
coding of many functions in assembler reduces
the need for consing and permits values to be
kept in registers more frequently.

The emphasis on efficiency is at the
expense of compile-time error checking and
debugging, Calls from one compiled code
subroutine to another are not traceable, and
compiled-to-interpreted code transfers of
control must be effected via calls to APPLY
or FUNCALL. Error checking is minimal in
compiled code; the interpreter will detect
errors, and compiled code which calls
out-of-line functions will detect errors if those
functions contain such checks.

gign.ms

The ZIL internal structure of bignums is
as follows:

A bignum is an object in vector/string
space which has a l-byte type field and a
3-byte length field indicating the byte length
of the bignum text, much like a string or
vector. The body of the bignum is a series of
contiguous 32-bit words, each of which
contains a digit of the bignum in bass 2"'31
(31-bit radix). These words are stored in
reverse order, least significant word first.

Negative bignums are stored using sign
and magnitude, with the high-order bit of the

• leftmost word set to 1. All other high-order
bits (in positive and negative bignums) are
zero.

Bignums are uniquely represented and
always normalized: this means that (1) a
bignum can never have a value between
-2147483648 and 2147483647 inclusive, as this
is always forced to be held as a fixnum; (2)
the most significant (rightmost) word is never
zero, since leading zero "bigits" are always
removed; and (3) the minimum number of
31-bit "bigits" in a bignum is 2. The
combination (-2147483647 1) can never occur,
since this would represent -2147483648, which
must be a fixnum.

Owing to the above architecture, tests like
ZEROP and MINUSP are extremely f a s t
(bignums are never ZEROP, and testing the
high-order sign bit works for fixnums, flonums
and bignums equally). The ZIL functions
BIGLIST, BIGNUM and M A K E - B I G N U M
exist to convert between bignums and lists of
fixnums that make them up, mostly for our
own testing. Automatic conversion of bignum
to floating-point is done by the arithmetic
functions when necessary.

Garbage Collection

ZIL's garbage collector combines two
approaches: a variant of the Schorr/Waite
(Winston, 1984) non-recursive pointer-altering
algorithm for collecting cons space (which
contains lists, symbols, fixnums and other
basic objects), and a copying scheme for
vector/string space (which holds strings,

LP 1-2.14

vectors, bignums and structures). The latter
requires allocating the space in two sections,
one of which remains unused while the other
is active; this method, suggested by Carrette
(personal communicat ion, 1984), is feasible on
an MVS system with its vast memory
resources. The two techniques are closely
intertwined, as the forwarding and relocation
of objects in vector/string space is performed
whenever the tree-scanning portion of the GC
encounters an object that does not point back
into cons space.

cons space is maintained as a single area
of memory divided up into cells of two 32-bit
words each; these are treated as contiguous
space until a garbage collection is done, at
which point the area is reordered into a linked
list. The pointer to the CONS routine is
located in a common area and altered after
the first GC to reference the new data
structure. In this way first-time initialization
of the cons space is avoided, but the free list
can be maintained without compaction being
necessary (since Z IL requires symbol pointers
to remain unaltered, it is necessary for them
to reside in a space that does not get
relocated; thus the use of two schemes).

The GC is written entirely in assembler
language and is highly efficient; it can collect
a typical 5-megabyte space in about 0.2 CPU
seconds. The sweep phase, generally the
longest portion of the GC, uses the
System/370 Vector Facility for added speed.

Variable binding

ZIL is primarily dynamically scoped,
al though lexical scoping can be effected
through use of lexical closures. Variables are
deep-bound, with their values pushed onto an
alist-type environment. Compiled functions
that reference "free" variables perform a
single scan of the environment for values at
the beginning of the function; this scan sets

• stack pointers to the variable/value cells on
the environment for quick access from the
code so that the binding environment need
not be searched on each reference. This has
the disadvantage that non-locally-bound
variables must have been bound at some
previous level to be referenced; global variable
bindings are generally established via a PROG
or LET just under top level in order to enable

SETQ's of free variables. For this reason, an
alternate method of retrieving the values of
"free" variables in compiled code exists, used
primarily when compiling "modules" (files).
This generates inline code to locate an
existing binding (which may be global) and
cache it on the stack so that multiple
references in the same function need not go
through the overhead of searching for the
value more than once.

