
Address/Memory Management For A Gigantic LISP Environment
or. GC Considered Harmful

by Jon L White
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge MA 01239. July g, 1980

ABSTRACT
The possibility of incredibly cheap, fantastically large

media for storage gives rise to a realistic LISP memory
management scheme under which GC may be postponed
for days. or even indefinitely: the idea is encapsulated in
the acronym "DDI" - - "OC? Don't Do lit". Tertiary
memory is u~d to archive pages of the LISP environment
which are perhaps reclaimable, but which have not been
proven so; whereas the standard technique of "paging" is
used to swap active data from the main memory to a
secondary store such as magnetic disk. Some scenarios are
presented considering a variety of currently-available
technologies, and of one speculative possibility - - videodisc
- - by which a requisite compactifying OC would be done
"overnight". or over the weekend. With enough tertiary
available, one design could last for over 12 years without a
GC. "Verite-once" memories, probably unusable for most
applications, would not be at a disadvantage here.

. . . ~ . . ° ° ° ° ° ° . . ° ° . ° °

Table of Contents

1. Introduction and the Basic Problem of GC
2. A Gigantic LISP Virtual Machine
2.1 Address/Memory Sizes
2.2 Memory Layout and Paging Registers
2.3 Transporting for Compactness:

The Pseudo "Lipschitz" Condition
3. GC Once a Year: Enough?
4. An Outboard LISP Memory Interface

1. Introduction and the Basic Problem of GC

The possibility of incredibly cheap, fantastically
large media for tertiary storage gives rise to the question
for LISP users "What is Garbage Collection done for,
and what does the alternative cost"? On first- and
second-generation machines, and in most mini/micro
computers, the GC is necessary due to exhaustion o f the
number o f memory cells available, typically the formerly
used but now inaccessible cells were reclaimed by a
"mark-and-sweep" GC. Later on, with the advent of
virtual memory, the problem became one of exhaustion

of the number of addresses available; also, there was the
need to reduce the number of pages in the "working set"
[/reference/ Fenichel and Yochelson; also Multics
version of Maclisp addresses this issue]. Typically, these
later systems used a "stop-and-copy" method, instead of
a t r u e co l l ec t ion of "garbage" cells, in order to
compactify, the working data. In a very large address-
space machine, consideration must also be given to the
requirement of the number of "core-resident" pages in
the operating system necessary to support a large virtual
address space [for this reason, many time-sharing
installations have an administrative restraint on the
actual size of a user's virtual memory; e.g., many
V M / 3 7 0 users find themselves limited to a lMby (=
Megabyte) "machine", although a 16Mby "machine" is
technically feasible].

Two problems arise of ocasionally insurmountable
proportions: (l) An embarrassingly large time pause
while the main process is locked out and the GC is
running, and (2) a "thrashing" of the paging device while
t racing or descending data-structures distributed
somewhat randomly throughout the address-
space/memory. In 1978, H. G. Baker presented a
memory utilization strategy which overcame the first
obstacle [/reference/ Baker], and it will be assumed that
the reader is at least casually familiar with this "real
t ime" scheme; although not immediately obvious, the
second obstacle was still present to an annoying degree
in this scheme [/reference/ Lieberman and Hewitt; also
private communication from Greenblatt]. Herein we
present a rationale for a memory utilization strategy
which treats GC as "harmful", and avoids ahnost all
stages of it. A kind of "Lipschitz condition" for memory
utilization, desirable for programs which use temporary
data, is introduced; it is shown how a novel use of a
port ion of the Baker GC algorithm maintains this
"condition" in the virtualized machine- and LISP- layouts
herein presented, and how a real GC would tend to
destroy this condition. Programs running in one of these
LISP systems will not be slowed down by the lack of
GC, but when the GC becomes critically necessary, it
wil l be a length), process - - possibly requiring between
t~ and 30 hours depending on the amount of accessible
data, and may require short-term usage of a very large
main memory. With such requirements, a OC would be

f~
~) Jon L. White, LUCID

LP 1-3.17

a "harmful" operation, due to the time involved and to
the need for temporary use of an expensive component,
namely the large main memory. Resource sharing of
such a component, were it done on a once-a-week or
once -a -mon th basis, could turn into a commercial
enterprise, humorously suggested herein to be called
"Rent-A-Mere, Inc.". Service might be by means of a
mobi le unit which attaches to the computer-utility
plug/port on the exterior of an office building housing
one or more large-scale LISP-supporting computers.

