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Motivation 

Some ten years ago, a small group of us I at IBM Research undertook to write a new kind of text 
editor, to run in the VM/370 environment, based on our experience with the experimental Business 
Definition System 2 (BDS) we had implemented previously. This new editor, ea.lled the Parametric 
Editor 3, or P-EDIT, was to be upwards compatible with an existing popular editor in use at that 
time, while providing the ability to edit multiple versions of a fde simultaneously, and providing a 
general UNDO command which could be used to return to any previous state of the editing session, 
and which itself was UNDOable. 

The multiple versions were to be effected by attaching to each line of text in the file a Boolean ex- 
pression which determined whether that line was in the version set currently being edited. The 
versions set, in turn, was defined by a single Boolean expression called the mask. A fde line was 
deemed to be in the current version set if and only if its Boolean expression was logically consistent 
with the mask. For example, if the mask was (DISPLAY=3279 v DISPLAY=3278) ^ 
SYSTEM = CMS, then a line whose Boolean expression was SYSTEM = MVS would be excluded 
from the current version set, a line whose Boolean was SYSTEM = CMS would be strongly in- 
cluded in the version set (because the mask implies the Boolean), while one whose Boolean was 
DISPLAY = 3279 would be weakly included (because the mask doesn't imply the Boolean). 

Our implementation experience with BDS suggested that Lisp was a t'me language for developing 
complicated programs and the obvious language in which to program such things as Boolean ex- 
pression manipulation. However, it was initially thought that text editors should be written in a 
more conventional language such as PL/I or Assembler (as the popular editor was). Furthermore, 
the overwhelming size of the Lisp system available apparently ruled out the possibility of pro- 
grarnming P-EDIT in Lisp. Indeed, running Lisp required a larger virtual memory than most users 
were normally permitted. 

After some months of very slow progress, it was decided that attempting to pt~ogram the necessary 
Boolean expression manipulation (especially simplification) in PL/I was too difficult, and that it 
would be easier to implement a Lisp subset and use the existing Lisp code for Boolean expressions. 
It was further decided that adapting the existing popular editor, written in Assembler, to interface 
with a Boolean package written in Lisp, would be more difficult than rewriting the editor proper 
in a slightly larger Lisp subset. 

Since P-EDIT was to be compatible, we did not wish to have its macros written in Lisp, unlike 
many Lisp based editors, but rather would use the EXEC 2 language 4, which many of the then (and 
now) existing editors use for their macros. (Indeed it is good design to have a single programming 
language for extending the capabilities of a wide range of application programs.) 

We were thus faced with the task of defining and implementing a Lisp subset suitable for pro- 
gramming P-EDIT, but not necessarily for extending it via macros. 
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Application Directed Language Definition 

In defining the Lisp subset (originally called DeciLisp, but now called Lysp) to be used to program 
P-EDIT, we took a very different approach from normal language design: we viewed the language 
as a tool rather than a standard. The language and its compiler were merely a means to generate 
executable application code, rather than the language being something sacrosanct to which the ap- 
plication program and compiler had to conform. 

What this meant was that we would not include anything we did not feel we needed for P-EDIT, 
we would not balk at extending the language in idiosyncratic ways if that seemed helpful, and we 
would be willing go back and change the language definition if we ran into a serious problem in 
actually using it. Furthermore, the initial language definition was also based on what we found 
practical to compile and efficient to execute, rather than only on what we found 'elegant' or con- 
ventional. 

The first decision we made was that, in order to save the immense amount of space taken by the 
compiler in full-blown Lisp systems, we would be willing to live with the old-fashioned compile, 
load, test and recompile mode of program development using a stand-alone compiler. This meant 
that Lysp would not contain functions such as COMPILE or LOAD, and new Lysp functions 
could not be created by the application. 

We also decided to generate Assembler code as the output of the compiler, because programming 
in Lisp was considered to be weird at that time and we wanted to be able to show people code they 
code read, at least at the statement level. To aid in this, the compiler produces local comments 
along with the code, explaining what the instruction does in Lisp terms, with the original variable 
names. (The peep-hole optimizer even transforms the comments along with the code.) 

We decided to forgo the possibility of separate compilation of Lysp subroutines because the format 
of output produced by the Assembler and accepted by the tinker was not up to handling the long 
function and global variable names traditionally used in Lisp programs. (We were willing to write 
a compiler, but not an assembler and linker too!) 

