
Address/Memory Management For A Gigantic LISP Environment 
or. GC Considered Harmful 

by Jon L White 
Laboratory for Computer Science 

Massachusetts Institute of Technology 
Cambridge MA 01239. July g, 1980 

ABSTRACT 
The possibility of incredibly cheap, fantastically large 

media for storage gives rise to a realistic LISP memory 
management scheme under which GC may be postponed 
for days. or even indefinitely: the idea is encapsulated in 
the acronym "DDI" - -  "OC? Don't Do lit". Tertiary 
memory is u~d to archive pages of the LISP environment 
which are perhaps reclaimable, but which have not been 
proven so; whereas the standard technique of "paging" is 
used to swap active data from the main memory to a 
secondary store such as magnetic disk. Some scenarios are 
presented considering a variety of currently-available 
technologies, and of one speculative possibility - -  videodisc 
- -  by which a requisite compactifying OC would be done 
"overnight". or over the weekend. With enough tertiary 
available, one design could last for over 12 years without a 
GC. "Verite-once" memories, probably unusable for most 
applications, would not be at a disadvantage here. 
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1. Introduction and the Basic Problem of GC 

The  possibility of incredibly cheap, fantastically 
large media for tertiary storage gives rise to the question 
for LISP users "What is Garbage Collection done for, 
and what  does the alternative cost"? On first- and 
second-generation machines, and in most mini/micro 
computers, the GC is necessary due to exhaustion o f  the 
number o f  memory cells available, typically the formerly 
used but now inaccessible cells were reclaimed by a 
"mark-and-sweep" GC. Later on, with the advent of 
virtual memory, the problem became one of exhaustion 

of the number of addresses available; also, there was the 
need to reduce the number of pages in the "working set" 
[/reference/ Fenichel and Yochelson; also Multics 
version of Maclisp addresses this issue]. Typically, these 
later systems used a "stop-and-copy" method, instead of 
a t r u e  co l l ec t ion  of  "garbage" cells, in order to 
compactify, the working data. In a very large address- 
space machine, consideration must also be given to the 
requirement of the number of "core-resident" pages in 
the operating system necessary to support a large virtual 
address space [for this reason, many time-sharing 
installations have an administrative restraint on the 
actual size of a user's virtual memory; e.g., many 
V M / 3 7 0  users find themselves limited to a lMby (= 
Megabyte) "machine", although a 16Mby "machine" is 
technically feasible]. 

Two problems arise of ocasionally insurmountable 
proportions: ( l )  An embarrassingly large time pause 
while the main process is locked out and the GC is 
running, and (2) a "thrashing" of the paging device while 
t racing or descending data-structures distributed 
somewhat  randomly  throughout the address- 
space/memory. In 1978, H. G. Baker presented a 
memory utilization strategy which overcame the first 
obstacle [/reference/ Baker], and it will be assumed that 
the reader is at least casually familiar with this "real 
t ime" scheme; although not immediately obvious, the 
second obstacle was still present to an annoying degree 
in this scheme [/reference/ Lieberman and Hewitt; also 
private communication from Greenblatt]. Herein we 
present a rationale for a memory utilization strategy 
which treats GC as "harmful", and avoids ahnost all 
stages of it. A kind of "Lipschitz condition" for memory 
utilization, desirable for programs which use temporary 
data, is introduced; it is shown how a novel use of a 
port ion of  the Baker GC algorithm maintains this 
"condition" in the virtualized machine- and LISP- layouts 
herein presented, and how a real GC would tend to 
destroy this condition. Programs running in one of these 
LISP systems will not be slowed down by the lack of 
GC, but when the GC becomes critically necessary, it 
wil l  be a length), process - -  possibly requiring between 
t~ and 30 hours depending on the amount of accessible 
data, and may require short-term usage of a very large 
main memory. With such requirements, a OC would be 
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a "harmful" operation, due to the time involved and to 
the need for temporary use of an expensive component, 
namely the large main memory. Resource sharing of 
such a component,  were it done on a once-a-week or 
once -a -mon th  basis, could turn into a commercial 
enterprise,  humorously suggested herein to be called 
"Rent-A-Mere,  Inc.". Service might be by means of a 
mobi le  unit  which attaches to the computer-utility 
plug/port  on the exterior of an office building housing 
one or more large-scale LISP-supporting computers. 