This strategy assumes only modest design changes in
existing central-processors and t/me-sharing operating-
systems, and indicates a place where an "outboard"
micro-computer optionally placed in the memory system
could be a t remendous help - named perhaps the
" In te l l igen t Memory" by analogy to the Intelligent
Terminal. "Secondary memory" is viewed as something
like a currently available magnetic disk; "paging" onto
secondary would be done automatically for LISP by a
supporting operating system, using pretty much the
existing hardware and software technology of "paging".
"Tert iary memory" is to hold pages of the LISP address
space which Kaven't been referenced "for a long time" - -
so long, in fact, that future references, if any, to data on
'these pages will 'probably be of low overall density, or
nil. These pages, by virtue of being "old" in the sense of
having not been referenced recently, will be called
"archaic". The medium for tertiary may be any of
several new technologies, such as videodisc, bubble
domain, the IBM 3850 MSS, or even high-density serial
magtapes . Happily, a write-once memory, such a
videodisc may turn out to be, is as useful as any other
for the tertiary memory required in this proposal. An
interesting aspect about a serial tape is that one may just
as well view it as a write-once meduim, not because it
would be difficult to overwrite an existing record, but
because of the sequential layout that the write-once
condition imposes. Although the tape would be "slewed"
back to read prior data, all writing would take place at
the act ive end of the tape, so that most write-out
requests would not have to wait for any "slewing"; it is
the write-out for archival purposes which would be the
most frequent operation on the tertiary memory. The
value of migrating to tertiary, rather than the costly
"harmful" alternative, is that by not re-cycling addresses,
or at worst re-cycling them on the basis of once a week
[or once a year!], the system is not required to prove that
there are no chains of accessible references ultimately
reaching that page. Most likely, there aren't any such
chains ~ the "old" page is probably truly inaccessible
but to people that is comparatively very costly, requiring
that the GC finish its stubborn march through all paths
originating from the roots.

A n o t h e r proposal [/ r e fe rence / Lieberman and
Hewit t] attempts to stratify "pages" according to a
"generation" number, that is, according to the time at
which consing first took place on them. Thereby, a page

(or "chunk" of memory) with a given generation number
may be reclaimed by a GC pass which ignores all data
on chunks of lesser generation numbers. For example, if
it has been determined to "GC" a particular group of
chunks, and they are situated near the most recent 3%
of constructed data, then the GC mark phase need trace
through only about 3% of the data, instead of all 100%.
The hope is that temporary storage will be quickly
reclaimed, almost hnmediately after it has ceased to be
useful, but there is still the open question of how best to
determine which chunks to try to reclaim at any given
point in time. Furthermore, it would be difficult to
estimate the efficiency of the overall reclamation process
without actually running it: the OC must still prove that
there are no accessible data in a chunk to be reclaimed,
but it is hoped that the incremental nature - - returning
recently-used temporary chunks quickly - - will improve
performance.

But, when in doubt, leave it out! or, as the idea in
this i~aper will henceforth acronymically be called the
"DDI" method, "Don't Do It". The consequences of not
"Doing It" at all might at first appear to be the age-old
problem of (1) having data distributed too thinly over
too many pages, so that most data-references cause a
page-except ion, and (2) an outrageous amount of
"garbage" is being dumped onto the secondary or
t e r t i a ry memory system. The first problem can be
rather simply corrected by using only part of the Baker
(3C algorithm [/ reference/ Baker], the "transporting"
part which copies objects from "oldspace" to "newspace"
au toma t i ca l ly upon reference to them: thus stuff
concurrently being utilized will tend to clump together
spatially. The second problem is handled by a minor
design variant of hardware and software, which would be
applicable to modern large-address-space computers like
t he Digital Equipment Company VAX, the S-I which
was designed at Stanford University and is being built at
L a w r e n c e L i v e r m o r e L a b o r a t o r y [/ r e f e r e n c e /
McWiliiams el. al.], and even conceivably some of the
32-bit mini- and micro-computers which will continue to
appear on the market.

Two terms will be used frequently in the remainder
of this presentation, and need to he defined:

Q - quan tum of LISP data, usually a "pointer"
occupying one word.. Certainly it has to be big
enough to hold any address in the virtual memory
configuration - if we expect a 227-bit address space
of words, then a Q would have to be at least 27
bits long. "Q" should not be confused with "cons"
cell, or "pair" cell - - two Q's are stored into a
"pair" cell, and under this memory cofifiguration,
two words [or Q's] are needed for "doing a CONS".
The notation "Q" will be used when it is intended
to stress the contents as LISP data, whose meaning
must be "interpreted" by, or understood in the
context of, the LISP system: the word "word" will
be used in the more general computer sense. Either

LP 1-3.18

one m a y be used when denoting information
capacity.

Heap - a segment of pages where LISP consing takes
place. In any LISP, it is desirable to distinguish
several such areas, at least to the point of having a
"static" heap. In "static" storage, which is discussed
further below, constructed objects are expected to
have some permenance; the normal GC neither
"sweeps" them up, nor generally descends through
them, except for specially designated "exit" vectors.