ZIL also possesses a "symbol-autoload"
facility. If a symbol is not currently bound,
and it has an AUTOVALUE property, the
value of the AUTOVALUE property is used
to "autoload" the value of the symbol,
similarly to the way function definitions are
autoloaded. This feature permits the loading
in of a file which contains a DEFVAR for the
symbol, for example, or delaying the
execution of some arbitrary form that
initializes the symbol until it is actually asked
for.

The Compiler

The ZIL Compiler is a separate top-level
program, rather than a function that can be
invoked from within ZIL. While this may
appear to be an inconvenience, it has the
advantage of avoiding the
environment-bashing problems associated
with LISPs that invoke the compiler from
within a LISP session. The compiler
generates assembler source code that is then
assembled into an object module, which is in
turn processed by the linkage editor.

ZIL's compiler is a three-pass operation.
The first pass reads all the forms in the source
file, collecting function and macro definitions
and processing declarations, compile-time
directives and D E F L O A D s . The second pass
transforms the function code into intermediate
lists of pseudocode; during this time all
macros are expanded, instances of tail
recursion are flagged for conversion to
iteration, and unbound variables are detected
and added to internal tables (using this
scheme ZIL is able to determine which
variables are "free" without the user having to
provide declarations). The third pass converts
the pseudocode into assembler language
source output; this is subsequently processed
by the IBM assembler to form an object

LP 1-2.15

module, which is in turn input to the IBM
linkage editor, producing the load module
which i s the compiled code in its final,
loadable form.

There are three kinds of entities that can
be compiled: functions, modules and
programs.

In program mode, the input to the
compiler is a sequence of forms to be
executed as a program; a module is created
that appears to the operating system as a
separate program and ~an be invoked in the
foreground (under TSO) or in batch (via
JCL). The ZIL interpreter and compiler are
instances of this mode, as are the OPS5 and
Macsyma interpreters.

In function mode, the input consists of a
function definition (DEFUN) along with
accompanying auxiliary function definitions
and macro definitions if needed. Other

• top-level forms are not permitted. The output
of this compilation is a module which cannot
be executed by itself, but may be loaded by
the interpreter's autoloader or linked in with a
program that was compiled in program mode.
This is equivalent to the Common Lisp
C O M P I L E function, although it is used
externally rather than from within the
interpreter. This technique is used primarily
to compile ZIL 's built-in defined functions
that are too complex to code in assembler.

In module mode, the input is a file of
Lisp code that includes function definitions,
random forms and declarations. Because
loadable entities in ZIL must be executable
functions, the file is treated as one huge
function that envelopes all the code to be
loaded while establishing compiled definitions
for the D E F U N ' s contained therein. All
non-defining forms in the file are converted to
compiled format, to be executed at load time.
Loading the file consists of bringing in the
huge function (via the autoloading process) by
executing it one time only. This is the
equivalent of Common Lisp's
COMPILE-FILE.

Compile-time Operations

Compile-time operations are generally
specified via EVAL-WHEN, although certain
forms (like D E F M A C R O) are handled

specially to side-effect the compiler's
environment. A D E F M A C R O (in fact, any
form that defines a macro) creates a "compiler
macro" definition (called a CMACRO) that
the compiler sees when it processes the source
forms. Facilities like SETF that need to see
true macro definitions at macroexpansion
time require conventional macro definitions to
be made available at compile time as well; this
must be done by enclosing the relevant
DEFMACRO' s in an (eval-when (compile ...)
...). The effect of a D E F M A C R O inside
(eval-when (compile)) is to establish a
MACRO property known at compile time, as
opposed to the C M A C R O property
established by D E F M A C R O outside of the
EVAL-WHEN. In addition, there is an
X D E F M A C R O form, which compiles into
code that establishes a macro definition at
load time. Other forms (like DEFSTRUCT)
which need to establish compile-time
properties usually do so by being macros
which expand into DEFMACRO's enclosed in
the appropriate EVAL-WHEN wrappings.