This strategy assumes only modest design changes in 
existing central-processors and t/me-sharing operating- 
systems, and indicates a place where an "outboard" 
micro-computer optionally placed in the memory system 
could  be a t remendous  help - named perhaps the 
" In te l l igen t  Memory"  by analogy to the Intelligent 
Terminal.  "Secondary memory" is viewed as something 
like a currently available magnetic disk; "paging" onto 
secondary  would be done automatically for LISP by a 
supporting operating system, using pretty much the 
existing hardware and software technology of "paging". 
"Tert iary memory" is to hold pages of the LISP address 
space which Kaven't been referenced "for a long time" - -  
so long, in fact, that future references, if any, to data on 
'these pages will 'probably be of low overall density, or 
nil. These pages, by virtue of being "old" in the sense of 
having not been referenced recently, will be called 
"archaic".  The medium for tertiary may be any of 
several  new technologies,  such as videodisc, bubble 
domain, the IBM 3850 MSS, or even high-density serial 
magtapes .  Happily, a write-once memory, such a 
videodisc may turn out to be, is as useful as any other 
for the tertiary memory required in this proposal. An 
interesting aspect about a serial tape is that one may just 
as well view it as a write-once meduim, not because it 
would be difficult to overwrite an existing record, but 
because of  the sequential layout that the write-once 
condition imposes. Although the tape would be "slewed" 
back to read prior data, all writing would take place at 
the  act ive end of  the tape, so that most write-out 
requests would not have to wait for any "slewing"; it is 
the write-out for archival purposes which would be the 
most frequent operation on the tertiary memory. The 
value of  migrating to tertiary, rather than the costly 
"harmful" alternative, is that by not re-cycling addresses, 
or at worst re-cycling them on the basis of once a week 
[or once a year!], the system is not required to prove that 
there  are no chains of accessible references ultimately 
reaching that page. Most likely, there aren't any such 
chains ~ the "old" page is probably truly inaccessible 
but to people that is comparatively very costly, requiring 
that the GC finish its stubborn march through all paths 
originating from the roots. 

A n o t h e r  proposal [ / r e fe rence /  Lieberman and 
Hewit t ]  attempts to stratify "pages" according to a 
"generation" number, that is, according to the time at 
which consing first took place on them. Thereby, a page 

(or "chunk" of memory) with a given generation number 
may be reclaimed by a GC pass which ignores all data 
on chunks of lesser generation numbers. For example, if 
it has been determined to "GC" a particular group of 
chunks, and they are situated near the most recent 3% 
of constructed data, then the GC mark phase need trace 
through only about 3% of the data, instead of all 100%. 
The  hope is that temporary storage will be quickly 
reclaimed, almost hnmediately after it has ceased to be 
useful, but there is still the open question of how best to 
determine which chunks to try to reclaim at any given 
point in time. Furthermore, it would be difficult to 
estimate the efficiency of the overall reclamation process 
without actually running it: the OC must still prove that 
there are no accessible data in a chunk to be reclaimed, 
but it is hoped that the incremental nature - -  returning 
recently-used temporary chunks quickly - -  will improve 
performance. 

But, when in doubt, leave it out! or, as the idea in 
this i~aper will henceforth acronymically be called the 
"DDI" method, "Don't Do It". The consequences of not 
"Doing It" at all might at first appear to be the age-old 
problem of (1) having data distributed too thinly over 
too many pages, so that most data-references cause a 
page-except ion,  and (2) an outrageous amount of 
"garbage"  is being dumped onto the secondary or 
t e r t i a ry  memory  system. The first problem can be 
rather simply corrected by using only part of the Baker 
(3C algorithm [ / reference/  Baker], the "transporting" 
part which copies objects from "oldspace" to "newspace" 
au toma t i ca l ly  upon reference to them: thus stuff 
concurrently being utilized will tend to clump together 
spatially. The second problem is handled by a minor 
design variant of hardware and software, which would be 
applicable to modern large-address-space computers like 
t he  Digital Equipment Company VAX, the S-I which 
was designed at Stanford University and is being built at 
L a w r e n c e  L i v e r m o r e  L a b o r a t o r y  [ / r e f e r e n c e /  
McWiliiams el. al.], and even conceivably some of the 
32-bit mini- and micro-computers which will continue to 
appear on the market. 

Two terms will be used frequently in the remainder 
of  this presentation, and need to he defined: 

Q - quan tum of LISP data, usually a "pointer" 
occupying one word.. Certainly it has to be big 
enough to hold any address in the virtual memory 
configuration - if we expect a 227-bit address space 
of  words, then a Q would have to be at least 27 
bits long. "Q" should not be confused with "cons" 
cell, or "pair" cell - -  two Q's are stored into a 
"pair" cell, and under this memory cofifiguration, 
two words [or Q's] are needed for "doing a CONS". 
The notation "Q" will be used when it is intended 
to stress the contents as LISP data, whose meaning 
must be "interpreted" by, or understood in the 
context of, the LISP system: the word "word" will 
be used in the more general computer sense. Either 
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one m a y  be used when denoting information 
capacity. 

Heap - a segment of pages where LISP consing takes 
place. In any LISP, it is desirable to distinguish 
several such areas, at least to the point of having a 
"static" heap. In "static" storage, which is discussed 
further below, constructed objects are expected to 
have some permenance; the normal GC neither 
"sweeps" them up, nor generally descends through 
them, except for specially designated "exit" vectors. 