2. A G i g a n t i c LISP Virtual Machine

We assume that the cpu will have a memory cache,
with address ing to the byte, and a relatively full
complement of instructions, of variable length as in the
IBM370 or the VAX. Addressing to the byte rather
than to the word is not wasting any limited resource
(addresses) , but rather facilitates character string
operations and the efficiency of instruction storage. In
order to facilitate the LISP memory management, there
will have to be additional specialized instructions for
access/update to LISP data, such as would be needed for
the primitive LISP data. For the "pair" data type, CAR
and C D R , are the basic selectors, RPLACA and
R P L A C D are the basic updators; for sequence-type
data, like STRINGs and VECTORs, ELT could be the
basic selector and SETELT the basic updator. These
part icular instructions are especially needed to insure
tha t the " t ranspor ta t ion" phase of the Baker GC
algorithm is done: but even if these aren't primitive op.
codes, and aren't easily microcode-able, then the LISP
operations can be called as "out-of-line" subroutines, with
some subsequent time slow-down. See section 2.3,
"Transporting for Compactness ..." for a discussion as to
why an object might have to be moved when referenced.
For typical realizations of LISP - - the kinds of primitive
data types desired, and so on - - see the "Standard LISP
Report" [/reference/ Marti, Hearn, and Griss], and the
two LISPs described by White [/reference/ White 1978,
and White 1979].

Some extra paging registers shall be described below,
which facilitate access to archaic pages, but these should
not be critically necessary. However, for the gigantic
machines used as examples, it will be quite important to
permi t an "astronomical hole" in the address space
[where no regular page-table support is apparent] without
unduly straining any system facility. User memory
references to that area designated "archaic" will have to
be trapped for service by the LISP sub-sytem.

It will be desirable to have the memory accessing
mechanisms not only "cache" references, but also "go
indirect" through "invisible" pointers found stored in
m e m o r y cells [/ r e f e r e n c e / Greenblatt]. "Invisible"
pointers are to be installed in LISP storage objects
whenever the)' are transported, for whatever reason.
Even the lowly function "EQ" would have to have its

arguments "dereferenced" - - chasing down any invisibtt
indirection chains m if they point to storage objects.
Also, the prospect of reducing the initial storage for lists,
by linearizing them at construction time [/reference/
Bobrow and Clark], makes it desireable to decrease the
number of type code bits by two or three, and use those
extra bits for "cdr-coding". Admitting "invisible pointer"
codes, and "cdr-coding" into the architecture reduces by
two or more the effective number of bits for data use in
a Q; for the machines listed as examples in section 2.1,
only those with fewer than 7 type code bits might feel
this impact.

It would be nice to have a stand-alone, special
purpose machine for LISP use, such as the one at Xerox
PARC [/ r e fe rence / Deutsch] or the one built at NIIT
[/ r e f e r e n c e / G r e e n b l a t t et al]; but any large'address,
economical machine should be workable, in varying
degrees [the VAX 11/780 may be a typical candidate].
The d i f fe rence between one and another appears
pr imar i ly ifi the size and flexibility of microcode
available for the LISP part of the design, and the effect
that lack of such microcode may have on LISP running
speed . [The au thor , and several others at this
Laboratory, conjecture that a memory cache may prove

to be a more powerful facility than user-writeable mired-
code ~ especially on a machine with a fairly supportive
set of instructions and addressing modes]. ,There is in
fact, no need to be a "LISP machine", but such task
could run under the supervision of a moderately friendly
time-sharing monitor, along with a more pedestrian
intermix of, say, FORTRAN and COBOL. The only
special co-operation needed from the host operating
system would be to ensure that: (1) each big, long-term
LISP job has its own dedicated tertiary memory facility
a which might just be a platter in a multiple disk
layout: (2) accessibility for each page must be under
control of the LISP job itself, and attempted references
to non-exis tent pages, if not followed through the
"archaic page bag" as described below in section 2.2,
must return control to the LISP page-exception handler
so that it may simulate the memory accessing needed for
the "archaic page bag".

2.1 A d d r e s s / M e m o r y Sizes

We will assume, based on previous experience that
IMO (= ! Mesa Q) of main memory and about 100Mby
to 300Mby of disk would be at the heart of the memory
s y s t e m fo r a s ing le -BIG-user system [private
communicaton from Hewitt, and also from O'deli]. A
"BIG" user is one that demands a very large working set
of pages w a system may comprise thousands of uti|ities
all in the same address space, even some as big as an
interactive, intelligent editor, but still not become a BIG
user. Many additional small users may be added to a
single or multiple BIG-user system without much loss;
but a BIG-user count of 10 would increase the need for

LP 1-3.19

main and secondary memory , although not to a
proport ional extent [perhaps 4MQ main memory and
500Mby to 1000Mby of disk, depending on the raw
speed of the processor]. The tertiary memory system
needs to be big enough to back up the entire primary
address space, for each simultaneous user, and a certain
factor more for rewrites on a write-once medium. The
IBM370, and many mini-computers (also MIT's LISP
machine] have a span of 224 bits, or about 16Mby ['-
4MQ's], and this would fit handily on the smallest of
modest disks; however, the VAX and the S-I permit s
user address span of about 231, or more than 2000Mby.
Note that the VAX uses the high-order bit of its address
space to mean "system" area, so that operating-s)stem
s e r v i c e s m a y be en t e r ed with exactly the same
instruction which enters user subroutines; this is why
the 32-bit address space can support at most 229 Q's of
user data reference, but this crinkle on the addressing
scheme does not impact usage of the other bits, nor does
it affect the LISP design, and so it will be i,gored. A
reconfigured use of the VAX address to permit 5 type
code bits would still demand 22-/ Q's, or 512MQ of
address space, and this appears to be smallest size for
which one might want to consider "playing tertiary

tr icks ' .
We will also consider two hypothetical machines of

gigantic proportions, the G-36 and the O-41, [presumably
manufac tu red by the Gargantua Computer Company]
w h i c h have a 48-bit word size, 12-bit byte, and
respectively a 36-bit and 41-bit address space. The
memory spans then are respectively 16GQ (= 16 Giga
Q's) and 512GQ, which amounts to 24 Terabitsl The
smaller one could be serviced by a 64K-Megabyte
t e r t i a r y sys tem [Note: not, 64Mby, but about
65536Mby].