Since source transforms have not been
implemented yet, CMACRO's are the way the
compiler transforms, say, (+ A B C) into
(ZILADD (ZILADD A B) C), where
Z I L A D D is the built-in two-operand addition
function, without affecting the definition of '5'
in the compiler's own LISP evaluation
environment. In previous releases of ZIL, the
compiler would not even recognize
conventional macro definitions when
expanding source forms to be compiled; part
of compiler initialization consisted of copying
MACRO properties to CMACRO properties
for all built-in symbols, so that a user could
define a macro that side-effected the
compiler's run-time LISP environment
without affecting compilation. This proved to
be unworkable, particularly for the way that
Macsyma macros are loaded at compile time.
It was discovered that such a feature was
relatively useless anyhow, so the compiler was
modified to see both MACRO and C M A C R O
definitions.

Autoloading

The evaluator will automatically search
for a function definition when it FUNCALL's ,
or when it attempts to evaluate a list whose
CAR is, a symbol for which no function

LP 1-2.16

definition currently exists. It d o e s this by
inspecting the symbol's A U T O L O A D
property. I f the value of this proper ty is a
string, it is assumed to be the name of a file
("data set") which is then loaded
interpretively into the ZIL environment; this
file is assumed to cause the Symbol to receive
a funct ion definition. I f the A U T O L O A D
proper ty value is a list, it is evaluated as a
form; this form is assumed to cause the
symbol to become defined. I f the
A U T O L O A D property value is a symbol, it i s
assumed to be the value assigned by the
D E F L O A D special form; if so, or if there is
no A U T O L O A D property, the ZIL loader is
invoked to locate the module of that name (or
the symbol name itself, if there is no
A U T O L O A D property) on the ZIL load
library (i.e. the librari(es) from which the main
ZIL module was loaded, which consti tute the
task library setup). I f it is found, it is brought
into main storage by the ZIL loader, which
searches for and resolves all references to
external compiled functions in the code (this
results in recursive loading and resolution of
other compiled code at load time).: The code
is then made the SUBR property o f the
function; and the F U N C A L L proceeds or the
evaluation is retried. The A U T O L O A D
proper ty is removed when necessary to
prevent infinite iterative a t tempts at
evaluation; an "undefined function" error is
signalled when all a t tempts to resolve the
funct ion definition fail.

Compi led programs generally have their
subfunct ions l inked in with them by the
linkage editor in one large load module; thus
there is no need to have ZIL load these
functions at run time. To prevent duplication
of compiled code in storage, the ZIL loader
keeps a lookaside table of module names that
are likely to be hard-linked with the
interpreter, which it searches before it goes to
the operat ing system to locate the code. In
cases where functions must be loaded from
the library, Z IL uses the operating system's
own control blocks to keep track o f which
modules are currently in storage.

I / 0

The term "file" has a different meaning to
IBM t h a n - t o the rest of the world; what
everyone else calls a "file" IBM calls a "data
set", and a "file" (also known as a "ddname")
refers to a symbolic 8-character name
associating a particular data set allocation
with a program OPEN request. This fits into
Lisp rather well, as a "file" is what is returned
by tl~e OPEN function (and passed to READ,
PRINT, CLOSE, and other I/O functions),
whereas what gets passed to OPEN is a
system-dependent name (a "dsname" in
MVS).

When a "data set" is opened, it is
dynamically allocated using MVS dynamic
allocation services, and then opened; ZIL
assigns a file name ("ddname") which is used
to construct a file object that ZIL returns as
the value of the OPEN function. This object,
which is actually a symbol whose print name
is the final 4 characters of the "ddname", is
used in READ and P R I N T calls, and is also
used to close the file.

I f a file name (4-character symbol) is
requested in an I/O operation for a file that
has never been opened, ZIL searches for an
existing file name as follows ~.

I f the function needs an input file, Z IL
concatenates "ZILI" to the file name and
looks for an MVS ddname of that form.

If the function needs an output • file, Z IL
concatenates "ZILO" to the file name and
looks for an MVS ddname of that form.

ZIL then automatically opens the file
(except that if the ddname is allocated to the
terminal, Z IL makes it a terminal file). The
constraint on the ddname is a throwback to
the modified Lisp 1.5 interpreter, which was
f ruga lwi th memory, and therefore required all

This applies only to "built-in" ZIL functions, or those that have been declared "built-in"
by the D E F A R G S compiler directive. Other functions are invoked dynamically by a
F U N C A L L - t y p e interface.