2. A G i g a n t i c  LISP Virtual  Machine  

We assume that the cpu will have a memory cache, 
with address ing to the byte, and a relatively full 
complement of instructions, of variable length as in the 
IBM370 or the VAX. Addressing to the byte rather 
than to the word is not wasting any limited resource 
(addresses ) ,  but rather  facilitates character string 
operations and the efficiency of instruction storage. In 
order to facilitate the LISP memory management, there 
will have to be additional specialized instructions for 
access/update to LISP data, such as would be needed for 
the primitive LISP data. For the "pair" data type, CAR 
and C D R ,  are  the basic selectors,  RPLACA and 
R P L A C D  are the basic updators; for sequence-type 
data, like STRINGs and VECTORs, ELT could be the 
basic selector and SETELT the basic updator. These 
part icular  instructions are especially needed to insure 
tha t  the  " t ranspor ta t ion"  phase of the Baker GC 
algorithm is done: but even if these aren't primitive op. 
codes, and aren't easily microcode-able, then the LISP 
operations can be called as "out-of-line" subroutines, with 
some subsequent  time slow-down. See section 2.3, 
"Transporting for Compactness ..." for a discussion as to 
why an object might have to be moved when referenced. 
For typical realizations of LISP - -  the kinds of primitive 
data types desired, and so on - -  see the "Standard LISP 
Report" [ /reference/  Marti, Hearn, and Griss], and the 
two LISPs described by White [/reference/ White 1978, 
and White 1979]. 

Some extra paging registers shall be described below, 
which facilitate access to archaic pages, but these should 
not be critically necessary. However, for the gigantic 
machines used as examples, it will be quite important to 
permi t  an "astronomical  hole" in the address space 
[where no regular page-table support is apparent] without 
unduly straining any system facility. User memory 
references to that area designated "archaic" will have to 
be trapped for service by the LISP sub-sytem. 

It will be desirable to have the memory accessing 
mechanisms not only "cache" references, but also "go 
indirect"  through "invisible" pointers found stored in 
m e m o r y  cells [ / r e f e r e n c e /  Greenblatt]. "Invisible" 
pointers are to be installed in LISP storage objects 
whenever  the)' are transported, for whatever reason. 
Even the lowly function "EQ" would have to have its 

arguments "dereferenced" - -  chasing down any invisibtt 
indirection chains m if they point to storage objects. 
Also, the prospect of reducing the initial storage for lists, 
by linearizing them at construction time [/reference/ 
Bobrow and Clark], makes it desireable to decrease the 
number of type code bits by two or three, and use those 
extra bits for "cdr-coding". Admitting "invisible pointer" 
codes, and "cdr-coding" into the architecture reduces by 
two or more the effective number of bits for data use in 
a Q; for the machines listed as examples in section 2.1, 
only those with fewer than 7 type code bits might feel 
this impact. 

It would be nice to have a stand-alone, special 
purpose machine for LISP use, such as the one at Xerox 
PARC [ / r e fe rence /  Deutsch] or the one built at NIIT 
[ / r e f e r e n c e / G r e e n b l a t t  et al]; but any large'address, 
economical  machine should be workable, in varying 
degrees [the VAX 11/780 may be a typical candidate]. 
The  d i f fe rence  between one and another appears 
pr imar i ly  ifi the size and flexibility of microcode 
available for the LISP part of the design, and the effect 
that lack of such microcode may have on LISP running 
speed .  [The  au thor ,  and several others at this 
Laboratory, conjecture that a memory cache may prove 

to be a more powerful facility than user-writeable mired- 
code ~ especially on a machine with a fairly supportive 
set of  instructions and addressing modes]. ,There is in 
fact,  no need to be a "LISP machine", but such task 
could run under the supervision of a moderately friendly 
time-sharing monitor, along with a more pedestrian 
intermix of, say, FORTRAN and COBOL. The only 
special co-operation needed from the host operating 
system would be to ensure that: (1) each big, long-term 
LISP job has its own dedicated tertiary memory facility 
a which might just be a platter in a multiple disk 
layout: (2) accessibility for each page must be under 
control of  the LISP job itself, and attempted references 
to non-exis tent  pages, if not followed through the 
"archaic page bag" as described below in section 2.2, 
must return control to the LISP page-exception handler 
so that it may simulate the memory accessing needed for 
the "archaic page bag". 

