
Overview of Garbage Collection in Symbolic Computing

Timothy J. McEntee

Texas I n s t r n m e n t s

~)Copyrlght 1987 by Texas Instruments, Incorporated

Many readers of this article have heard the term "garbage collection" on occasion without being given much
explanation as to what it is. One purpose of this paper, therefore, is to describe what garbage collection is and why
it is a subject of concern for computing in general and symbolic computing in particular. The first section briefly
describes garbage collection. The next section gives a general description of what has come to be known as the
"classical" garbage collection algorithms. A few of the classical algorithms' shortcomings for use in today's systems
are described in the next section. This is followed by a section on a few techniques in garbage collection which
address the needs of today's and tomorrow's symbolic computing systems.

An Introduction to Garbage Collection

A simplified model of a computer system is illustrated in Figure l(a). There are two parts to the system - a
processor and an address space (i.e., memory). Within the processor are several "registers" (labeled R1 thru R4),
which could be hardware registers or a scratchpad memory. Within the address space are found several variable-sized
object8 (labeled O1 thru O7). An object is made up of a number of words of memory. Stored in each object word
is either data or a pointer to (an address of) another object. In the same way, each register holds either data or a
pointer to an object. The term reference is often used to mean that a register or an object has a pointer to another
object; for example, register 1tl references object O1.

Objects are considered "useful" as long as they are accessible to the processor. The only objects which the
processor can possibly access are those which are directly referenced by one or more registers (objects O1 and O5),
or those which are indirectly referenced by one or more registers (objects 02 and O3). In other words, accessible
objects are those objects which are in the ~ransi~ire clost, re of at least one register. Only an object directly referenced
by a register can have its contents read or written to (accessed). An object which is indirectly referenced by a register
can become directly referenced by making the object's address available to a register. For instance, object 02 can
become directly referenced by reading the value of the first word of object O1 (note that O1 is directly referenced
by register 1tl) and writing that value in register 1t4.

Object O4 is ,~o~ in the transitive closure of any register; no path of indirection can possibly link 04 with a
register. The same is true of objects O6 and O7. Once an object is removed from the transitive closure of all
registers, it can never be made accessible again. Such an object is commonly termed "garbage." When an object is
first created in the address space, it is "bound to" (referenced by) a register. Therefore, each of the nonaccessible
objects (04, 06, O7) were at one time accessible. A possible scenerio may have been that register 1t2 at one time
referenced object O6. Later, a process requested that the contents of register R3 be copied to register It2. When the
contents in register R2 was overwritten, the only pointer which made object O6 accessible was ``crushed."

The crushing of pointers is a common occurrence in languages for symbolic computation (e.g., Lisp or Prolog).
The frequent crushing of pointers to objects over a period of time results in the accumulation of a large amount of
garbage. From the point of view of the processor, this fact is of little concern just as long as it can continue accessing
useful objects and creating new ones. However, no system has an address space which is infinitely large. Eventually
the entire address space would become completely full of accessible objects and g a r b l e objects and no memory
would be available for allocating new objects. Obviously, the solution is ,~o~ to halt the system, nor to write over the
accessible objects which the processor expects to remain intact. The best solution would be to reclaim the memory
space which contains garbage and make it available for the allocation of new objects. This is the purpose of garbage
collection. After the address space has been g a r b l e collected, as shown in Figure l(b), all accessible objects (O1,
02, 03, and 05) have ``survived" collection. These objects may, in fact, occupy different memory addresses, but
the logical structure of the objects and pointers are unchanged. The garbage blocks (O4, O6, and O7), on the other
hand, have been reclaimed.

The whole process of allocation and reclamation of memory is often called automatic m e m o ~ management. A
computer system with a language like FORTRAN or COBOL does not require such management since memory can
only be used as static storage. The language Pascal does allow dynamic storage, but the management of memory is
left to the user of the language; the user is given the responsibility to allocate or destroy the data structures used.

