
Annotation-Based Program Stepping,

Glen Randolph Parker
Palladian Software
4 Cambridge Center

Cambridge, MA 02142

Abstract

Traditionally, stepping is achieved by modifying the evaluator. In the approach presented
here, stepping is achieved by annotating the user's program with calls to stepping procedures.
This provides greater flexibility in the selection of which program sections the user is interested
in stepping. In addition, the sections not selected are executed without overhead. Stepped
program sections axe visually highlighted inside the user's program editor, providing a sense
of context. Stepping control mechanisms, such as the ability to execute until a certain point
and then step, permit the user to navigate through a program in a precise and flexible manner.
A prototype stepper based on this approach has been implemented.

I Introduction

A program stepper allows the user to execute code section by section in steps of his own
choosing. The typical stepper executes code, stopping and waiting for user instruction before
and /or after each section is executed. Any values returned by a section of code are displayed
by the stepper. The user can investigate the state of various data structures in search of
anomalies, and c:an e u i l y follow the control path of the executing program. Much of the
importance of steppers in debugging arises from the fact that most program errors are harder
to locate than to fix. It has also been claimed in [Plattner 81] that monitoring the execution
of a program is more effective in the debugging process than studying the program text,
because the progr*mmer's intuition about the program state space is more highly developed
~than his intuition about the program text.

At each stop the code section currently being executed is displayed, and the stepper waits
for command input. The user must tell the stepper which section to step next. "To s t e p ~ a

program statement means to stop and display tha t statement before its execution, and then,
barring explicit instruction to the contrary from the user, to display any values returned by
it after execution. In the event tha t a statement is not stepped it is just executed normally.
The following describes some of the key commands supported by the typical LISP stepper:

XThis paper is taken from MIT AI Lab Working Paper 283 (available only from the author), which is a
revi~.d version of a thesis submitted in May 1986 to the Department of Electrical Engineering and Computer
Science at MIT in partial fnl611meat of the requirements for the degree of Bachelor of Science. (~G. R. Parker,
1987.

LP I -4 .3

• S T E P - W I T H I N Evaluate the current form, stopping before evaluating any subforms
and after evaluating the current form.

• S T E P - N E X T Evaluate the current form without stepping and stop before evaluating
the next form at the current level.

• S T E P - U P Evaluate the current form and stop after its superior is evaluated.

• S T O P - S T E P P I N G Evaluate back to the top level without stopping.

• R E T U R N - V A L U E Return a user-supplied value as the result of the current form's
evaluation.

• S T E P - T H R O U G H - N E X T Evaluate until after the next form at the current level is
evaluated.

Whenever a stepper stops, a section of code is either just about to be evaluated or is just
about to return a value. If the user chooses the command S T E P - WITHIN, the stepper then
stops immediately before the next evaluation occurs. At each stop the user has the flexibility
to view or change values.

1 .1 K e y F e a t u r e s o f t h e A n n o t a t i o n - B a s e d A p p r o a c h

Annotation-based program stepping is the addition of program statements to the code to be
stepped, in such a way that the result of the code is the same, but systematic control of the
execution is permitted.

The annotation-based stepping approach provides the following advantages over tradi-
tional steppers:

Unmodified evaluator
This approach departs from standard stepper methods in that it controls evaluation
without modifying the evaluator. The program annotations themselves, as opposed to
hooks into the evaluator, invoke the stepper functionality.

E~cieney
Since only that code which is to be stepped is annotated and the evaluator operates
normally, all other program statements are ,mmodified and there is no overhead when
not stepping. This combined with the ability to step compiled code enables runtime-
bound programs to be stepped.

• Language/environment in.dependence
The Annotation approach is not dependent on the language used in the environment.
Stepper control instructions can be introduced into the execution stream in any Inn-
guage. In particular, this approach does not require the existence of an interpreter, and
thus can be applied to compiled code. [Balzer 69] demonstrates the use of annotation
in a debugging system for PL/I code.

LP 1-4.4

Convenient selectivity
Existing steppers either give the user too little information or too much. The annotation
approach allows the user to conveniently select exactly which code sections are to be
stepped. The user may choose to step all the functions in a file or only a particular
section of a single function. This also permits the user to avoid stepping through system
functions.

A prototype stepper based on this approach has been implemented. VisiStep, the pro-
totype, has several other key features which axe not fundamentally part of the annotation
approach but which interact synergistically with it.

• Flezible navigat ion
A drawback of standard steppers is that long chains of stepping commands are often
needed in order to get to specific points within the code.

VisiStep includes several navigational commands, such as the ability to point to specific
places in the program to step. For example, one can choose to step just one critical
expression inside a large loop.

• Contez tua l display
The current expression is highlighted inside the user's original source code, so that it
appears alongside the surrounding code and documentation. This contrasts with the
line-oriented display mode of most traditional steppers. Only the user's code is stepped,
so the execution of system functions is not seen by default.