2.1 A d d r e s s / M e m o r y  Sizes 

We will assume, based on previous experience that 
IMO (= ! Mesa Q) of main memory and about 100Mby 
to 300Mby of disk would be at the heart of the memory 
s y s t e m  fo r  a s ing le -BIG-user  system [private 
communicaton from Hewitt, and also from O'deli]. A 
"BIG" user is one that demands a very large working set 
of  pages w a system may comprise thousands of uti|ities 
all in the same address space, even some as big as an 
interactive, intelligent editor, but still not become a BIG 
user. Many additional small users may be added to a 
single or multiple BIG-user system without much loss; 
but a BIG-user count of 10 would increase the need for 
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main and secondary memory ,  although not to a 
proport ional extent [perhaps 4MQ main memory and 
500Mby to 1000Mby of disk, depending on the raw 
speed of  the processor]. The tertiary memory system 
needs to be big enough to back up the entire primary 
address space, for each simultaneous user, and a certain 
factor more for rewrites on a write-once medium. The 
IBM370, and many mini-computers (also MIT's LISP 
machine]  have a span of 224 bits, or about 16Mby ['- 
4MQ's],  and this would fit handily on the smallest of 
modest disks; however, the VAX and the S-I permit s 
user address span of about 231, or more than 2000Mby. 
Note  that the VAX uses the high-order bit of its address 
space to mean "system" area, so that operating-s)stem 
s e r v i c e s  m a y  be en t e r ed  with exactly the same 
instruction which enters user subroutines; this is why 
the 32-bit address space can support at most 229 Q's of 
user  data  reference, but this crinkle on the addressing 
scheme does not impact usage of the other bits, nor does 
it affect the LISP design, and so it will be i,gored. A 
reconfigured use of the VAX address to permit 5 type 
code  bits would still demand 22-/ Q's, or 512MQ of 
address space, and this appears to be smallest size for 
which one might want to consider "playing tertiary 

tr icks ' .  
We will also consider two hypothetical machines of 

gigantic proportions, the G-36 and the O-41, [presumably 
manufac tu red  by the Gargantua Computer Company] 
w h i c h  have  a 48-bit  word size, 12-bit byte, and 
respectively a 36-bit and 41-bit address space. The 
memory spans then are respectively 16GQ (= 16 Giga 
Q's) and 512GQ, which amounts to 24 Terabitsl The 
smaller one could be serviced by a 64K-Megabyte 
t e r t i a r y  sys tem [Note:  not,  64Mby, but about 
65536Mby]. 

For illustrative purposes, we assume a page size, and 
disk track size, of 2048 Q's; this permits the calculation 
of  page-table sizes correct to within a modest factor, 
except for the VAX, whose hardware has a much "finer* 
page size of 128 Q's [if the demands imposed by so small 
a size cannot be corrected in the hardware, then these 
page-table size estimates will be too low, for the VAX, 
by a factor of 16] 

2.2 Memory Layout and Paging Registers 

There needs to be four major "paging regions" in 
the main memory -- accounting for four independent, 
randomly-accessible data segments - -  giving rise to three 
pairs and one set-of-three internal, per.process machine 
regis ters  which delimit the ranges of these "paging 
regions'. [The normal hardware layout of the VAX has 
two segments, called P0 and PI, but makes do with only 
two registers, instead of four, by fixing the low end of 
one area at virtual address 0, and the high end of the 
o ther  at virtual address 231--1. We identify these 
"regions", with size estimates, as follo~,~: 

P a g e - t a b l e s  a n d  PDL 0 .25MQ 
S t a t i c  h e a p  7 .75MQ 
L i v i n g  h e a p  4 .  OOMQ 
A r c h a i c  p a g e  bag  I .OOMQ 

The  sizes allocated to the individual regions are quite 
tentative, and except for avoiding extremes, it would be 
difficult to estimate accurately the effect of region size 
on syste,n performance without actually doing a number 
of  trial runs. It should be pointed out here, by contrast 
with other schemes, what these regions are no__t: 

I) they are not spatial localizations of some 
coincidentally-related problem data, which the user 
[or "smart" program] assigns to its own area; this is 
for contrast with one aspect of the MIT LISP 
machine notion of "areas", which permits a "smart" 
programmer to construct spatially compact 
structures, in its own area, regardless of any other 
co-incidental consing or OC-transporting going on. 
[ / reference/  Greenblatt, and also Bishop] 

2) they are not areas containing objects all of the 
same data type, so that the address part of a Q 

contributes some small amount of information to 
the type code part [ /reference/ Steele] except for 
the division between the living heap and the "static" 
area, the), are not isolated areas, with few [or none 
at all/ pointers out of one such area into another. 
An area so isolated can be garbage-collected 
essentially independently of the other areas, and 
thus support a I~ind of incremental GC scheme. 
[ / reference/  Bishop, and also Greenblatt et. al.] 