The next decision was that since the P-EDIT would not use macros written in Lysp, EVAL and 
the interpreter would not be part of the application's run-time environment (thus saving another 
large amount of space). However, since addresses of compiled subroutines would be needed any- 
way by the implementation, and adding a type code to the address to turn it into a proper Lysp 
datum was easy, it was simple to implement the APPLY operation and its relatives. Indeed there 
are quite a few cases where P-EDIT invokes one of several functions via a variable operator, for 
example: 

( (ELT V I) X Y) 

A related decision was not to support continuations (states) or closures (FUNARGs).  We never 
had to use them in BDS, which was much more complicated than P-EDIT, and we figured (cor- 
rectly) that we would not need them in P-EDIT. Leaving them out much simplified the run-time 
environment. We did, however, provide CATCH and THROW, as they were cheap to implement 
and are quite useful as an error handling mechanism; P-EDIT uses them extensively. 

In Lysp, variables can either be lexically local or they can be global and dynamically re-bindable 
(cf. SPECIAL). Lexical variables are kept in the current stack frame, while global variables (and 
constants) are kept in a static area, which is actually a compiled vector of pointers. Re-binding of 
a global variable is done by saving its old value on the stack upon contour entry and restoring it 
upon exit (including a THROW-implied exit). Continuations or closures would require a more 
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complicated and less efficient implementation, whereas dynamically re-bindable variables are cheap 
to implement; P-EDIT uses quite a few of them. 

Since there was no EVAL, we followed the practice of most other languages and did not preserve 
variable or function names in the compiled code. Even if a program contained the quoted identifier 
'FOO, there would be no way for it to acquire the pointer to the compiled function FOO merely 
by using that identifier. To save space, there is no automatically generated run-time data structure 
holding the identifiers appearing in the program, much less any automatically generated mapping 
structure which relates identifiers to their values. Thus, the static vector is essentially the value cells 
without the rest of the symbol structure. 

Following the lead of LISP/VM s, we did not distinguish between ordinary values and function- 
values of names. Thus, the pointer to the compiled function FOO is kept in the global variable 
cell associated with the name FOO, rather than in a separate 'function cell' associated with the 
identifier-object FOO. (The latter would of course have been impossible, there not being any such 
data structure at run-time.) This was done so that function names could be treated just as ordinary 
global variable names, and implies that functions can be re-bound if their names appear appropri- 
ately in a LAMBDA-Iist, and they even can be 'renamed' by being the target of a SETQ. (Func- 
tions whose code is no longer pointed to are not garbage collected, however.) A LAMBDA 
expression appearing in operand position is treated as any other constant, except that the value of 
the constant is a pointer to the compiled code. 

An unfortunate, but we think justifiable, example of implementation efficiency affecting the lan- 
guage is that builtin functions, such as CONS, do not have Lysp values (pointers) and hence cannot 
be APPLYed, stored into variables, passed as arguments, or tested. This is because they they are 
called in a much more efficient way than compiled functions (with arguments in registers rather 
than on the stack), or are even expanded in line. This is not much of a problem in practice, since 
such low-level functions are rarely useful as alternatives for a variable operator value. Furthermore, 
it is easy to write a compilable function, whose body consists solely of a call to the low-level builtin, 
to serve as an interface. (This has been done in the past, e.g. in LISP/VM.) For example, the form 

(COMPLAMBDA CONSTRUCT (X Y) (CONS X Y)) 

causes the function CONSTRUCT to be compiled which exactly performs the builtin CONS op- 
eration, except that in addition CONSTRUCT can be APPLYed, the pointer to it stored, passed 
as an argument, and tested. The cost is that executing CONSTRUCT is perhaps 3 times as slow 
as CONS. 

The functions that are builtin to Lysp, in the sense of always being there, whether or not they are 
used, are limited to those which it was felt had to be in the Assembler coded run-time environment 
(such as CONS and EQUAL), plus any that were so simple as always to be compiled inline (such 
as CAR and EQ). Many functions which are standard in most Lisps (such as MEMBER and 
INTERN) are not necessarily present, but are extracted by the compiler from a library of Lysp- 
coded functions if they are referred to by the program being compiled. This is safe because there 
is no EVAL, and thus there is no danger of calling a function 'out of the blue' by constructing its 
name. (One may force a library function to be included if it is to be stored into a variable yet its 
name appears nowhere in operator position of a Lisp expression and thus would not be automat- 
ically included.) By this means, much space is saved, yet all standard functions are available if 
compiled in. Although we have not added to the compiler's library any functions for which we did 
not forsee a need, they can be added at any time. 

