
The Scheme of Things:

Streams versus Generators

William Cl/nger
Tektronix, Inc.

willc%tekch/ps.tek.com@tek.cs.net

With this article I 'm changing the series tide to "The Scheme of Things". The or/ginal title was a
weak pun on the technical term environment. An environment, you see,, associates names with their
meanings. In the Scheme environment, for example, the word "env/ronment" has the meaning just
stated, while in some other parts of the programming language world the word "environment" has
a less technical meaning that refers to the stuff that comes with a programming system. One of my
purposes has been to explain the meaning of terms in the Scheme environment. Sometimes a word
like "environment" or "slream" means something different in Scheme than it does in some other
dialect of Lisp, usually because the Scheme terminology follows that of another well-established
language or group of languages.

Following a discussion of the advantages of lazy evaluation on the coup. lang. n i sc mailing list,
Kenneth Almquist asked an excellent question: "Has anyone made any comparisons between lazy
evaluation and coroutinesT" Herewith is such a comparison for the special case of streams versus
generators.

A stream is a lazy list. Unlike an ordinary list, whose elements must already have been computed
when the list is created, the elements of a stream are computed only on demand. Streams are
particularly convenient for representing infinite sequences. For example, if cone=stream is a
consmmtor for streams analogous to cone, then the sequence of natural numbers can be defined
by:

; The s t ream of i n t e g e r s >= n.

(d e f i n e (i n t e g e r s n)
(cone-s t ream n (i n t e g e r s (+ n 1))))

(d e f i a o naturaJ.-nunbore (i n t e g e r s 0))

The fide of one of the first papers to adv~ate the use of slzean~ "CONS should not evaluate.
its arguments" [1], shows why cone-s t ream can't be a Scheme procedure and must be a macro
instead. The head and t a i l procedures that extract the "car" and "cdr" of a su'eam do evaluate
their arguments, though.

Over 2200 years ago, before even Lisp was invented, Eratosthenes of Cyrene conceived one of
the most beautiful programs ever to use streams. His idea was to compute all the prime numbers
by starting with the stream of integers beginning with the first prime, 2, striking out all multiples
of 2, taking the next prime, 3, striking out all multiples of 3, taking the next prime, striking out
all its multiples, and so on. Today his program is widely known in the form of a benchmark that
calculates the first 1899 primes 10 times, but we can better appreciate his genius by casting his
algorithm in its more general form using streams:

LP I-4.23

; Given a e~ream s of i n t e g e r s in i n c r e a s i n g o r d e r , r e t u r n s the
; s t ream o b t a i n e d by removing a l l m u l t i p l e s of n.

(define remove-multiples
(letrec ((loop

(lambda (s n m)
(cond (4< (head S) m)

(cons-sZream (head s) (loop (tail s) n m)))
(C= (head e) m)
(loop (Zail s) n (+ m n)))

(else (loop . n (+ m n)))))))
(lambda (s n)

(loop • n 4+ n n)))))

(define (sieve s)
(¢ons-s=rea (head e)

(sieve (reaove-mul~iples (~ail s) (head s)))))

(define p r i a e s (sieve (integers 2)))

It takes almost no time at all to compute the stream of all prime numbers, because lazy evaluation
delays all the time-consuming calculation. You pay the piper w h ~ you print t h e~ though,
because the delayed calculations must be performed on demand.

A generator for a sequence is a procedure that returns successive elements of the sequence on
successive calls. For example, a generatc¢ for the sequence of naua'al numbers can be wri~en as:

; Given n, returns a genera~or for ~he integers >= n.

(define (integers n)
(labda ()

(let ((sac n))
(so=! n (+ n I))
ads)))

(define na=ural-nuabere (integers 0))

Generators are quite different from streams because invoking a generator changes the state of
the generatA~. TANg the head or tail of a stream has no such side effect (unless the delayed
calculation has side effects), which is why streams are used prominently in functional program-
ruing. Generators, which rely enlimly on side effects, are simple examples of object-oriented
programming in the Smalhalk sense.