Capacities of Several Machines Compared 

flachtnelword 
name I tn b i t s  I s i ze  tn O's 

VAX I 32 I 29 
VAX* I 32 I 27 
S - t  I 36 I 29 

I e e / 3 7 0 1  3Z I 22 
G-36 I 48 I 34 
G-4 |  I 46 I 39 

I Log2 of user INo. or tyPelbaslc byte. INo. GQ ofl 
slzeleddress-space code bits [or cheractarl tert taryl  

for LISP stze I needed J 

0 
S 
5 
8 

12 
7 

I I 
8 I o .s0  I 
S I 0 .13  I 
9 I o .so I 
8 I none I 

lZ I 16. I 
lz  I S12. I 
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4) They are n o t  tables for managing a tertiary "back- 
up" to the system's secondary memory. In fact, 
both tertiary and secondary are direct "back-up"s to 
the main memory, but they are reached through 
different  mechanisms - -  the one as a part of a 
standard "paging" scheme, and the other as part of 
a novel page archival scheme which substitutes 
hashing for the usual page-table/page-register 
support. 

Fhey are  identif ied for the purposes of setting up 
independent paging resources, and are much more like 
"segments" in nature - -  the requested registers are in 
fact segment delimiters. 

Let these four sets of registers be called 

P D L - l o ,  P D L - h i  
S T A - l o ,  $ T A - h i  
L I V - l o ,  L I V - h i  
T R S - l o  
O L V - I o  
A R C - l o ,  A R C - h i  

the address [OLV-io} + 33400121[8] is being used, and it 
.falls into the archaic area; then its page number, {OLV- 
Io] + 6700{8], is searched in the bag, and is found at, 
say, the 25'th entry; then that reference may be mapped 
into {{ARC-Io] + 25.] + 121[8] 

The  total length of the archaic page bag is fixed, and 
small by comparison with the "archaic" area; each slot 
represents where a page may be stored, before it is 
migrated, "oldest first" to tertiary memory. Associative 
registers should speed the "searching" of the keys to this 
region to find out if a particular page is currently there; 
there should also be an ordered index into the bag, 
probably a table of IK words, maintained by insertion 

boundaries for the page-table and PDL area 
boundaries for the Static area 
boundaries for the Living heap 
low boundary of non-automatic transport region 
the original value of LIV-lo 
boundaries for Archaic page bag 

The TKS-Io register will normally split the Living heap 
m i.e. lie somewhere just above the address in LIV-io - -  
and any object stored at an address below TRS-io, when 
referenced, will automatically be "transported" up into 
the consing area of the Living heap. Archaic pages start 
out as part of the living heap. As consing continues, the 
high end of the living heap is advanced upwards, and the 
low end of it is also advanced upwards so that its total 
length doesn't exceed some predetermined limit, say LIV- 
length; it may bloat up and thin itself down, like an 
accordion expanding and contracting, but it will never 
exceed that limit. LIV-length will depend upon many 
f a c t o r s  o f  s y s t e m  p e r f o r m a n c e ,  and should be 
d y n a m i c a l l y  adjustable.  But the pages which are 
advanced over by LIV-Io as it marches upwards are 
tagged as "archaic", and are immediately put into the 
archaic page bag, which is a ring-buffer of archaic pages. 
The re  will be no page tables entries for any of the 
archaic pages, in that part of the address space marked 
by the original LIV-Io and its current value; instead, if a 
memory reference is attempted to that area, then the 
page number of the desired address is used as a key to 
search the bag, [possibly with associative hardware help, 
or if necessary just hash coding]. For example, suppose 

and deletion operations. Insertions/deletions to the bag 
wi l l  be rather infrequent, by comparison to other 
operations, but associative-lookup failures may occur 
relatively often, and it must be possible to search this 
index table to reload the associative registers quickly [or 
generate a exception trap if the search key is not in the 
table]. 

But what happens if an archaic reference is not 
found in the bag? Well, first note that pages dribble 
through the bag, and when reaching the end will be 
wri t ten out on tertiary memory; the bag need not be 
strictly a FIFO queue, but some attempt should be made 
to reorder it so that some "lesser-recently-used" page is 
the one picked for dumping out to tertiary. Thus it will 
always be possible to make room for one or more pages 
to be fetched back from tertiary, and reinserted in the 
top of  the bag. 

Page tables, whether "paged out" to secondary 
storage or whether resident in main memory, need to be 
allocated to cover only these four regions; in the case of 
G-36, this might mean that only 16MQ's of address 
space need to be covered, instead of 16GQ's. At one 
word in the page table for each page covered, and with a 
2KQ page size, this would mean one page of page tables, 

Picture 

I O L V - l o  I L I V - l o  
I I 

V > >  < <  V ,, 

I I 
I " a r c h a i c "  a r e a  I 
I I 

V ,  > >  < <  V ,, 

of Li~ng h u p :  

I T R S - I o  I L I V - h t  
I Ih  I 
V,, V V, 
• C u r r e n t  . I 
• c o n s i n g  . I 
• " W i n d o w "  . I 
y v v 

A d d r e s s e s  
y e t  t o  b e  
u s e d  
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instead of 4096 pages of page tables for covering the 
whole space. For the VAX scenario in section 2.1, with 
5 LISP type-code bits taken from its 32-bit address, there 
are only 64K pages total, and 32 pages of page-tables 
would suffice to handle the whole space. This seems 
small enough to suggest forgetting about the archaic 
page bag, and just providing enough page tables for 
every address in the space; most page tables, then, could 
be paged out on secondary, with some process register 
indicating which ones are really in memory at any given 
t ime [obviously, the page with the page-table for the 
page-table region could not be paged out]. 

