
Programming Environments

John Foderaro

We continue our survey of Common Lisps with a report on the environment of
Extended Common Lisp from Franz Inc. of Berkeley, California. Our previous sur-
veys were for Lisps on dedicated Lisp Machines. Extended Common Lisp is designed
for general purpose machines. I wish to thank David Margolies of Franz Inc. for com-
pleting the survey.

If you have comments on the surveys or thoughts on programming environments for
Lisp, please mail them to me at the address given in the inside cover of this journal
(either electronic or paper is line).

Background:

Company: Franz Inc.
Product name: Extended Common Lisp
Version of product described: 2.0, available now;

3.0 will be available in the Fall.
Hardware available on: Sun 2, Sun 3, Vax (4.2 BSD Unix or DEC Ultrix),

Masscomp, Mac II. Earlier release available on Tektronix 440x, ISI,
Silicon Graphics, etc.

Extended Common Lisp is designed to run on general purpose hardware and thus runs
within many different programming environments. Most people run Extended Com-
mon Lisp under the Unix operating system, the premier program development operat-
ing system. They communicate with Unix (and thus Lisp) either with a simple termi-
nal or through a window system.

Version 2.0 of Extended Common Lisp was designed to be controlled through a simple
terminal interface. This is a universal interface and also allows Lisp to be used easily
from within Emacs. Version 3.0 will provide window-based interfaces to the editing,
debugging, and performance monitoring features of Lisp.

We waited until version 3.0 to start using windows because we were wanted to
develop our tools in a standard window system (the community certainly doesn't need
a different window system design by each Lisp vendor). At this point it appears that
for general purpose machines the standard window system will be either X (developed
primarily by M1T and DEC) or NeWS (developed by Sun Microsystems) or some
combination of the two. For the Lisp interface to the window system, many Lisp
application developers prefer Intellicorp's Common Windows specification and we are
working with Intellicorp and Sun on extending the specification so that it handles color
and works well with networked window systems such as NeWS and X.

Influence:

The primary influence of the version 2.0 terminal based interface is the Unix C shell.
Extended Common Lisp has a 'history' facility for remembering all user commands.
One can search for and execute previous commands based on characters in the com-
mand or on the command number. The main read-eval-print loop (which we call the
'toplevel') treats input preceded by a command character (by default the colon) as an
instruction to run a toplevel function. For example, typing

LP 1-3.43

:cf foo/bar

has the same effect as typing

(compile-file "foo/bar")

The user can easily add his own commands to the set of top level commands.

We were also influenced by the SmaUtalk idea of a modeless system. Our toplevel has
an integrated stack inspector, trace package, stepping package and object inspector. All
components of the toplevel are available all the time. On some systems when you get
into an error break, certain commands are available, and when you are in the inspector
other commands are available. Thus what you can type depends on the mode you are
in at the time. We wanted to avoid such a system. Thus all toplevel commands (and
your history list and your private set of toplevel commands) are available to you
whether you are in a error break, a trace break, a step break, or in the toplevel loop
itself.

Our version 3.0 window based interface is based on the Interlisp-D interface. This is
partially due to the fact that the Common Windows window system is based on the
Interlisp-D window system and partially due to the fact that people praise the
Interlisp-D environment.

Primarily Residential or File Based: file based.

Components of the Programming Environment:

editor: Users select from the editors available on their machine. Many programmers
use a version of Emacs such as Gnumacs, an Emacs editor from the Free Software
Foundation or Unipress Emacs. The advantage of these two versions of Emacs is that
lisp can be run within an Emacs buffer.

debugger: As mentioned above, in version 2.0, the debugger is terminal based. In 3.0
it will be window based, with a window produced when a break level is entered. For
both 2.0 and 3.0, there are a set of stack inspection commands which permit the user
to browse the stack, examining and changing local variables, and then return from any
part of the stack or restart the computation at any part of the stack.

inspector: In 2.0, a the inspector is terminal based. In 3.0, it is window based, with
an inspect window appearing when the inspector is called, with slots and values listed.
Mousing on a value allows that value to be inspected, mousing on a slot allows the
value of the slot to be modified.

documentation: Many, but not all, functions have online documentation. The user
may document user-created functions. For hardcopy documentation, there is a User
Guide, describing the implementation and its extensions, and a Reference Manual, list-
ing all functions in alphabetical order.