For illustrative purposes, we assume a page size, and
disk track size, of 2048 Q's; this permits the calculation
of page-table sizes correct to within a modest factor,
except for the VAX, whose hardware has a much "finer*
page size of 128 Q's [if the demands imposed by so small
a size cannot be corrected in the hardware, then these
page-table size estimates will be too low, for the VAX,
by a factor of 16]

2.2 Memory Layout and Paging Registers

There needs to be four major "paging regions" in
the main memory -- accounting for four independent,
randomly-accessible data segments - - giving rise to three
pairs and one set-of-three internal, per.process machine
regis ters which delimit the ranges of these "paging
regions'. [The normal hardware layout of the VAX has
two segments, called P0 and PI, but makes do with only
two registers, instead of four, by fixing the low end of
one area at virtual address 0, and the high end of the
o ther at virtual address 231--1. We identify these
"regions", with size estimates, as follo~,~:

P a g e - t a b l e s a n d PDL 0 .25MQ
S t a t i c h e a p 7 .75MQ
L i v i n g h e a p 4 . OOMQ
A r c h a i c p a g e bag I .OOMQ

The sizes allocated to the individual regions are quite
tentative, and except for avoiding extremes, it would be
difficult to estimate accurately the effect of region size
on syste,n performance without actually doing a number
of trial runs. It should be pointed out here, by contrast
with other schemes, what these regions are no__t:

I) they are not spatial localizations of some
coincidentally-related problem data, which the user
[or "smart" program] assigns to its own area; this is
for contrast with one aspect of the MIT LISP
machine notion of "areas", which permits a "smart"
programmer to construct spatially compact
structures, in its own area, regardless of any other
co-incidental consing or OC-transporting going on.
[/ reference/ Greenblatt, and also Bishop]

2) they are not areas containing objects all of the
same data type, so that the address part of a Q

contributes some small amount of information to
the type code part [/reference/ Steele] except for
the division between the living heap and the "static"
area, the), are not isolated areas, with few [or none
at all/ pointers out of one such area into another.
An area so isolated can be garbage-collected
essentially independently of the other areas, and
thus support a I~ind of incremental GC scheme.
[/ reference/ Bishop, and also Greenblatt et. al.]

Capacities of Several Machines Compared

flachtnelword
name I tn b i t s I s i ze tn O's

VAX I 32 I 29
VAX* I 32 I 27
S - t I 36 I 29

I e e / 3 7 0 1 3Z I 22
G-36 I 48 I 34
G-4 | I 46 I 39

I Log2 of user INo. or tyPelbaslc byte. INo. GQ ofl
slzeleddress-space code bits [or cheractarl tert taryl

for LISP stze I needed J

0
S
5
8

12
7

I I
8 I o .s0 I
S I 0 .13 I
9 I o .so I
8 I none I

lZ I 16. I
lz I S12. I

LP I-3.20

4) They are n o t tables for managing a tertiary "back-
up" to the system's secondary memory. In fact,
both tertiary and secondary are direct "back-up"s to
the main memory, but they are reached through
different mechanisms - - the one as a part of a
standard "paging" scheme, and the other as part of
a novel page archival scheme which substitutes
hashing for the usual page-table/page-register
support.

Fhey are identif ied for the purposes of setting up
independent paging resources, and are much more like
"segments" in nature - - the requested registers are in
fact segment delimiters.

Let these four sets of registers be called

P D L - l o , P D L - h i
S T A - l o , $ T A - h i
L I V - l o , L I V - h i
T R S - l o
O L V - I o
A R C - l o , A R C - h i

the address [OLV-io} + 33400121[8] is being used, and it
.falls into the archaic area; then its page number, {OLV-
Io] + 6700{8], is searched in the bag, and is found at,
say, the 25'th entry; then that reference may be mapped
into {{ARC-Io] + 25.] + 121[8]

The total length of the archaic page bag is fixed, and
small by comparison with the "archaic" area; each slot
represents where a page may be stored, before it is
migrated, "oldest first" to tertiary memory. Associative
registers should speed the "searching" of the keys to this
region to find out if a particular page is currently there;
there should also be an ordered index into the bag,
probably a table of IK words, maintained by insertion

boundaries for the page-table and PDL area
boundaries for the Static area
boundaries for the Living heap
low boundary of non-automatic transport region
the original value of LIV-lo
boundaries for Archaic page bag