So why not dispense with the 7archaic page bag" in 
the G-36 case also? 16MQ of "paging regions" when 
fully occupied, needs 8192 pages of swapping area 
support, and adding another g192 pages to hold the page 
tables for covering the entire address space would require 
additional secondary capacity equivalent to about a T300 
disk unit; this actually is not totally unreasonable. But 
consider the G-41 case: still up tO 8192 of pages are 
needed for swapping the "paging regions", but about a 
quarter mill ion pages are needed for page-table pages, 
and this amounts to more than 3200 Mby m which is a 
lot of disk storage to dedicate just for one user's page 
tablea! 

Since the movement of data from areas below TRS- 
Io into the consing region may tend to degrade system 
performance, it is desirable to isolate data which is not 
temporary ,  and place it in a static area from which it 
will not  normal ly  be moved. For example, a large 
a p p l i c a t i o n  sys tem may consist of  hundreds of 
subroutines along with many constant data expressions; 
;ill such code and data may be placed in the static heap, 
for indeed the)' will never be reclaimed as long as the 
tha t  appl icat ion system is alive. Some applications 
packages might even have parameter settings which 
automatically cause them to be constructed, or loaded, 
into the static area. On the other hand a user might 
explicitly request a particular package to be placed in 
s ta t ic  space, even when not done so automatically, 
because he knows that it will be of continuing utility 
during his encounter with the system (for example, some 
temporary debugging facility). If not directly moved to 
the static heap by the programmer, an object could be 
subject to some heuristically-induced migration - -  after 
such-and-such a number of Baker transportations into 
the  living heap [from archaic pages], by automatic 
analysis it might be decided that it would be worthwhile 
to migrate the module to the static heap, based on the 
projected likelihood that it will continue to stay around 
and be used. 

2.3 Transporting for Compactness: 
The Pseudo "Lipschitz" Condition 

There are three major reasons why a stored object, 
once it has been constructed, will be moved to another 
memory location: 

I )  ] t  might  be moved to the static heap, not 
particularly for compactness, although it might be 
"cdr-coded" at that time, but due to expectations 
that it is a relatively permanent object. 

2) To  make RPLACD work in a "cdr-coding" 
environment, there must be the possibility of 
installing an "invisible" pointer in one cell, and 
moving the object formerly stored there to an un- 
coded cell; this motion, like I) above, is not for 
compactness. 

3) The transportation part of the Baker GC moves 
cells from "old space" to "new space", thereby 
achieving a compactness of some sort. 

Not being too concerned about reclaiming address space, 
it is the results of transportation number 3) which make 
it realistic to run LISP with a "DD]" garbage collector. 
For, ignoring the rather trivial effect of transportations 
I)  and 2) on fast-moving, temporary storage, doing this 
third phase of movement, into the living heap, ensures a 
kind of pseudo "Lipschitz" condition relating memory 
occupancy and access. Suppose M 0 is the address in 
which an object is stored just after it has been 
referenced at time T 0, and similarly M l is its address 
just after a reference at time T 1 [Ti>T0]; then there is 

a constant ( dependent on the length of the living heap 
such that 

Mi--M 0 < ~(Ti--T 0) 
Two aspects of the ordinary Baker GC tend to degrade 
the degree of spatial compactness of data accessed in a 
temporally-compact interval: 

l )  the need to transport all the substructures 
accessible from a cell which was just transported 
[say, from M 0 to M l l, and 

2) the "daemon"-Iike action of the scavenger part of 
Baker GC, which is busy at work transporting any 
and every object accessible from the roots, 
regardless of when [if ever!] it will be referenced by 
the program again. 