In order to increase run-time efficiency, few of the builtin or library functions that we provided 
perform type testing on their arguments. This decision has two aspects. First, most functions (such 
as CAR and PLUS) run unchecked, which can cause some debugging headaches, but certainly no 
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worse than if we had written in Assembler language. Update functions (such as RPLACA and 
STOREBYTE), which have a greater potential for causing serious problems, usually check the 
validity and range of their arguments. These functions tend to be longer anyway (and thus not 
inline), so the checking is relatively less onerous. The function call mechanism also can be run with 
checking (and usually is), so that calls on NIL, common when a function definition is omitted, will 
be trapped. 

Second, low level functions which are genetic in bigger Lisps were made data-type specific in Lysp. 
For example, ELT in LISP/VM serves to extract the l-th element of any data type for which in- 
dexing makes sense, including pointer vectors, character strings and lists. In Lysp, ELT is restricted 
to work on pointer vectors, and it assumes that its two arguments have the correct type. For in- 
dexing strings, FETCHBYTE or FETCHCHAR must be used, while NTH must be used for lists. 
This approach gives the run-time efficiency of declarations without their additional programming 
complexity or difficulty of implementation. (Remember that our goal was to program P-EDIT, 
not the world's best Lisp.) Yet one is not precluded from defining a generic ELEMENT function 
which works on all relevant data types, or even defining a set of functions in order to implement a 
more abstract data type in terms of lists and/or vectors. 

Another decision we made, which has been made for a few other languages, was not to define any 
standard I/O functions for Lysp, except at the most primitive system-call level (and even those are 
extracted from the compiler's library on a strictly as-needed basis). In particular, P-EDIT would 
perform both file and terminal (screen) I/O, but in its own unique manner. Screen I/O especially 
was to be highly specialized to the editing application. (Later on, we added some simple higher 
level I/O functions to the library, but they were mainly for demonstration purposes.) This lack of 
automatically included I/O functions, more than almost anything else, results in modules generated 
by Lysp being much smaller than those generated by other 'high level' languages such as PL/I. 

Since P-EDIT was to provide a general UNDO request, we decided to build into Lysp some 
undoable update functions. The operations we chose to have undoable variants of were SETELT 
(which updates a vector element), RPLACA and RPLACD, and SETQ of a global variable. These 
functions would record the old value of the field in a log record which was then consed onto a 
global log list. At the end of each P-EDIT request, the global log list would be associated with that 
request in the history list, and the log list variable reset to NIL. (These functions are similar to 
those provided in Interlisp, we discovered later.) This mechanism was was efficient, easy to im- 
plement and provided the basis for a surprisingly useful editing feature. 

Data Types 

The data types we decided on supporting in Lysp were exactly those that we felt we would need to 
implement P-EDIT. The ones supported were: integers which, when typed, could fit in the 32-bit 
machine register; character strings of arbitrary, but fixed length, to represent the lines of the file 
being edited; pointer vectors of arbitrary (but again fixed) length, to serve as the pointer blocks for 
the fries lines, and as other control blocks; pairs (comes), to be formed into lists to represent the 
Boolean expressions; identifiers (symbols), to represent the Boolean variables; functions (pointers 
to compiled functions); and NIL, which was made a separate type so (1) it would not slow down 
testing for other types, (2) its type code, with a different data part, could serve other purposes (such 
as a CATCH/TIIROW marker on the stack), and (3) so NIL itself, which is permanently kept in 
a register, could serve as the base address of the Assembler coded, primitive functions like CONS. 

We decided that we did not need any other types that are useful in full-blown Lisps, such as 
bignums, floating point numbers, streams, gensyms (we used distinctive identifiers), fixed point in- 
teger arrays, bit vectors and so forth. 
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We also decided to skimp on the use of data types, if that would increase efficiency. A prime ex- 
ample is that we backed off from representing characters as identifiers, but instead represented them 
as integers (in the range 0 through 255). We defined a FETCHBYTE builtin function, which 
fetches a character from the given position in a string as an integer, rather than use the 
FETCHCHAR function, which fetches an identifer representing that character, as we were used to 
in LISP/VM. The fact that the mapping from 8-bit byte to character identifer need not be done 
saves over 1000 bytes in the mapping table (pointer vector), plus over 2000 bytes for the character 
identifiers themselves! Program clarity does not suffer - there is a CHR macro which yields (at 
compile time) the integer representation of a character. For example, instead of writing 

(EQ (FETCIICHAR S I ) 'A)  

one writes 

(EQ (FETCItBYTE S I) (CHR A)) 

which does not require any additional storage, since such small integers are immediate data. 