Other Components:
There is a profiler which can either sample the actual time spent in each function or
else count the number of calls to each function.

Extended Common Lisp has a stack group/mulfiprocessing facility compatible with that
found on Lisp Machines. This is important for window system code where the stack is
used to hold computational context for one window when another window is active.

LP I-3.44

Common Windows, based on the specification by Intellicorp, also allows users to cus-
tornize their environments. Both stack groups and Common Windows are available in
version 2.0.

Non-window Environment:

In version 2.0, the complete programming environment is available without the need
for a window system. Users typically use Emacs to create a little terminal-based win-
dow system. In version 3.0 the window-based environment will be easier to use than
the non-window environment but it will still be possible to use Lisp from a simple ter-
minal (i.e. nothing will be removed from the terminal-based environment, things will
simply be added to the window based environment).

(Unix is a trademark of AT&T, Interlisp-D is a trademark of Xerox Corp., NeWS is a
trademark of Sun Micr0systems).

COMING IN 1987!

LISP AND SYMBOLIC COMPUTATION:
An International Journal

Comh~g in late 1987, the new LISP AND SYMBOLIC COMPUTATION: An International
Journal w:.~ present a forum for current and evolving symbolic computing, focusing on Lisp and
object-oriented programming. The scope includes:

• Programming language notations for symbolic computing (e.g., data abstraction, paral-
lel~m, l uy evaluation, infinite data objects, seL/-rderence, message-pusing, generic func-
tions, inheritance, encapsulation, protection, metaobjects).

• Implementations sad techniques (e.g., speciallsed architectures, compiler design, combi~
aatory modek, garbage collection, storzge management, performance analysis, smalltalks,
flavors, common loops, etc.).

• Progrsaxming lot/ca (e.g., semantics u d reason/ng about programs, typee and type inYer-
~utce).

• Pro~'mnming environments u d tools (e.g., knowledge-bued programming tools, pro~am
transformations, specifications, debugging tools).

• Applicatiou and experience with sy'mbolic computing (e.g., real-time programming, artifi-
cial intelligence took, experience with LISP, object.oriented programming, window systems,
user interfaces, operating systems, parallel/distributed computing).

Editorial Board:

Richard P. Gabriel, Lucid, Inc. , Editor-in-Chief
Guy L. Steele Jr. , Thinking Machines, Inc. , Editor-in-Chief

Daniel G. Bobrow, Xerox PARC
Robert S. Cartwright, Rice University
Jerome Chal/loux, INRIA
L. Peter Deutsch, Xerox PARC
Daniel P~ l~iedmu, Indiua University
Martin L. GriM, HP L ~
Carl Hewitt, MIT
Paul Hudak, Yale Unlwndty
Masay'uki Ida, Aoyama GLkuin Unlvendty
Gi/Jes Kadm, INRIA

Kenneth Kahn, Xerox PARC
John McCarthy, Stanford University
Larry Muinter, Xerox PARC
Julian Pa~dget, University of Bath
Carolyn Talcott, Stanford University
David S. Touretsky, Carnegie-Mellon University
Mitchell Wsad, Northeastern University
Mark N. W q m u , IBM Watson Research
David S. Wise, Indiana Uuiversity

For submissions sad more information contact:

Jsa Zubho~
Associate FEdltor, LASC
Lucid, Inc.
707 Laurel Street
Menlo Park, CA 94025
415/329.-8400

LP 1-3.45