It has been noted on MIT's LISP machine that a large 
program which confines itself to a small set of working 
pages for some modest time interval will still be 
burdened by the demand for a large working set, due to 
the requirements of these two OC aspects; performance 
is remarkably better when these parts of the OC are 
turned off  [private communication from Greenblatt]. 
Thus  the "DDr '  method keeps the successful part of 
Baker OC, transportation from the archaic area, or "old 
space", but omits the degrading part. 
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Bobrow and Clark [/reference/ Bobrow and Clark, 
P.282-284] pose an interesting hypothesis of a similar 
nature: if T 1 and T O are, rather than the times of 
access, the times of creation, then the probability that 
M 1 contains a pointer to M 0 is dependent only on T I- 
T O . In their paper, empirical evidence was presented 
which showed this to be fairly true for pointers in the 
cdr part of a cell, but the results were pessimistic for the 
car part.  The investigation showed that "cdr-coding" 
will likely be highly applicable in the kinds of programs 
from which the empirical data were taken; it will reduce 
the number of pair cells needed to store a list - -  up to a 
50% reduction ~ by eliminating cdr links [see also" 
/ r e f e r e n c e /  Clark and Oreen]. In object-oriented 
programming, such as in SMALLTALK [/reference/ 
Ingails], more data is kept in vector-like objects rather 
than in lists, and "cdr-coding" may be less useful. 
Nevertheless, the goal of this "interesting hypothesis" is 
to suppor t  an encoding scheme which reduces the 
number of bits used to store the car and cdr of a pair 
cell, and thus reduce memory requirements, which should 
s imul taneous ly  reduce the number of pages in the 
working set. 

On the  o the r  hand, the goal the the pseudo 
"Lipschitz" condition is to reduce the size of working 
sets by a dynamic, and invisible to the user, re-shuffling 
of stored data: such is independent of the use of a "cdr- 
coding" scheme. 

3. GC Once a Year: Enough? 

Unfortunately ,  even a gigantic memory must be 
viewed as a finite resource: 

1) Consing a "new cell" on the average every 10 
microseconds, 12 hours a day, 6 days a week, would 
exhaus t  a 32-bit  address space [of bytes] in 
something a little over a week. The VAX with 
12gMQ of space would last hardly half a working 
day at that  rate, but (3-41 could hold off for 
around 12 years! 

2) Static space can only be "cleaned out" by a full 
GC, and it is possible to exhaust this space; also it 
is possible to get one's application programs spread 
too  thinly over it, with lesser quality stuff in 
between. 

3) Tertiary memory is not just a second-level image of 
primary; since it holds pages which generally must 
be updated when referenced, either to install an 
invisible pointer in the referenced cell, or to update 
one already there. In a write-once medium, this will 
necessitate moving the pag e into secondary memory, 
and eventually back out to tertiary, in a .new place. 
Thus  the consumption of a write-once memory is 
dependent  not only on the number of "new cells" 
taken in the primary address space, but also on the 
number and timings of references to archaic but still 

accessible data. However, a bunch of references to 
data all on the same archaic page and all within the 
time interval during which the page is moving down 
the ring of the archaic page bag, would give rise to 
only one rewrite request. 

T h e r e f o r e ,  there needs to be a kind of gauge for 
Ter t i a ry /Address /S ta t i c  spaces, which would indicate 
approximately how long one could go before a real GC 
becomes mandatory; let it be called "T/AS". Just as an 
automobile's gas-tank gauge, which when reading M full, 
indicates to the average 10 4 mile-per-year driver t~ t  he 
ought to go to a gas station and fill up some time before 
next Wednesday, so a computer's T/AS guage regding 
"low" would indicate to the 10 4 MQ-per-year lisp user 
that  he ought to phone-up Rent-A-Mere and let the 
machine GC itself over the weekend, while he goes off 
for a well-earned two days in Bermuda. 

It would be impossible to trace through a write-once 
m e m o r y  while installing "invisible", gc-forwarding 
pointers; the running of a true OC, then, should be 
accompanied by enough real main memory to hold all 
the pages on which there is accessible data. Since the 
OC happens so infrequently, there certainly is no need 
for an installation, whether single-user or multiple, to 
have permanently affixed that much memory; and while 
almost all applications will have data which can in fact 
be compactif ied into a very few MQ's ,  it cannot be 
ascertained in advance whether that will require tracing 
through a few thousand pages, or a few million. The 
difference between these two prospects is staggering: 
because the first access to a cell, during the copy phase 
of  GC, causes the installing of a gc-forwarding pointer, 
then there can be relatively very few such probes to 
tertiary which require a write-back [thereby consuming 

another tertiary page slot]. Likely, too, the dynamics of 
storage distribution are probably not favorable towards 
a s s u m i n g  tha t  only a couple thousand pages are 
accessible. 

We need a strategy for the hard case. Thus we 
suggest the ocasionai sharing of a gigantic, main memory 
among several computer sites; enough memory to hold 
simultaneously all the pages which might be accessible. 
There are two ways to do this: 

1) the hardware will have an easily-switched option on 
the memory bus such that a portable bank of main 
m e m o r y  may be temporar i ly  attached. Such 
memory would be shared among a group of such 
systems, and could be accounted financially on a 
fee-for-service basis [weekends and overnight would 
be more expensive!]. There might even arise an 
independent contractor, named say "Rent-A-Mem, 
Inc.", which could deliver a standard interface, 
certain speed memory on an hour's notice, in high- 
computer-density metropolitan areas. The spectre of 
a mobile  truck, with a huge prehensile cable, 
plugging into a "computer service connection" on 
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the exterior of an office building, may be not only 
amusing, but someday a reality. Instead of filling 
the building with petroleum products, it will be 
"vacuum-cleaning" it's computers of unused bits. 