The sieve of Exatosthenes looks much the same whether programmed using streams or generators:

LP 1-4.24

; Given a generator g of integers in increasing order, returns a
; generator that generates the original integers less multiples of n.

(define (remove-multiples g n)
(l e t r e c ((m (+ n n))

(self
(lambda ()

(l e t loop ((x (g)))
(cond ((< • =) x)

((= • =) (eel!
(else (set! m

self))

m (+ m n)) (s e l f))
(+ = n)) (loop x)))))))

(de f i ne (s i eve g)
(lambda ()

(let ((x (g)))
(set! g (remove-mul t ip les g x))
x)))

(de f i ne pr'~,.es (s i eve (inl ;egers 2)))

For this problem at least, streams and generators both provide a short, clear solution.

Neither solution is as efficient as the sieve benchmark, which allocates a fixed array of flags, but
the benchmark never gets beyond the first 1899 primes no matter how large a machine it runs
on. The stream and generator solutions will calculate all the primes--provided we are infinitely
patient and can supply a machine equipped with infinite RAM.

I tested the performance of the stream and gener._!_or solutions on a Macintosh IT. The program
using generators was able to find the first 1000 primes over five limes as fast as the program
using streams, and was able to find almost twice as many primes before overflowing the heap.
While I would expect the program using generators to perform better than the one using streams
when run in other implementations of Scheme as well, the differences in performance might not
be so pronounced. M1T Scheme, for example, features special support for streams, but the simple
implementation of streams I used in MacScheme comes straight out of Structure and Interpretation
of Computer Programs [3] and the Revises e Report on the Algorithmic Language Scheme [4].
Languages specifically devoted to lazy evaluation, such as Lazy ML, might well be able to support
streams that perform even better than generators in Scheme.

Streams have one major advantage over gener.tors: Since they don't depend on side effects,
streams can be shared. We can define a sinOe stream of primes and use it in all pans of a
program that need to know about primes. Generators, on the other hand, get used up. If two
modules of a program are drawing on the same generator of primes, then neither module will get
to see all the primes. We must somehow create as many generators as there are consumers. This
makes generators harder to work with than streams.

It wasn't obvious to me that the sieve of Eratosthenes could use generators without running into
this problem. My original program had an unrelated bug, which I at first thought was caused
by a generator with more than one consumer. In fact, I rewrote the program so that it cloned
generators on the fly to avoid any sharing. I realized my mistake only after the rewritten program
behaved exactly the same as the original.

In contrast, the program using streams ran correcdy the first time I tried it, and I wrote it firSL That

LP 1-4.25

proves nothing, of course, except perhaps that I am more comfortable with functional programming
than with object-oriented programming.

Eratosthenes of Cyrene was the first person to measure the diameter of the earth with any real
accuracy. An astronomer and poet, he became director of the great Alexandrian library, invented
a calendar with leap years, and contributed to the science of map-making [5].

I thank David Wise for his help with this article. He offered the following classification for
academic questions like the one that inspired this article: A good question is one the professor
has anticipated and is therefore prepared to answer. A very good question is one the professor
hasn't anticipated, but is able to answer anyway. An excellent question is one the professor hasn't
anticipated and can't answer.

Next time I'll report on the meeting of the Scheme language design community that took place
at the end of June at MIT, and I'll try to explain the mondo-bizaxro teaser I dropped on you in
my article on continuations.

[1] D P Friedman and D S Wise. CONS should not evaluate its arguments. In S Michaelson and
R Miiner [editors], Automata, languages, and Programming. Edinburgh University Press,
1976, 257-284.

[2] P Henderson and J H Morris, Jr. A lazy evaluator. In Conference Record of the 3rd ACM
Symposium on Principles of Progranming Languages. ACM, January 1976, 95-103.

[3] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and Interpretation of
Computer Programs. M1T Press, 1985.

[4] Jonathan Rees and William Clinger [editors]. Revised 3 Report on the Algorithmic Language
Scheme. SIGPLAN Notices 21, 12, December 1986, 37-79.

[5] Encyclopaedia Britannica, 15~ edition.

LP 1-4.26