LP 1-3.8

A symbolic computing language like Lisp, however, has rich data structures and an intricate maze of pointers whiM,
if left to the user to manage himself, could easily become an overwhelming burden. Thus, with the onset of the ffn~t
list processing languages in the late fifties and early sixties, an interest in developing better and better algorithms
for garbage collection arose and has continued to this day.

The Classical Algorithms

Mark and Sweep
This algorithm was first introduced in 1960 [McCarthy60] and can be viewed as the precursor to the copying

collectors described in a later section. With modifications, it is used in some computing systems to this day; however,
the copying collectors are considered more suited to the needs of today's symbolic computing systems.

As the name suggests, there are two phases to the algorithm - the mark phase and the sweep phase. In the mark
phase, each object that is accessible to the processor is "marked" (for example, by turning on a bit contained in the
object). To do this, each pointer, one at a time, is followed to the object it references (its referent), the referent
object is marked, and the pointers in the cells of the referent object are then followed. The general algorithm requires
a stack to keep track of the cells in already marked objects whose pointers have yet to be followed. Many variations
and improvements on the mark phase, such as methods for eliminating a stack, have been made in order to improve
performance and lessen overhead (see, for example, [Knuth73], [Shorr67] and [Wegbreit72]). J. Cohen [Cohen81]
briefly describes many of the algorithms. In fact, Cohen's article is an excellent resource for getting an overview of
reference counting and copying collectors, described later in this article.

After all accessible objects have been marked, the entire address space is "swept." In the simplest implementation
of the sweep phase, all "live" objects, objects which have been marked, are passed over except for turning off their
mark bit, while the memory occupied by all unmarked objects, the garbage objects, are added to a free list of
available memory for use in future allocation.
Reference Counting

Another garbage collection technique called reference counting was also introduced in 1960 [Collins60]. It too
has undergone many refinements. The main algorithm for reference counting is to maintain a count of the number
of references to each object. As long as an object's reference count remains non-zero, it is potentially accessible.
Once the object's reference count reaches zero, indicating no other objects and no registers reference it, it can be
guaranteed that the object is not and never will be accessible to the processor (it is garbage). Therefore, that object's
memory space can be reclaimed.

The model of a computer system used previously (Figure l(a)), may be of help in understanding the general
technique of reference counting. Object O1 is referenced by register R1. It is the only pointer to the object.
Therefore, in the reference counting scheme, object O1 would have a reference count of 1. By the same reasoning,
object 03 would have a reference count of 3. Imagine that a process requested that the pointer from register R2
to object 05 be crushed. Object O5's reference count, with a value of 2 before the request was made, would be
decremented to 1. A second request to crush the pointer contained in register R3 would result in another decrement
to object OS's reference count, giving it a count of zero. By definition, then, object 05 would have become garbage
and could be reclaimed.

An immediate reference counting algorithm adjusts reference counts each time a pointer is written into a register
or a word in an object. Also, an object is reclaimed as soon as its count drops to zero. Reference counting takes a
considerable amount of time. Each time a pointer is written, the old contents of the register or word of memory must
be read so that, if it is a pointer, the count of the referent object can be decremented. The new pointer's referent
must then have its reference count increased. When an object's count diminishes to zero, each word in the object
must be scanned to decrement the counts of each object they reference. The total overheea~i for immediate reference
counting is about 20% of CPU time [Ungar84a].

An improved algorithm, called the Deutsch-Bobrow defected reference counting algorithm [Deutsch76], reduces
the cost of maintaining reference counts. The algorithm lessens the time spent adjusting reference counts by both
storing the counts separately from the objects themselves, and postponing any updates to the reference counts for
a period of time. Instead, any pending updates are stored in tables. There is statistical evidence [Clark77] that
an overwhelming majority of objects (97%) in most Lisp programs will not have more than one reference to it. By
postponing the updating of counts as soon as pointers are crested, the Chances are good that an individual object
will be referenced and then its pointer crushed shortly thereafter. The system periodically stops and reconciles the
reference counts all at once. Deferred reference counting requires about half as much CPU time as the immediate
reference counting algorithm [Ungar84a].