Macros and the Compiler 

One of the features of Lisp that we had come to appreciate when programming BDS was the ability 
to write powerful macros to be evaluated at compile time. This gave us the ability to extend the 
basic Lisp language to an even higher level language, often in application specific ways. Since the 
DeciLisp compiler was written in the LISP/VM language and ran in that environment, we had ac- 
cess to the LISP/VM interpreter and hence its macro facility. Thus the DeciLisp language had the 
sort of extensibility we were used to, and this was used heavily in writing P-EDIT. In particular, 
macros were often used to generate efficient in-line code, using compile-time constant propagation 
(performed by the macro) from source which was written as a normal function application. That 
is, they were used to extend the compiler. 

Although DeciLisp was a standalone compiler in the sense of not being present in the compiled 
application code, it still operated in the highly interactive environment of LISP/VM. Thus we 
followed the practice of making our source code fdes just a sequence of S-expressions to be evalu- 
ated by the LISP/VM interpreter. Many of these S-expressions, of course, invoked the compile 
functions to compile their bodies. But interspersed with these calls on the compiler could be macro 
definitions, generation of tables (such as P-EDIT's request mapping table), or just random com- 
putations of useful data. 

One of the facilities that LISP/VM provides is the ability to redirect the interpreter's input stream 
to be from a file (via the EXF function). We use EXF to allow one source file to include another. 
Using the compiler's library, for example, is not implicit but explicit via EXF. In fact, since the 
library file was interpreted, the transitive closure part of library search is in the library file itself (via 
a big loop over all the compiler calls) rather than in the compiler! The compiler proper merely 
records the identifiers which appear in operator position (and are not builtin) and provides a 
COMPLAMBDAIFUSED function which compiles its body only if the given identifier has in fact 
been used. 

When some of us began working on a new experimental operating system (EM-YMS), it was de- 
cided to write the compiler in its own language and bootstrap it so that it would be available on 
EM-YMS. (The 'y' in 'Lysp' comes from 'YMS'.) Bootstrapping involved more than merely re- 
writing the compiler, it aiso involved rewriting enough of the LISP/VM interpreter so that macros, 
EXF and source file computation could be carried over. Since compiled code does not retain 
function names, the interpreter we wrote had to have its own mapping mechanism and had also to 
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make sure that the identifier data structures (including the INTERN hash table) were present. Also, 
since many standard functions do not type-check their arguments, and since the interpreter could 
not assume correctness (since it was to be used for debugging, too), the interpreter is full of func- 
tions like CONSTRUCT (above) with added CONDs for type-checking. 

The interpreter also contains themapping table which maps the relevant identifiers (such as CONS) 
to their interpreting functions (such as CONSTRUCT). This mapping table is generated by a 
program executed at compile time which uses a hook in the compiler which maps an identifier to 
the global variable vector index for the slot that will hold its value at run-time. This hook was 
originally put in for P-EDIT, so that it could generate the table which maps request names to the 
Lysp-coded functions which implement them. 

Data Representation 

Since the EM-YMS operating system was designed to run using 32-bit addressing (the natural limit 
for the IBM 370), we derided that Lysp would allow full 32-bit addresses in its pointers, unlike 
DeciLisp, which only had 24-bit address parts (the 370 implementation limit). Going to full 32-bit 
addresses meant that LISP/VM's style of using the high-order byte of a word size datum as the type 
coxle would no longer work. Following the suggestion of JonL White 6. we decided on using the low 
order few bits of a word as the type code. Since we didn't need very many different data types, we 
settled on a 3 bit type code. This meant that objects in storage would have to be aligned on 8-byte 
(doubleword) boundaries. If we had needed more type codes, we would have had to use coarser 
alignment and thus waste more storage per object on the average. 

In order to make arithmetic as fast as possible, we used a type code of 000 for integers. This makes 
Lysp integers represented as machine integers multiplied by 8, with 28 bits of precision plus sign. 
With this representation, add, subtract and compare are implemented directly by the machine in- 
structions without any masking or other adjustment needed. Multiply and divide are almost as 
simple, requiring only one shift in addition to the arithmetic instruction. 