The TKS-Io register will normally split the Living heap
m i.e. lie somewhere just above the address in LIV-io - -
and any object stored at an address below TRS-io, when
referenced, will automatically be "transported" up into
the consing area of the Living heap. Archaic pages start
out as part of the living heap. As consing continues, the
high end of the living heap is advanced upwards, and the
low end of it is also advanced upwards so that its total
length doesn't exceed some predetermined limit, say LIV-
length; it may bloat up and thin itself down, like an
accordion expanding and contracting, but it will never
exceed that limit. LIV-length will depend upon many
f a c t o r s o f s y s t e m p e r f o r m a n c e , and should be
d y n a m i c a l l y adjustable. But the pages which are
advanced over by LIV-Io as it marches upwards are
tagged as "archaic", and are immediately put into the
archaic page bag, which is a ring-buffer of archaic pages.
The re will be no page tables entries for any of the
archaic pages, in that part of the address space marked
by the original LIV-Io and its current value; instead, if a
memory reference is attempted to that area, then the
page number of the desired address is used as a key to
search the bag, [possibly with associative hardware help,
or if necessary just hash coding]. For example, suppose

and deletion operations. Insertions/deletions to the bag
wi l l be rather infrequent, by comparison to other
operations, but associative-lookup failures may occur
relatively often, and it must be possible to search this
index table to reload the associative registers quickly [or
generate a exception trap if the search key is not in the
table].

But what happens if an archaic reference is not
found in the bag? Well, first note that pages dribble
through the bag, and when reaching the end will be
wri t ten out on tertiary memory; the bag need not be
strictly a FIFO queue, but some attempt should be made
to reorder it so that some "lesser-recently-used" page is
the one picked for dumping out to tertiary. Thus it will
always be possible to make room for one or more pages
to be fetched back from tertiary, and reinserted in the
top of the bag.

Page tables, whether "paged out" to secondary
storage or whether resident in main memory, need to be
allocated to cover only these four regions; in the case of
G-36, this might mean that only 16MQ's of address
space need to be covered, instead of 16GQ's. At one
word in the page table for each page covered, and with a
2KQ page size, this would mean one page of page tables,

Picture

I O L V - l o I L I V - l o
I I

V > > < < V ,,

I I
I " a r c h a i c " a r e a I
I I

V , > > < < V ,,

of Li~ng h u p :

I T R S - I o I L I V - h t
I Ih I
V,, V V,
• C u r r e n t . I
• c o n s i n g . I
• " W i n d o w " . I
y v v

A d d r e s s e s
y e t t o b e
u s e d

LP 1-3.21

instead of 4096 pages of page tables for covering the
whole space. For the VAX scenario in section 2.1, with
5 LISP type-code bits taken from its 32-bit address, there
are only 64K pages total, and 32 pages of page-tables
would suffice to handle the whole space. This seems
small enough to suggest forgetting about the archaic
page bag, and just providing enough page tables for
every address in the space; most page tables, then, could
be paged out on secondary, with some process register
indicating which ones are really in memory at any given
t ime [obviously, the page with the page-table for the
page-table region could not be paged out].

So why not dispense with the 7archaic page bag" in
the G-36 case also? 16MQ of "paging regions" when
fully occupied, needs 8192 pages of swapping area
support, and adding another g192 pages to hold the page
tables for covering the entire address space would require
additional secondary capacity equivalent to about a T300
disk unit; this actually is not totally unreasonable. But
consider the G-41 case: still up tO 8192 of pages are
needed for swapping the "paging regions", but about a
quarter mill ion pages are needed for page-table pages,
and this amounts to more than 3200 Mby m which is a
lot of disk storage to dedicate just for one user's page
tablea!

Since the movement of data from areas below TRS-
Io into the consing region may tend to degrade system
performance, it is desirable to isolate data which is not
temporary , and place it in a static area from which it
will not normal ly be moved. For example, a large
a p p l i c a t i o n sys tem may consist of hundreds of
subroutines along with many constant data expressions;
;ill such code and data may be placed in the static heap,
for indeed the)' will never be reclaimed as long as the
tha t appl icat ion system is alive. Some applications
packages might even have parameter settings which
automatically cause them to be constructed, or loaded,
into the static area. On the other hand a user might
explicitly request a particular package to be placed in
s ta t ic space, even when not done so automatically,
because he knows that it will be of continuing utility
during his encounter with the system (for example, some
temporary debugging facility). If not directly moved to
the static heap by the programmer, an object could be
subject to some heuristically-induced migration - - after
such-and-such a number of Baker transportations into
the living heap [from archaic pages], by automatic
analysis it might be decided that it would be worthwhile
to migrate the module to the static heap, based on the
projected likelihood that it will continue to stay around
and be used.

2.3 Transporting for Compactness:
The Pseudo "Lipschitz" Condition

There are three major reasons why a stored object,
once it has been constructed, will be moved to another
memory location:

I)] t might be moved to the static heap, not
particularly for compactness, although it might be
"cdr-coded" at that time, but due to expectations
that it is a relatively permanent object.