LP 1-2.17

files to be known at s tartup time. With ZIL 's
use o f memory above the 16-megabyte line,
such pars imony is no longer necessary, but
overhauling the file system is too radical a
change to make at this time.

Terminal input and ou tpu t in an IBM
3270 environment is radically different in its
demands from typical ASCII terminal
processing. TSO provides a line-mode
transparency to the application, but because
o f the nature o f 3270"s some operations are
not possible. For example, carriage returns
are meaningless in the EBCDIC environment.
For this reason, new-line conditions are
simulated in ZIL by detecting probable
end-of-line situations during terminal input
(a l though lines longer than the terminal line
size can be typed in if desired). This also
presents problems with file I/O. Under MVS,
a "data set" consists o f "records", which may
be fixed-length or variable-length; in either
case they do not terminate with carriage
returns. The new-line simulation applies here
as well. Z IL has a function N E W L I N E P
which returns true if the most recent
character-retrieving operat ion on a file "ran
off the end" o f the record; the nex t such
operat ion will return the first character of the
next record. The R E A D C H function will
return NI L in this circumstance, while the
TYI funct ion returns the equivalent o f hex 0D
("carriage return"). Similarly, strings that
extend acro.ss record boundaries have
EBCDIC "carriage return" characters
(hexadecimal 0D) inserted in them; the printer
recognizes these characters when writing to
the terminal and generates the proper control
sequence to cause the data to be printed out
on a new line on the 3270.

When Z IL writes to the terminal, it uses
assembler-language-level TSO terminal
communica t ion interfaces to maintain control
over the presence or absence of carriage
returns, and to pad the ou tput line with null
characters to the end of the terminal row.
This enables optimal overtyping of ou tput
lines wi thout having to use the ERASE EOF
key to clear blanks, or having to worry about
stray attr ibute bytes. Terminal input is
similarly managed with an eye toward keeping
an accurate count o f characters actually typed
and retention of alphabetic case.

EBCDIC VS. ASCII

Since IBM/370 software uses the
EBCDIC encoding scheme rather than ASCI I,
some differences necessarily exist between ZI L
code and code in other Lisps. Instead of an
ASCII function, Z IL has a n E B C D I C
function to convert a f ixnum to a character;
and an U N E B C D I C function to do the
reverse. Most Lisp code that uses the #/n or
#\n syntax works correctly under ZIL; only
code that has hard-coded ASCII numbers in it
loses.

Fortunately, C o m m o n Lisp does not
mandate reader support for square brackets,
which are missing from EBCDIC. However,
F O R M A T does make use o f them; we have
not yet determined the best way to deal with
this. (The ZIL implementat ion of F O R M A T
does not include the options that use either
braces or brackets at this time.)

Mainly for Macsyma, ZIL at tempts to
support square brackets in every way possible.
Square brackets input f rom fi les as hex AD
and hex BD are supported; for ou tput to a
file, they may be written as the same hex
characters or translated to another character
configuration (via use o f the ZIL SETBRACK
function). Terminal ou tput is more
problematic. Z IL will a t tempt to send the
proper character sequences to the terminal to
print brackets, if it can determine that such is
possible. In Macsyma, for the appearance o f
consistency to the user, brackets d isp lay as
curly braces by default, a l though the user may
change this by setting the Macsyma variable
BRACKETS. We have also extended the
Macsyma parser to accept curly braces as
being syntactically equivalent to square
brackets.

EXTENDED A R C H I T E C T U R E (XA)
S U P P O R T

ZIL ' s largest memory areas are cons
space, the control stack, and the "oblist" hash
table for interning symbols. Storage for all of

LP 1-2.18

these is acquired above the 16MB line (i.e. in
memory accessible in 31-bit addressing mode
only) to allow for sufficient size to perform
huge computations efficiently. Due to
architectural limitations which have not been
overcome in the current release, vector/string
space and all ZIL executable code must reside
below 16MB. ZIL itself, however, runs in
31-bit addressing mode (leaving that mode
only to invoke I/O operations, which require
24-bit addressing).