Since testing for pairs (or conversely, for atoms) is very common in Lisp, the pair" type code was 
made 111 to take advantage of the machine's bit-test instruction, which reports 'all bits tested = 
1' as a separate case. (Since NIL is a unique 32-bit datum, testing for it is done by 'compare'.) 
The other type codes were assigned to make the garbage collector's life a little easier. There are thus 
3 ranges of type codes: the non-pointers integers, NIL and (from the garbage collectors point of 
view) functions; the pointers to objects not containing pointers, strings; and the pointers to objects 
containing pointers, vectors, identifiers and pairs. 

Since a Lysp pointer's low order 3 bits are type code, they corrupt the address part of the pointer 
(the high order 29 bits, of which only 21 are used on most 370's, and 28 on XA models). Rather 
than paying the execution cost of  removing the type bits whenever the pointer is dereferenced (e.g 
via CAR), a non-zero 'displacement' is used in the derefereneing machine instruction to cancel the 
numerical effect of the type code. This is another reason why type specific builtin functions (such 
as ELT) are desirable. 

Integers and NIL are immediate data, and although functions require storage for the code, they have 
no real structure. Character strings, pairs, vectors (of pointers) and identifiers (which essentially are 
pair's consisting of the 'pname' and the property list) of  course do have structure; they can even be 
updated. They are called 'stored objects', or just 'objects'. 

Although it might seem that there would be 4 different storage representations for objects, there are 
in fact only 2: objects which contain pointers, and those which don't. The objects containing 
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pointers are distinguished by the type codes in the pointers to them. This makes the garbage 
collector's life still easier. 

Each object has a 2 word header. The first word is used only by the garbage collector, while the 
second word contains the number of elements in the object, stored as a Lysp integer. (This makes 
operations such as STRLENGTH very fast - a single 'load' instruction.) The second word is re- 
dundant in the case of pair and identifier objects - they always contain 2 elements - but since 
object alignment is in doubleword units, a 3 word representation for pairs would have a wasted 
word anyway. 

A further simplification of the garbage collector comes about because we made the stack uniform; 
only valid Lysp data are stored on the stack. For example, return addresses are not stored, since 
they may be too big to be stored as Lysp integers, but rather the function pointer of the calling 
function is stored, plus an integer which is the offset of the return point in that function. Also, the 
garbage collector does not see the stack as broken up into frames, but rather treats it as a linear 
sequence of Lysp values. 

Storage Management and the Garbage Collector 

Si?lce one of our original goals was to compile code which would run in a virtual memory which 
was smaller than that needed by LISP/VM, we decided to use an in-place garbage collection algo- 
rithm, rather than one which copied to another heap area (as LISP/VM's does). For any given 
application, this allows Lysp to get by with about one-half the virtual memory that LISP/VM needs 
to hold data. (LISP/VM's pairs only occupy 2 words compared to Lysp's 4, but P-EDIT does not 
use many pairs compared to strings and vectors.) 

The garbage collector operates in 4 principal phases. The garbage collector does not care, in any 
of its operation, which of the 3 types a pointer containing object is. It only cares whether the object 
contains pointers or not. To that end, one of the bits in the first header word of each object records 
the type class at all times. 

The first phase uses the active portion of the stack as roots to visit all active objects and mark them 
as such. In order not to use any additonal storage, it uses a pointer reversing traversal algorithm. 
It uses the first header word in each pointer containing object to keep track of which pointer in that 
object it is currently following. It also stores the marking bit in that word. 

The second phase scans heap storage linearly looking for active objects. Whenever an active object 
is found, its new address is stored into its first header word, preserving the mark and type-class bits, 
and the new-address register is advanced by the object size. In any case, the scan address register 
is advanced by the object size, computed from the second header word of the object and the type- 
class bit. (Remember that the second header word contains the number of elements in the object, 
not its size in bytes.) 

The third phase again scans all active objects and replaces the address part of pointers in each 
pointer containing object by the new address for that object (obtained from its first header word). 

The fourth phase scans all active objects and moves them to the location addressed by their" first 
header word (clearing the marking bit in the process). Now all the active objects sit at one end of 
the heap area, making the rest of the area available for simple sequential allocation. 

When we converted to EM-YMS, we decided that it would be much nicer if Lysp applications 
didn't grab all at once from the operating system all the storage they might possibly need. To ac- 
complish that, we changed from a uniform, contiguous heap to a segmented one, where each seg- 
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ment is obtained from the operating system when the previous one becomes full, and all empty 
segments are returned to the operating system after garbage collection. The garbage collector al- 
gorithrns remain basically the same, except that the linear scans hiccup when they cross segment 
boundaries. 