2) To make RPLACD work in a "cdr-coding"
environment, there must be the possibility of
installing an "invisible" pointer in one cell, and
moving the object formerly stored there to an un-
coded cell; this motion, like I) above, is not for
compactness.

3) The transportation part of the Baker GC moves
cells from "old space" to "new space", thereby
achieving a compactness of some sort.

Not being too concerned about reclaiming address space,
it is the results of transportation number 3) which make
it realistic to run LISP with a "DD]" garbage collector.
For, ignoring the rather trivial effect of transportations
I) and 2) on fast-moving, temporary storage, doing this
third phase of movement, into the living heap, ensures a
kind of pseudo "Lipschitz" condition relating memory
occupancy and access. Suppose M 0 is the address in
which an object is stored just after it has been
referenced at time T 0, and similarly M l is its address
just after a reference at time T 1 [Ti>T0]; then there is

a constant (dependent on the length of the living heap
such that

Mi--M 0 < ~(Ti--T 0)
Two aspects of the ordinary Baker GC tend to degrade
the degree of spatial compactness of data accessed in a
temporally-compact interval:

l) the need to transport all the substructures
accessible from a cell which was just transported
[say, from M 0 to M l l, and

2) the "daemon"-Iike action of the scavenger part of
Baker GC, which is busy at work transporting any
and every object accessible from the roots,
regardless of when [if ever!] it will be referenced by
the program again.

It has been noted on MIT's LISP machine that a large
program which confines itself to a small set of working
pages for some modest time interval will still be
burdened by the demand for a large working set, due to
the requirements of these two OC aspects; performance
is remarkably better when these parts of the OC are
turned off [private communication from Greenblatt].
Thus the "DDr ' method keeps the successful part of
Baker OC, transportation from the archaic area, or "old
space", but omits the degrading part.

LP 1-3.22

Bobrow and Clark [/reference/ Bobrow and Clark,
P.282-284] pose an interesting hypothesis of a similar
nature: if T 1 and T O are, rather than the times of
access, the times of creation, then the probability that
M 1 contains a pointer to M 0 is dependent only on T I-
T O . In their paper, empirical evidence was presented
which showed this to be fairly true for pointers in the
cdr part of a cell, but the results were pessimistic for the
car part. The investigation showed that "cdr-coding"
will likely be highly applicable in the kinds of programs
from which the empirical data were taken; it will reduce
the number of pair cells needed to store a list - - up to a
50% reduction ~ by eliminating cdr links [see also"
/ r e f e r e n c e / Clark and Oreen]. In object-oriented
programming, such as in SMALLTALK [/reference/
Ingails], more data is kept in vector-like objects rather
than in lists, and "cdr-coding" may be less useful.
Nevertheless, the goal of this "interesting hypothesis" is
to suppor t an encoding scheme which reduces the
number of bits used to store the car and cdr of a pair
cell, and thus reduce memory requirements, which should
s imul taneous ly reduce the number of pages in the
working set.

On the o the r hand, the goal the the pseudo
"Lipschitz" condition is to reduce the size of working
sets by a dynamic, and invisible to the user, re-shuffling
of stored data: such is independent of the use of a "cdr-
coding" scheme.

3. GC Once a Year: Enough?

Unfortunately , even a gigantic memory must be
viewed as a finite resource:

1) Consing a "new cell" on the average every 10
microseconds, 12 hours a day, 6 days a week, would
exhaus t a 32-bit address space [of bytes] in
something a little over a week. The VAX with
12gMQ of space would last hardly half a working
day at that rate, but (3-41 could hold off for
around 12 years!

2) Static space can only be "cleaned out" by a full
GC, and it is possible to exhaust this space; also it
is possible to get one's application programs spread
too thinly over it, with lesser quality stuff in
between.

3) Tertiary memory is not just a second-level image of
primary; since it holds pages which generally must
be updated when referenced, either to install an
invisible pointer in the referenced cell, or to update
one already there. In a write-once medium, this will
necessitate moving the pag e into secondary memory,
and eventually back out to tertiary, in a .new place.
Thus the consumption of a write-once memory is
dependent not only on the number of "new cells"
taken in the primary address space, but also on the
number and timings of references to archaic but still

accessible data. However, a bunch of references to
data all on the same archaic page and all within the
time interval during which the page is moving down
the ring of the archaic page bag, would give rise to
only one rewrite request.

T h e r e f o r e , there needs to be a kind of gauge for
Ter t i a ry /Address /S ta t i c spaces, which would indicate
approximately how long one could go before a real GC
becomes mandatory; let it be called "T/AS". Just as an
automobile's gas-tank gauge, which when reading M full,
indicates to the average 10 4 mile-per-year driver t~ t he
ought to go to a gas station and fill up some time before
next Wednesday, so a computer's T/AS guage regding
"low" would indicate to the 10 4 MQ-per-year lisp user
that he ought to phone-up Rent-A-Mere and let the
machine GC itself over the weekend, while he goes off
for a well-earned two days in Bermuda.