2) At 1 megabaud transfer rate, the active pages in 
secondary memory could be "dumped" into the 
ter t iary in something like I,,~ hour at most. Then 
the videodisc can be removed and carried to a 
regional service center that has the large resource. 
This alternative is especially attractive if the GC 
frequency can be held back to once a month, and if 
the turnaround period can be less than a few days. 
[consider  the parallel with the shutdown of a 
nuclear reactor for it's ocasional clean-out; even the 
dangers are similar - -  with shipment via public 
highways,  there is the danger of thievery and 
inadvertent  radioactive leakage of nuclear waste, 
and correspondingly there is the danger of industrial 
espionage and inadvertent "information leaks".] 

T h i s  p roposa l ,  to use fast primary memory for 
c o m p a c t i f y i n g  the  t e r t i a ry  medium, is an ironic 
counterpart  to a similar proposal of nearly 17 years ago, 
which used-secondary for compactifying the primary 
memory  [/reference/Minsky; and also Edwards] 

For real-time applications, there is the possibility of 
a second computer used to take an incremental snapshot, 
fu l ly  val id  at some instant  in t/me, of the first 
computer ' s  memory system. Call the first computer a 
"control-clerk" and the second one a garbage-man. Just 
after  the snapshot is taken, the garbage-man then whirls 
away,  finishing the GC at some point in time, during 
which the control-clerk has continued to cons along. 
Then ,  providing only that the garbage-man can run 
faster  than the control-clerk, either due to a faster 
cpu /memory  or to a low duty cycle for the control-clerk, 
the garbage-man may update himself to account for the 
transactions having taken place in the interim. Finally, 
wi th in  the  scope of just a few seconds, there is a 
replacement  of the clerk by the garbage-man, and the 
system is running with a nearly-100% full T/AS tank. 

The re  are some applications where a GC will 
probably never be worthwhile. Doyle's TMS system 
[ / r e fe rence /  Doyle] builds a data-base, from which very 
l i t t le  will ever be deleted, and as the computation 
progresses, each "reason" as to why something was done 
is added to the data-base. In this sort of application, the 
"DDI"  method will most probably be the only reasonable 
strategy of storage management. 

4. A n  O u t b o a r d  LISP M e m o r y  Interface 

A certain amount of memory management can take 
place in parallel with, and somewhat independent of, the 
main  cpu actions. For example, a mini- or micro- 
computer  resident in the memory system, synchronizing 

and communicating with the main cpu, could supervise 
1) the age counts of pages on secondary, and oversee 

the migration to tertiary of older ones, as the 
secondary system begins to fill up. This task would 
require information about the various pages which 
are in the archaic page bags, and would place 
virtually no load on the cpu. 

2) the updating of tables when a page is remo~'ed off 
the low end of a living region, and queued for entry 
into an archaic page bag. 

3) the retrieval from tertiary, and its installation into 
an archaic page bag, of a referenced page which was 
in none of the various "regions". For this operation, 
the main process will be blocked .[of course, this is 
not a problem in a time-sharing system]. 

4) the continuance of a "transporting", initiated as 
described in section 2.3. Transporting a single "pair" 
cell requires almost no time at all; but moving 
multiple-word objects, and installing the necessary 
invisible pointers could take a long time. The cpu 
can c o n t i n u e ,  af ter  it receives the selected 
component  which it asked for, while a parallel 
process  in the memory system continues the 
transportation of the whole compound object. In a 
"cdr-coded" system, it may be advisable to maintain 
list compactness,  or at least partially so, when 
transporting; so even a pair cell transportation 
might initiate a lengthy process. 
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Private  Communica ton  References 

Greenblatt - Computer mail dated 27 AUG 1979 and 18 
MAR 1980 regarding performance of the 
MACSYMA on the LISP machine, under paging 
and GC load. 

Hewitt - MIT's LISP machine project started out with 
the assumption that 12gKQ of main memory would 
be satisfactory, but that estimate has been increased 
to around 200K as of 1980; several of the LISP 
machines have already been augmented to 256KQ. 
Carl Hewitt, noting the rather low prices of main 
memory in comparison to other system components, 
expects to have a LISP machine with 1MQ attached. 

O'dell - Jim O'dell comments, in some computer mail 
dated 3/17/$0, on trying to run MACSYMA on 
one of MIT's LISP machines with 128KQ of main 
memory .  The slow-down due to paging is 
"unacceptable" B 5 times slower than running on a 
time-shared KL-10 - -  whereas 256KQ was "a 
totally new baE game". 
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