LP 1-3.9

Shortcomings of the Classical Algorithms

Reclaiming cyclic structures: Cyclic structures are not an uncommon data structure in symbolic computing.
Looking back to Figure 1, objects 06 and 07 each point to the other. Taken together, they form a circular, or
cyclic structure. Yet, neither is in the transitive closure of a register. The two objects are garbage. Their address
space would be reclaimed after a mark and sweep garbage collection is done. The same is not true if reference
counting is used for collection. Because the objects in cyclic structures will never reach zero (both object O6 and
07 will maintain a reference count of one), their address spaces will never be reclaimed. This problem, discounting
the facts that extra space is needed for the reference counters and that there is a significant amount of overhead
in updating the counters, makes reference counting by itself an inadequate means of garbage collection in today's
systems. Combining reference counting with mark and sweep garbage collection (or a copying garbage collection,
for that matter) eliminates this inadequacy. The majority of reclamation would be done via reference counting, and
mark and sweep would occur as a last resort.

Virtual memoey: The classical mark and sweep algorithm was originally designed for systems without virtual
memory. Garbage collection for today's systems must work well with virtual memory. As J. Cohen [Cohen81] points
out, in virtual memory systems, when the ratio of the size of secondary memory to the size of main memory is small,
the pass through memory during the sweep phase is not a serious problem for performance. However, when the ratio
of the sizes is large, the classical algorithm is no longer suitable. This is because all addresses in the address space
must be swept, including addresses which are not in physical memory at the time. It will not be uncommon to find
systems of the future with large virtual memory (an address space of 226 to 2 s2 words of memory) or ~erly large
virtual memory (an address space greater than 232 words of memory). In these systems, the vast majority of the
addresses would be out on disk and would have to be paged in during the sweep of the address space. This would
result in poor performance of the garbage collector. A better alternative is to avoid the sweep phase of collection as
is done in copying garbage collection, described in the next section.

Another important part of virtual memory systems involves the ut0~'king set of a process. The working set can
loosely be defined as the objects in the address space which are "actively" accessed by the processor in order to carry
out normal execution of the current process. The virtual address space is divided into pages. A finite number of pages
can he in physical memory at one point in time. If an object is accessed which is not in a page of physical memory,
it must be paged in from the backing store. This process of paging in adversely affects performance. Therefore, it is
best to minimize accesses of objects which are not in physical memory. The best performance would be achieved if
the working set of objects were kept in physical memory. As time progresses, the objects which are heavily accessed
could become distributed in far more virtual address pages than there are pages in physical memory, resulting in
severe thrashing. The solution is to corapac~ the accessible objects into a minimal number of virtual address pages.
This is what is meant when a system is said to "improve the locality of reference."

The original mark and sweep algorithm is generally not used in virtual memory systems since no compaction of
objects in the address space occurs. Therefore, many variations to the algorithm exist in which the remaining acces-
sible objects are relocated in the address space (see, for example, [Haddon67], [Lang72], or [Zave75]). Unfortunately,
this requires one or more additional "sweeps" through the address space, further impairing performance. This fact
makes the copying garbage collector algorithm even more desirable.

Concuerency: The classical algorithms were adequate for time-shared and batch-job systems. However, in the
last few years there has been a shift to using interactive, single-user work stations (i.e., Lisp Machines) for symbolic
computation. Thus, the garbage collector must be designed in such a way as to insure tolerable user response
time in an interactive environment. User perceived pauses should be small. Furthermore, the execution of "real-
time" applications is often a requirement in today's symbolic computing systems. Such applications require minimal
processor interruption.

The mark and sweep garbage collector is termed a pausing collector (i.e.,when garbage collection is in progress,
execution of regular processing is suspended). When the free memory available for allocating new objects is exhausted
or nearly exhausted, the garbage collector is activated, all other processing pauses, the collector runs to completion,
and regular processing then resumes. In a system with a very small address space, a pausing collector may be
tolerable for the user, but the larger the memory, the more intolerable the pauses become. Dijkstra [Dijkstra78] and
Steele [Steele75] each designed a system in which mark and sweep garbage collection could proceed simultaneously
with normal processing. Although neither system was actually implemented, the design called for two separate
processors executing in parallel - one processor used exclusively for reclaiming objects and the other for carrying out
normal processing. An alternative method of time-sharing a single processor, as is done for the copying collectors

LP 1-3. i0

described in the next section, has the advantage of being less complicated and costly.