The sizes of cons space, the control stack,
and vector/string space are all settable at run
time by passing initialization specifications to
the top-level ZIL program in the OS PARM
field (or in the command operand field if the
top-level is invoked as a TSO command
processor). Initialization specs, if present, are
enclosed in backslashes at the beginning of
the parameter field. The remainder of the
parameter field is passed to ZIL and is
accessible via the ZIL GETPARM function.

the heap into a space of 64-bit objects,
consisting mainly of cons cells, and a
vector-string space of unequal-length objects
has permitted fast vector operations on 64-bit
object-space.

B E N C H M A R K S •

Of course, running on one of the fastest
hardware processors around means that "ZIL
would run fast even if it were not designed
well. But we ran some standard benchmarks,
including some from Gabriel (1985), and
results were favorable in terms of processor
time used, despite the lack of high compiler
sophistication. The performance of ZIL using
variables that are not locally bound (based on
Gabriel's STAK benchmark) compares
favorably with other implementations
(including PSL on an IBM 370), attesting to
the efficacy of ZIL's deep-binding scheme.

THE SYSTEM/370 VECTOR FACILITY

The vector facility on the IBM 3090 is an
integral pa r t of the CPU, and has a few
instructions which are particularly interesting
in Lisp applications. For example, a single
machine instruction can load or store a
vector-register pair consisting of 128 64-bit
cons cells in locations pointed t o by a third
vector-register containing 128 pointers.
Speedup is typically a factor of 2-4, and up to
10 with floating-point.

To some degree, the vector facility has
influenced the design of ZIL. Separation of

USABILITY FEATURES

Although ZIL has tended to stress
internal development at the expense of
user-friendliness at times 3, many features
helpful to the interactive ZIL user have been
added. A "dribble" capability allows the user
to copy all terminal input and output to a file
or to a stream that can be printed off by the
operating system. 4 The ED function interfaces
to the ISPF editor; this works in conjunction
with the PP (pretty-print) function to allow
the user to create and modify function
definitions on the fly.S

For example, there is no interactive debugging other than tracing, and that works on
interpreted code only. The compiler cannot be accessed within the LISP environment,
a l though the assembler-code-outputting part of the compilation process has been
successfully invoked inside ZIL. There is no fancy full-screen windowing or graphics,
which says more about the IBM environment than anything else.

Unfortunately, dribbling cannot be turned on and offwithin ZIL; it must be specified on
entry to ZIL, and remains active until exit from ZIL.

An ISPF edit macro (coded in PL/1) enables parenthesis matching under the ISPF
editor; the user can place the cursor under a parenthesis or brace and press a PF key,

LP 1-2.19

SOFTWARE PORTING

The first successful installation of a
Lisp-coded software product on MVS via ZIL
was Carnegie-Mellon's expert system builder,
OPS5. An MVS interface (also using ISPF)
was developed to make the system easy to use
for IBM mainframe users. A number of
experimental expert systems have been
developed under ZI L and OPS5, including:

an interface between OPS5 and IPCS
(MVS's Interactive Problem Control
System, a full-screen dump-analyzer);

an expert system which generates and
submits JCL to unload the contents of a
tape file onto MVS disk files;

a DCF- to -GML text processing conversion
program.

A complete implementation of
DOE-Macsyma (the symbolic algebra
program) is available to MVS users under
ZIL, including full support for translating and
compiling Macsyma and Lisp code, a facility
for coding ISPF dialogs in Macsyma, and
interfaces to TSO and the local Draper
electronic mail system. DOE-Macsyma has
been the driving force behind many of the
improvements in Zil since its inception.

In addition, an implementation of
FLAVORS (apparently the most popular
object-oriented programming facility in Lisp)
is available in ZIL which follows Weinreb and
Moon's original Lisp Machine FLAVORS
paper very closely, as well as containing some
features present in the NIL FLAVORS
implementation.

FUTURE OF ZIL

We are working on a new architecture
that will be 100% Common Lisp compatible,
while retaining the features that enable

software like DOE-Macsyma to run
successfully. This will probably make heavy
use of extended data types (through
DEFSTRUCT) and more varied binding
techniques. A "fluid" variable binding
mechanism will be used to effect
"pseudolexical" scoping, while "special"
binding will be available simultaneously.
Multiple control stacks . for interactive
debugging are also a possibility.