In order still to be able to allocate arbitrarily large objects, while not having to obtain a segment 
for each object, the storage allocator allocates 'small' objects sequentially from standard size seg- 
ments, while 'large' objects are given segments of their own. Phase 2 of the garbage collector only 
scans the standard size segments, so only they are compacted, and 'large' objects do not get moved 
by phase 4. 

The garbage collection mechanism described here is a 'batch' algorithm, and it is annoying some- 
times while editing to have a lengthy garbage collection interrupt ones train of thought. We had 
considered using an incremental algorithm, but they seem to require that any pointer fetch test that 
pointer to see if it points to an object which has been 'forwarded '7. This test, on the 370, would 
slow down pointer fetching by at least a factor of 4. Therefore we have stuck to a batch algorithm. 

Program Size and Performance 

PrEDIT, as compiled by the older DeciLisp, yields an executable module of about 188 kilobytes 
(KB). This includes the kernel of builtin functions (including the storage allocators and the garbage 
collector). (The P-EDIT which is in use, since it only runs on CMS, still has not been fully con- 
vetted to Lysp.) 

PEDIT is a variant of P-EDIT which does not have the parametric (multiple version) facility. The 
Lysp compiled EM-YMS version of PEDIT, which does not contain the kernel, occupies 89 KB, 
while the DeciLisp compiled CMS version, which is older and lacks a number of features, but 
contains the kernel, occupies 76 KB. 

The Lysp kernel has been separated out from the compiled Lysp code for the EM-YMS environ- 
ment. It is re-entrant and can be shared by all applications written in Lysp. It occupies about 9 
KB, of which about 1200 bytes comprise the low-level storage allocator, 1900 bytes the garbage 
collector, 800 bytes data and initialization and the rest the builtin Lysp functions. The CMS ver- 
sion of the Lysp kernel (which cannot easily be shared) is also about 9 KB. They are assembled 
from about 6100 lines of Assembler source code (including comments), of which a little more than 
200 (all in a separate file) are operating system specific. 

The general Lysp library totals about 1300 lines, the YMS specific library about 1150 lines of Lysp 
code. (These lines are as if prettyprinted 80 columns wide.) 

The Lysp compiler and interpreter give rise to an executable module of 182 KB (not including the 
kernel, which is shared). This is obtained by compiling about 6600 lines of Lysp source code, plus 
the library. 

Other applications that have been written since are, a fde comparison program (11 KB + shared 
kernel, 650 lines + library), a very simple relational data base looker-upper (5.3 KB + shared 
kernel, 300 lines + library), a SNOBOL style pattern matcher (10.5 KB + shared kernel, 700 lines 
+ library), and a reduction language interpreter (58 KB + shared kernel, 1850 lines + library). 

Timing tests run several years ago indicate that DeciLisp code runs 4 times faster than standard 
LISP/VM code on a list processing example (Boolean expression manipulation), and about 10 
times faster on an arithmetic example (prime number generation). Lysp compiled code should be 
in about the same ratio. These figures are for LISP/VM's type-checked functions. The faster 'Q' 
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functions, which are (like Lysp's) unchecked, should make the first case run almost as fast as in 
DeciLisp or Lysp. But the more machine-fike number representation that Lysp uses would make 
it maintain a good factor of 2 in the arithmetic example. 

Lysp's garbage collector is quite fast, when not subjected to paging delays. Recent measurements 
indicate that on a 370 model 3081K, a full heap can be collected at a rate of more than 4 megabytes 
(MB) per second, where full means a PEDIT session with 71500 lines of file being edited occupying 
8 MB, so that essentially no garbage is collected in the less than 2 CPU seconds spent. When the 
fde is dropped from the edit session and the garbage collector run again, it can compact the storage 
down to 175 KB in less than 100 CPU milliseconds. 

The real test of performance, of course, comes in day-to-day use. P-EDIT and PEDIT have been 
in daily use for over 5 years by a total of about a dozen people, who use one or the other of them 
as their principal editor. On VM on a 3081, the performance of either of them is hard to distinguish 
from the performance of the standard XEDIT editor, which was written in Assembler language. 
The only time the Lisp origins become unpleasantly apparent is when a garbage collection occurs, 
and there is no garbage to collect. We therefore consider the approach to have been quite suc- 
cessful. 
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