Three Modern Algorithms

A type of garbage collector prevelant in today's systems is known as a copying collector, first proposed by R.
Fenichel and 3. Yochelson [Feuiche169] and C. Cheney [Cheney70]. It is suitable for use in a virtual memory since
compaction of memory is a natural side-effect. ALl three techniques for collection described in this section are based
on the copying collector.
Baker ' s A lgo r i t hm

Even though H. G. Baker's contribution to the copying collector was to adapt it to real-tlme collection, the
generic copying collector is often referred to as Baker's algorithm. The address space is divided into two equal-
sized sernispaces called ol,~pace (also known as ~.omspace) and newspace (also known as tospace). During garbage
collection, all accessible objects are copied from oldspace to contiguous locations in newspace. A fo~arding address
is left at the oldspace location of the object. Whenever a pointer is followed and the referent object is found to
contain a forwarding address, the pointer is updated to point to the copied object in newspace. When all accessible
objects have been copied to newspace, the entire address space occupied by the oldspace can be reclaimed. The two
serr~spaces are "flipped" (i.e., newspace becomes oldspace and oldspace becomes the newspace for the next garbage
collection). Note that, since oldspace can be reclaimed as a whole, there is no need to "sweep" through the address
space looking for objects to reclaim. Also note that, since the accessible objects are copied to contiguous locations
in newspace, compaction of the address space is accomplished.

The above description was rather a quick synopsis of copying garbage collection. An illustration can be a valuable
aid in understanding the general algorithm. Figure 2(a) shows the memory space divided into its two sernispaces
- oldspace and newspace. The first thing the collector must do is copy all blocks which are referenced by the root
set. The root set, in the case of the simple copying collector, is the set of registers contained in the processor. The
registers form the "root" of all objects to be copied. Register R1 has a pointer to an object in oldspace (object
O1). Therefore, object O1 must be copied to newspace. In Figure 2(b), object O1' is the newspace copy which is
an exact duplicate of the original object. A forwarding reference is placed in the first word of the original object
(O1) as indicated by the dotted pointer. The need for the forward reference is shown in Figure 2(c). The collector
moves on to copy the object referenced by the next register (register R2). It is found to have a pointer to object O1.
But, on examination of the contents of the first word of object O1, the forward reference is detected. It would be a
serious error to create duplicate copies of the same object in newspace. Instead, register R2's contents is replaced
by the address of object O1', which happens to be the value of the forward reference. The result is illustrated in
Figure 2(d).

The purpose of the copying collector is to copy all accessible blocks to newspace before reclaiming the oldspace.
Object 02, however, is not directly referenced by a register, so it would not be copied if collection stopped after all
objects referenced by the registers were copied. Two pointers maintained by the garbage collector are used to make
sure all accessible objects are copied. The first pointer points to the next available location in newspace at which an
object may be copied. The pointer is initialized to point to the top of newspace. Each time an object is copied to
newspace, the pointer is incremented by the number of words in the copied block. Once all objects directly referenced
by the root set are copied, scavenging of the newspace objects begins. By scavenging the objects it is meant that
the words of each newspace object is scanned to find pointers to other objects. The second pointer, also initialized
to point to the top of newspace, is used to keep track of where the collector is in its sequentiai scan of newspace. If
a pointer is found, the object it references must also be copied to newspace. In Figure 2(//), the pointer to object
02 found in the word of object O1' would eventually be scanned. The same steps are then followed : if the referent
object is found to have a forward reference, the pointer is updated to point to the newspace object; otherwise, the
object is copied to newspace and a forward reference is left in the original object. This scavenging of the newspace
objects continues until the scavenge pointer reaches the first pointer. When the pointers meet, all accessible objects
have been copied to newspace, and the two semispaces can then be flipped.

