
Technical Articles: A Special Issue on "Garbage"

In this issue of Lisp Pointers, we are featuring two articles on memory management for Lisp systems:

Overview of Garbage Collection in Symbolic Computing by Timothy McEntee is an excellent short tutorial
on the current state of garbage collecting techniques; and Address/Memory Management for a Gigautic
LISP Environment, or GC Considered Harmful by JonL White proposes a novel technique for use in large

virtual memories that abandons the notion of ~collecting ~ garbage and focuses instead on the problem of

maintaining a relatively small working set. Both of these articles have appeared elsewhere, in forums with

very limited distribution, and so are being reprinted here. The first article originally appeared in longer

form in the Texas I n s t r u m e n t s E n g i n e e r i n g J o u r n a l , which is primarily distributed to TI employees;

the second article originally appeared in the historic 1980 Lisp Conference. [Since 1982, the biennial Lisp

Conferences have enjoyed ACM sponsorship, and the proceedings are more widely distributed.]

The Mark-and-Sweep techniques of garbage collection have apparently fallen into into disfavor,

probably due to the increased importance in Lisp of variable-length objects such as arrays and defstructs

[cons cells, symbols, floating-point numbers, etc., are typical fixed-length objects]. Only the Interlisp-D

workstationS'marketed by Xerox AI Systems rely mainly on such schemes. However, some new imple-

mentations, such as ZIL [Lisp Pointers, vol 1, no 2], as well as the classic PDP10 MacLisp, profitably

combined Mark-and-Sweek algorithms with Stop-and-Copy ones. But the prominent problem in Lisp

memory management , since the mid 1970s, is one of working set size. McEntee indicts the classical

algorithms as having the shortcoming of ~severe thrashing, ~ and even Baker in an MIT AI Lab memo

criticizing his incremental collector scheme noted that merely compacting the total data set did not

necessarily reduce the size of the working set (in fact, it tended to do just the opposite!).

A word on names for memory management algorithms: the terms Mark-and-Sweep and Stop-&nd-

Copy are well-entrenched, and the class of prominent variants on Mark-and-Sweep called Reference Count-

ing is also well-established as a name. The name Baker's Algorithm has generally been used to refer to

Henry Baker's variant of Stop.and-Copy [but the nearly real-time nature of it suggests that it be named

the Dont-Stop-but-Copy algorithm]. The variant proposed in the second paper has been referred to by

its author as the Dont-Do-It scheme of garbage collection, although others, noting the desirability of the

goal in section 3, have termed it Annual-Garbage-Collection. Finally, two terms have come into common

use for the variant of Stop.and-Copy proposed by Hewitt and Lieberman: Generation-Scavenging and

Ephemeral, the latter term coming from Moon's paper describing Symbolics' implementation of genera-

tion scavenging on its 3600 processor. Perhaps Ephemeral should denote the mixture of the incremental

nature of Baker's algorithm with the partitioning of the heap into generations, whereas unqualified Gen-

eration Scavenging would refer t'o all such schemes, including implementations like the Berkeley Smalltalk

where frequent mini-pauses occur during which all processing stops except for the ~scavenging ~ of some

or all of the %enerations ~ (estimates for a time bound on these mini-pauses in other similar systems

range from a couple hundred milliseconds to six seconds).

Technical Articles Editor

LP 1-3.7