It would be impossible to trace through a write-once
m e m o r y while installing "invisible", gc-forwarding
pointers; the running of a true OC, then, should be
accompanied by enough real main memory to hold all
the pages on which there is accessible data. Since the
OC happens so infrequently, there certainly is no need
for an installation, whether single-user or multiple, to
have permanently affixed that much memory; and while
almost all applications will have data which can in fact
be compactif ied into a very few MQ's , it cannot be
ascertained in advance whether that will require tracing
through a few thousand pages, or a few million. The
difference between these two prospects is staggering:
because the first access to a cell, during the copy phase
of GC, causes the installing of a gc-forwarding pointer,
then there can be relatively very few such probes to
tertiary which require a write-back [thereby consuming

another tertiary page slot]. Likely, too, the dynamics of
storage distribution are probably not favorable towards
a s s u m i n g tha t only a couple thousand pages are
accessible.

We need a strategy for the hard case. Thus we
suggest the ocasionai sharing of a gigantic, main memory
among several computer sites; enough memory to hold
simultaneously all the pages which might be accessible.
There are two ways to do this:

1) the hardware will have an easily-switched option on
the memory bus such that a portable bank of main
m e m o r y may be temporar i ly attached. Such
memory would be shared among a group of such
systems, and could be accounted financially on a
fee-for-service basis [weekends and overnight would
be more expensive!]. There might even arise an
independent contractor, named say "Rent-A-Mem,
Inc.", which could deliver a standard interface,
certain speed memory on an hour's notice, in high-
computer-density metropolitan areas. The spectre of
a mobile truck, with a huge prehensile cable,
plugging into a "computer service connection" on

LP 1-3.23

the exterior of an office building, may be not only
amusing, but someday a reality. Instead of filling
the building with petroleum products, it will be
"vacuum-cleaning" it's computers of unused bits.

2) At 1 megabaud transfer rate, the active pages in
secondary memory could be "dumped" into the
ter t iary in something like I,,~ hour at most. Then
the videodisc can be removed and carried to a
regional service center that has the large resource.
This alternative is especially attractive if the GC
frequency can be held back to once a month, and if
the turnaround period can be less than a few days.
[consider the parallel with the shutdown of a
nuclear reactor for it's ocasional clean-out; even the
dangers are similar - - with shipment via public
highways, there is the danger of thievery and
inadvertent radioactive leakage of nuclear waste,
and correspondingly there is the danger of industrial
espionage and inadvertent "information leaks".]

T h i s p roposa l , to use fast primary memory for
c o m p a c t i f y i n g the t e r t i a ry medium, is an ironic
counterpart to a similar proposal of nearly 17 years ago,
which used-secondary for compactifying the primary
memory [/reference/Minsky; and also Edwards]

For real-time applications, there is the possibility of
a second computer used to take an incremental snapshot,
fu l ly val id at some instant in t/me, of the first
computer ' s memory system. Call the first computer a
"control-clerk" and the second one a garbage-man. Just
after the snapshot is taken, the garbage-man then whirls
away, finishing the GC at some point in time, during
which the control-clerk has continued to cons along.
Then , providing only that the garbage-man can run
faster than the control-clerk, either due to a faster
cpu /memory or to a low duty cycle for the control-clerk,
the garbage-man may update himself to account for the
transactions having taken place in the interim. Finally,
wi th in the scope of just a few seconds, there is a
replacement of the clerk by the garbage-man, and the
system is running with a nearly-100% full T/AS tank.

The re are some applications where a GC will
probably never be worthwhile. Doyle's TMS system
[/ r e fe rence / Doyle] builds a data-base, from which very
l i t t le will ever be deleted, and as the computation
progresses, each "reason" as to why something was done
is added to the data-base. In this sort of application, the
"DDI" method will most probably be the only reasonable
strategy of storage management.

4. A n O u t b o a r d LISP M e m o r y Interface

A certain amount of memory management can take
place in parallel with, and somewhat independent of, the
main cpu actions. For example, a mini- or micro-
computer resident in the memory system, synchronizing

and communicating with the main cpu, could supervise
1) the age counts of pages on secondary, and oversee

the migration to tertiary of older ones, as the
secondary system begins to fill up. This task would
require information about the various pages which
are in the archaic page bags, and would place
virtually no load on the cpu.

2) the updating of tables when a page is remo~'ed off
the low end of a living region, and queued for entry
into an archaic page bag.

3) the retrieval from tertiary, and its installation into
an archaic page bag, of a referenced page which was
in none of the various "regions". For this operation,
the main process will be blocked .[of course, this is
not a problem in a time-sharing system].

4) the continuance of a "transporting", initiated as
described in section 2.3. Transporting a single "pair"
cell requires almost no time at all; but moving
multiple-word objects, and installing the necessary
invisible pointers could take a long time. The cpu
can c o n t i n u e , af ter it receives the selected
component which it asked for, while a parallel
process in the memory system continues the
transportation of the whole compound object. In a
"cdr-coded" system, it may be advisable to maintain
list compactness, or at least partially so, when
transporting; so even a pair cell transportation
might initiate a lengthy process.