Baker [Baker78] has proposed a means of avoiding significant processor interruption which occurs during pausing
garbage collection. Each time an object is allocated in the address space, s fixed number of objects are copied
from oldspace to newspace. In effect, the processor time-shares normal execution with garbage collection rather
than pausing normal execution in order to perform the collection in its entirety. This technique is often given the
name incremental garbage collection. It is possible to use this technique in systems executing real-time applications
because the 0nly time normal processing is interrupted is during the '~flip" of the semispaces and the fixed amount
of time in which the objects referenced by the root set are copied and the root set's pointers are updated.

LP 1-3.11

The two semispaces are simultaneously active. The processor must be able to access both objects which are
necessary for normal computation and objects which are being copied during the incremental collection. This means
that the working set is increased, which is unfortunate in a virtual memory system. However, since the algorithm
gives rise to compaction of the accessible objects in memory, fewer page faults will occur during normal execution.
G e n e r a t i o n a l G a r b a g e Col lect ion

H. Lieberman and C. Hewitt [Lieberman80], the first to propose a generational garbage collection algorithm, make
the observation that in systems with dynamically allocated storage, the most common use of memory is as ~empora~
storage. Most objects are created, accessed for a while, and then thrown away (i.e., their pointers are crushed). But
the classical algorithms and even Baker's algorithm make no distinction between the temporary objects and those
which are more permanent. All objects, temporary or not, are garbage collected at the same time in the same way.
The strategy behind generational garbage collection is to take advantage of this distinction between objects.

Generational garbage collection is used in both the Berkeley SmaUtalk system [Ungar84a] [Ungar84b] and the
latest version of the Symbolics-3600 Lisp Machine [Moon84]. It exploits the observation that "young objects die
young" [Ungar84a]. A young object is one which has been recently created (allocated). There is a high probability
that it is a temporary object which will soon become inaccessible to the processor. If it does remain accessible for an
extended period of time, it is quite likely that it will continue to be accessible for an extensive period of time. The
basic strategy of the algorithm is to divide the address space into several generations. In Figure 3, the address space
is divided into four generations. Generation 4 would be garbage collected less often than would generation 3, and
much less often than would generation 2 or 1. Ideally, the entire address space of the youngest generation, generation
1, would always be resident in physical memory (i.e., none of its pages would be paged-out to the backing store).
An object in a generation that "survives" several garbage collections, indicating its stability, is moved ("promoted")
to the next older generation. The number of times an object survives the garbage collector is kept as a counter in
the object. The number of survivals that are needed for promotion to an older generation can be adjusted as the
work-load of the system changes.

When garbage collection is necessary for a given generation, that generation and all younger generations are
collected together. This reduces the number of references into a generation that must be accounted for when collection
is done. Two types of references are indicated in Figure 3 : young-to-old references and old-to-young references. In
list-processing languages, it is much more common for recently-created objects to reference older objects than for
objects which have been around for a while to reference recently-created objects. The old-to-young references are
sparse enough that their bookkeeping does not create significant overhead. If the collector were to also keep track
of young-to-old pointers, the overhead involved would become a detriment. The root set for garbage collection of
a generation thus becomes : 1) the registers (just as in Baker's algorithm), and 2) all old-to-young pointers into
the generation. Since garbage collection of all younger generations goes on at the same time, young-to-old pointers
need not be included in a given generation's root. This is due to the fact that all younger generation objects will be
scanned when they are collected and any pointers to accessible objects in older generations being collected will be
discovered at that time.

Each generation can be garbage collected, using Baker's algorithm, without disturbing the older, more stable gen-
erations. Younger generations with higher garbage production rates can be garbage collected much more frequently
than older generations. The overall effect is an improved system performance - valuable processor time is not wasted
uselessly garbage collecting older, stable objects.
G a r b a g e Col lec t ion Using Areas

Garbage collection is, in general, proportional to the size of the address space being collected. In a large virtual
address space, the collection overhead of an unmodified Baker's algorithm would be highly prohibitive. P. Bishop's
[Bishop77] strategy for reducing this overhead was to introduce the concept of al.eas in which small pieces of the
virtual address can be separately garbage collected. Figure 4 shows a computer system in which the address space
is divided into three areas. The number of areas can conceivably be far more than three. Garbage collection is then
performed on an area-by-area basis. The frequency of garbage collection within an area can be tuned to the expected
rate of garbage accumulation in that area.