Native support for 3270 features such as
extended attributes is a possibility; full-screen
and graphics interfaces might be useful as
well. This is not urgent, however, since we
have access to both ISPF and the TSO
Session Manager.

An interface to FORTRAN is in the
planning stages, allowing FORTRAN
programs to be used as ZIL functions.

The compiler will probably be rewritten,
providing support for additional features of
Common Lisp. For example, the compiler
currently utilizes compile-time-only macro
definitions, which in conjunction with
D E F L O A D provide ~ a simple source
transformation capability. However, true
source transforms would be desirable, as well
as a better declaration scheme which would
allow more control over the type of code
generated for various functions.

The System/370 Vector Facility might be
used more extensively by the GC as well as by
library functions and compiled code.

REFERENCES

Gabriel, Richard (1985), Performance and
Evaluation of Lisp Systems, MIT Press.

Winston, Patrick, and Hor n , B.K.P.
(1984), Lisp, Addison-Wesley.

Steele, Guy (1984), Common Lisp: The
Language, Digital Press.

and the edit macro will move the cursor to the matching parenthesis or brace.

LP 1-2.20

Weinreb, Daniel, and Moon, David
(1980), Flavors: Message Passing in the Lisp

Machine, A. I. Memo No. 602, Massachusetts
Institute of Technology.

1 Edi tor ' s note: The IBM 3090 is a very fast machine; its basic cycle time is 18 nanoseconds, and

most instructions take only one or two cycles; also note that the particular machine at Draper Labs has a

large amount of real memory (32megabytes or more). For comparison purposes, the authors have verbally

mentioned that a ZlL-based Macsyma runs many Macsyma benchmarks at about 5 times the speed of

Vaxima running on a VAX/8650, at about 10 times the speed of the original MacLisp-based Macsyma

running on a PDP-10(KL10), and at about 20-30 times the speed of a NIL-based Macsyma running on a
VAX/780.

COMING IN 1987!

LISP AND SYMBOLIC COMPUTATION:
An International Journal

Coming in late 1987, the new LISP AND SYMBOLIC COMPUTATION: An International
Journal will present a forum for current and evolving symbolic computing, focusing on Lisp and
object-oriented programming. The scope includes:

• Programming language notations for symbolic computing (e.g., data abstraction, paral-
lelism, l u y evaluation, infinite data objects, self.reference, message-passing, generic func-
tions, inheritance, encapsulation, protection, metaohjects).

• Implementations and techniques (e.g., specialised architectures, compiler design, combi-
natory models, garbage collection, storage management, performance analysis, smalltalks,
R~tvors, common loops, etc.).

• Programming logics (e.g., semantics and reasoning ~bout programs, types and type infer-
ence).

• Programming environments and tools (e.g., knowledge-based programming tools, pro~am
transformations, specifications, debugging tools).

• Appli~:ations and experience with symbolic computing (e.g., real-time programming, artifi-
cial intelligence tools, experience with LISP, object-oriented programming, window systems,
user interfaces, operating systems, parallel/dlstributed computing).

Editorial Board:

Richard P. Gabriel, Lucid, Inc. , Editor-in-Chief
Guy L. Steele Jr. , Thinking Machines, Inc. , Editor-in-Chief

Daniel G. Bobrow, Xerox PARC
Robert S. Cartwright, Rice University
Jerome ChaiUoux, INRIA
L. Peter Deutsch, Xerox PARC
Daniel P: Friedman, Indiana University
Martin L. Griss, HP Labs
Carl Hewitt, MIT
Paul Hudak, Yale University
Masayuki Ida, Aoyama Gakuin University
Gilles Kahn, INRIA

Kenneth Kahn, Xerox PARC
John McCarthy, Stanford University
Larry Masinter, Xerox PARC
Julian Padget, University of Bath
Carolyn Talcott, Stanford University
David S. Touretzky, Carnegie-Mellon University
Mitchell Wand, Northeastern University
Mark N: Wegman, IBM Watson Research
David S. Wise, Indiana University

For submissions and more information contact:

Jan Zubkoff
Associate Editor, LASC
Lucid, Inc.
707 Laurel Street
Menlo Park, CA 94025
415/329-8400

LP 1-2.21