Acknowledgements: The author would like to express
thanks to Henry Lieberman and Jack Holloway for
discussions leading to the ideas in this poper. Some of
these i d e a s are be ing t r i ed out in N I L , a
Newlmplementationof'Lisp, and a debt of gratitude is
owed to Professor Joel Moses and the NIL group at
MIT's Laboratory for Computer Science for patience
during this development [/reference/ White 1979]. Rich
Zippel sugges ted the notion of a "LISP Memory
Interface"; John Kulp and Tom Knight pointed the
a u t h o r to the videodisc technology; and L. Peter
Deutsch provided helpful comments based on his
experience with the Alto mini-computer. A special
thanks goes to Professor Moses for his proofreading and
critical commentary on the initial version of this paper.

LP 1-3.24

Private Communica ton References

Greenblatt - Computer mail dated 27 AUG 1979 and 18
MAR 1980 regarding performance of the
MACSYMA on the LISP machine, under paging
and GC load.

Hewitt - MIT's LISP machine project started out with
the assumption that 12gKQ of main memory would
be satisfactory, but that estimate has been increased
to around 200K as of 1980; several of the LISP
machines have already been augmented to 256KQ.
Carl Hewitt, noting the rather low prices of main
memory in comparison to other system components,
expects to have a LISP machine with 1MQ attached.

O'dell - Jim O'dell comments, in some computer mail
dated 3/17/$0, on trying to run MACSYMA on
one of MIT's LISP machines with 128KQ of main
memory . The slow-down due to paging is
"unacceptable" B 5 times slower than running on a
time-shared KL-10 - - whereas 256KQ was "a
totally new baE game".

Bibliography

Baker, H.G., Jr.; "List Processing in Real Time on a
Serial Computer"; Comm. ACM 21, 4 (April 1978),
Pp. 280-294.

Bishop, P. B.; Garbage Collection in a Very Large
Address Space: Technical Report TR-178, MIT
Laboratory for Computer Science.

Bobrow, D.G., and Clark, D.W.; "Compact Encodings of
List Structure"; ACt4 Trans. on Prog. Lang. and
Systems 1, 2 (Oct 1979), Pp. 266-286.

Clark, D.W., and Green, C.C.; "An Empirical Study of
List Structure In LISP"; Comm. ACM 20, 2 (Feb
1977), Pp. 78-87.

Deutsch, L.P.; "Experience With a Microprogrammed
l n t e r l i s p Sys tem"; Proc. l l t h Annual
Microprogramming Workshop, Asiiomar, Pacific
Grove, CA. (Nov 1978)

Doyle, J.; "A Truth Maintenance System'; Artificial
Intelligence 12, 3 (Nov 1979), Pp. 231-272.

Edwards, Daniel J.; "Secondary r Storage in LISP'; A.I.
Memo 63, M.I.T. Artificial Intelligence Lab,
Cambridge MA (Dec 1963).

Fenichel, R.R., and Yochelson, J.C.; "A LISP Garbage-
Collector for Virtual- Memory Computer Systems";
Comm. ACM 12, II (Nov. 1969), Pp. 611-612.

Oreenblatt, R.; "The LISP Machine"; Working Paper
No. 79, M.I.T. Artificial Intelligence Lab,
Cambridge MA (Nov 1974).

Greenbla t t , g . , et. al.; "LISP Machine Progress
Repor t" ; A.I. Memo 444, M.I.T. Artificial
Intelligence Lab, Cambridge MA (Aug 1977).

Ingalls, D. H. "The SMALLTALK Programming S~tem
Design and Implementation"; Fifth Annual
Symposium on Principles of Programming Languages,
1978.

Lieberman, Henry, and Hewitt, Carl; "A Real Time
Garbage Collector That Can Recover Temporary
Storage Quickly"; A.I. Memo 569, M.I.T. Artificial
Intelligence Lab, Cambridge MA (Apr 1980); (also
submitted for publication)

Marti, J., Hearn, A., Griss, M., and Griss, C.; Standard
LISP Report; UCP-60, University of Utah (Jan
1978).

McWilliams, T.M., Widdoes, L.C., Jr., and Wood, L.L.;
The S-I Project; Lawrence Livermore Laboratory,
Livermore CA (Sep 1977)

Minsky, Marvin L.; "A LISP Garbage Collector Using
Serial Secondary Storage"; A.I. Memo 58, M.I.T.
Artificial Intelligence Lab, Cambridge MA (Dec
1963) (out of print).

Nadan, J.S. "Optical Information Storage and Retrieval
Systems"; in Archival Memory Technology, Proc.
of a Workshop Held at Carnegie-Mellon Univ. (Sep
28, 197g), Pp. 28-30.

Steele, G.L. Jr.; "Data Representations in PDP-10
Maclisp", A.I. Memo 420, M.I.T. Artificial
Intelligence Lab, Cambridge MA (Sep 1977).

White, JonL; "NIL - - A Perspective"; in Proc. of
1979 MACSYMA Users Conference (June 1979), Pp.
190-199.

White, JonL; "LISP/370: A Short Technical Description
of the Implementation"; $1GSAM Bull. 12, 4 (Nov
1978), Pp. 23-27.

LP I-3.25