When garbage collection is invoked on an area, such as Area Z in the illustration, Baker's algorithm is used. The
major addition to the algorithm is that the root set of the garbage collection must be expanded to include not only
the processor's registers, but also any "inter-area" pointers referencing objects in the area. If only the registers which
point to objects in the area were used to determine which objects are useful, objects 06, 07, 08, and 09 would be
copied to newspace. Examination of the illustration indicates that all objects in Area Z except for object 03 are
accessible to the processor. Yet, the whole strategy of using areas is to avoid collecting all the areas at the same

LP 1-3.12

time. The solution is to keep track of all inter-area pointers into the area and copy all objects which are directly or
indirectly referenced by them in addition to all objects referenced by the registers. Objects O1, 03, and O7 would
thus be copied to newspace and the scavenging process would pick up the rest of the accessible objects in the area.

If objects were placed in random areas when they are created, the advantage of tuning the frequency of garbage
collection on an area-by-area basis would be defeated and the number of inter-area pointers would become large,
increasing the overhead of the system. Therefore, each area is expected to exhibit locality of reference corresponding
to some logical division of the processes being executed in the computer system. Locality of reference implies that
there are far fewer pointers between areas than within an area. This makes it feasible to implement a bookkeeping
system which keeps track of each area's inter-area pointers.

Garbage collection using areas seems desirable for improving the performance of a computer system with a large
virtual address space. For a very large virtual address space (> 2s~), one could argue that it becomes more of a
necessity.

Garbage Collection for the Future

Garbage collection techniques have come a long way in the last 25 years. Since the first "classical" algorithms
were introduced as an effective way to reclaim memory in a list processing environment, the needs of symbolic
computation have grown. The requirements of tomorrow's symbolic computing systems call for garbage collectors
which are responsible for the memory reclamation and compaction of virtual address spaces ranging in size from
small to very large. The systems of tomorrow also must accomodate the interactive user and support real-time
applications. Today's state-of-the-art garbage collection techniques are quite adequate for today's systems and much
can be gained from understanding them. An approach taken in many research and development laboratories today
is to incorporate the salient features of today's collection techniques and develop a garbage collection scheme which
can meet the needs of tomorrow.

R e f e r e n c e s
[BakerT8]
[Bishop~'~]

[Cheney70]

[Clark77]

[CohenSl]

[Com-.e0]
[Dentsch78]

[Dijkstra78]

IFeniche~eg]

[Hsddon67]

~uth~3]

[Lieber',~,~80]

[McCOy, sol

[Moon84]

[Short67]

[Steele7S]

H. G. Baker, "List processin K in real time on a serial computer," CACM, vol. 21, no. 4, pp. 280--294, April 1978.

P. B. Bishop, "Computer systen~s with a very large address space and garbage collection," Technical Report TR-178,
Laboratory for Computer Science, Cambridge, MA, May 1977.

J. Cheney, "Non.recursive llst compacting algorithm," CAUM, vol. 13, no. 11, pp. 677.-.678, November 1970.

D. Clark and C. Green, "An empirical study of list structure in Lisp," CACM, voL 20, no. 2, pp. 78-86, February 1977.

J. Cohen, "Garbage collection of]inked data structures," ACM" Computing Sueveys, vol. 13, no. 3, pp. 341-367, Septem-
ber 1981.

G. E. Collins, "A method for overlapping and erasure of lists," CACM, vo|. 3, no. 12, pp. 655--657, December 1960.

L. Deutsch and D. Bobrow, "An eRicient, incremental, automatic garbage collector," CACM, vol. 19, no. 9, pp. 522-526,
September 1976.

E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. StefTens, "On-the-fly garbage collection: an exercise in coopers-
tion," CACM, vol. 21, no. 11, pp. 966-975, November 1978.

R. Feenichel and J. Yochelson, "A Lisp garbage collector for virtual memory computer systemJ," CACAf, vol. 12, no. 11,
pp. 611--612, November 1969.

B. K. Hsddon and W. M. W&ite, "A compaction procedure for variable length storage ce.lls,, ~ompute~" Jourlta[, vol. 10,
pp. 162-165, August 1967.

D. Knuth, The Art o~ Computer" P~.ogv'amm~ng, VbL $: $or~s~g and Seay'c~ng, Addison-Wesley, Reading, MA, 1973.

B. Lang and B. Weigbreit, "Fast compactificstlon," Teeh-ical Report 25-72, Harvard University, November 1972.

H. Lieberman and C. HewitL "A real time garbage collector that can recover t0.,~porary storage quickly," Te~nlcal
Report 569, ArtHicJal Intelligence Laboratory, MIT, April 1980.

J. McCarthy, "Recuraive functions of symbolic exprreuions and their comput&tion by mA,-h;ne i," CACM, vol. 3, pp. 184--
195, 1960.

D. A. Moon, "Garbage collection in a large Lisp system," In Pro¢. 198J ACM" SFmp. Liap a,d F1tnctional Peo~p'amm~na,
pp. 235-246, August 1984.

H. Shorr and W. Waits, "An eRicient nac]fine-indepe~dent procedure for garbage collection in various list structur,~B,"
CA CM', vol. 10, no. 8, pp. 501-506, August 1967.

G. L. Steele, Jr., "Mu/tiprocessingcompactifying garbage collection," CA C~d[, vo]. 18, no. 9, pp. 495-508, September 1975.

LP I-3.13

[UnsLrS4•]

[Ungar84b]

[Wegbreit 72]

[ZaveTS]

D. Ung~r, "Generation Scsvenging: • non--d.isruptive high performance storage reclatmLtion ~Igorithm," In Pro¢. ACM
SIGSOFT/SIGPLAN So~wa~ Eng. S111"np. on Practical So~wae¢ Dcvelopm¢.t En~ronmcvtts, pp. 157-167, Pittsburgh,
Pezmsylv~.is, April 1984.

D. Ungar, R. Bl&u, P. Foley, D. Samples, and D. Patterson, "Architectttre of SOAR: Sma.Utslk on • B/SC," In Pro¢. l l th
Annu. Int. Slrmp. Computer A~chit¢ctlr¢, Ann Arbor, MI, .June 1984.

B. Wegbreit, "A space edii¢ient list structure trsclng algorithm," IEEE TRaneaetion on Compxtere, vol. C21, pp. 1009.-
1010, September 1972.

D. A. Zsve, "A f a t compacting g~rbsge collector," Into. ProcesJ. L, etterm, vol. 3, no. 6, pp. 167-169, July 1975.

R1

R2

R3

R4

Pi

R1

R2 ~ .

R3 ~ "

R4 r ' - ' - " - t

Processor
Address Space

(Memory)

.(a) Before garbage collection

Figure 1. Before and After Garbage Col lect ion

(b) After garbage collection

LP 1-3.14

Oldsoace ~ Oldspace

R1

R2

P

R1

R2

Processor

I

(a)

Oldspace

Newspace

(c)

RI

R2

Processor

RI

R2

Forward
Reference

Processor

/
I

I

/

f ~
/

I

Newspace

(b)

Oldspace

Newspace

(d)

Figure 2. Copying Garbage Collection

LP 1-3.15

Virtual Address Space

f '

!
I

Surviving
Obiecl

Promoted to
Next Generation

--t I

I L _ . J

Generation 1

Generation 2

Young-to-Old
Reference

Generation 3

Reference

Generation 4

Figure 3. Generational Garbage Col lect ion

Area X Inter-Area
Pointer

Intra-Alea
Pointer

Processor'

Area Y

Figure 4. Garbage Col lect ion Using Areas
LP 1-3.16