• Edi tor integration
VisiStep operates inside the user's program editor in a nonintrusive manner. Editing
commands and stepping commands are available for simultaneous use.

2 The VisiStep Prototype

VisiStep does not act until the user decides to step some code. Before initiating stepping, the
user must select which definitions to prepare for stepping. When he is ready to start stepping,
the user evaluates a form that will result in the execution of one of the prepared functions.
While stepping, the user has access to all of the canonical stepper commands described earlier,
as well as some more complex navigational commands. He may also prepare the definition of
a function at any point before it is called.

The user may also prepare just a subform of a function; all other subforms of that function
will execute normally. At all times the program's execution is being displayed in the context
of the user's source code, making it more understandable and easier to debug. The currently
executing form is highlighted in the editor.

As shown in the sample display, there is a viewer window that allows the user to continu-
ously monitor the values of LISP expressions. In the event that an error occurs while trying
to evaluate the expression, such as in the case of a hxical variable being evaluated out of its
context, the error message is displayed in place of the value.

LP 1-4.5

INFIX>> 6-6=2
I

LI~ ~ n e r

'(detun t renslece (&oo¢tonal l e t | h i)
(r t l l e r r l w =tokenl= n i l)
(le~q , token-¢ounteet I

! ¢~.~PPInt-tokeh-typl n11
=o~I*IokenlI n i l
c~rmn¢-~oke~ '')

(fOr*e¢ ¢ "'kIPMrIX)) ")
(IeCq I tncu~-ICPtngl

(cond (lCr tng (fOrmiC ¢ ICr~n9) (t e r p r |) ICr t~ 9)
(¢ (reed |4ne))))

(reeder)
(DoPIer ~ (1-- I token-enun~ePe)I
(lee ((LISP (L ISPI le (reve r ie Io~ t -¢oke~e l))))

(t o f f e e ¢ "'kChe LISP outc~u¢ ts= "R'~" L~SP)
(~orRe¢ ¢ "°&~hl re lu |¢ t l l "R' (evel L ISP))))

ZnRCS (LISP) inri~'amr~o, lis¢) ~ k e r) l C e 9 B: (19) i - f& -

Vis;',
Clear HeI0 O~fs Menu

STATUS: Awaltln~r command
v ~ , e e~ cLrr~at ezfr Q
4

Sl"t mO 0
-|oQ°2 -

"tOKENS" O
e¢.A&T-Q- I I t |$155|1t)

Viewer -- P~ql'~ INFTZ

Figure: a sample VisiStep display

VisiStep supports several advanced navigational commands which permits the user to
point to a form and cause the system to evaluate normally to that point and then to continue
stepping.

One of the features of VisiStep is that it supports stepping at several levels of detail, or
granularity. Most ordinary steppers show everything to the user, all at a constant level of
detaU. VlsiStep can provide this, but provides several other choices. The user may begin
stepping a function that previously was beneath his level of interest without having to step
through system internals. With VlsiStep, one can also choose to step selected functions, and
even selected forms within individual functions. Ulthnately, the more advanced navigational
commands permit the user to direct the stepper to an exact location for stepping to resume.

The extended version of this paper [Parker 86] presents a full scenario of usage of the
V]siStep stepper.

LP I-4.6

3 I m p l e m e n t a t i o n Issues

3.1 The Stepping Wrapper

Most traditional steppers temporarily bind the definition of the system evaluation function to
a stepper function that displays the form and values, accepts command input, allows manipu-
lation of the environment, and eventually calls the system evaluation function (EVAL) to actu-
ally perform the evaluation. Most contemporary LISPs (e.g. MACLISP [Pitman 831, ZETA-
LISP [Symbolics 85], and Common LISP ISteele 84]) provide a system variable, *EVALHOOK*,
which, when non-NIL, is the alternative evaluation function.

In contrast, the annotation-based approach leaves the evaluator completely unchanged,
instead augmenting each form of the user's function definitions with the information required
to operate the stepper.

As an ex-mple, here is a definition of a LISP absolute-value function, ABS:

CDEFUN ABS (X)
(COND ((MINUSP X) C- X)) (T X)))

After preparation for stepping, that definition will look like:

(DEFUN ABS (X)
On--PER

CCOND (Ont~PER (MINUSP (WRAPPER X ABS (3 I I O 1)
ABS (3 1 I O) T)

ClflLAPPER (- (WRAPPER X ~ S C3 i 1 1 1) T))
K S CS 1 1 1) T))

((WRAPPER T ABS (3 i 2 O) T)
CWPJ.PPER X ABS (3 1 2 1) T)))

(3))) ABS

T))

That is the conceptual representation; in the actual implementation the arguments for each
call to WRAPPER are stored in a table for ease of access.

The stepper function shown above as IfltAPPER is called the stepping wrapper. Its arguments
are, respectively, the form being wrapped, the name of the function in which the form appears,
a path specification of which form in the parent definition to highlight, and a condition flag
that signals whether to step the form.

The stepper wrapper is implemented as a LISP special form, which calls one internal
stepping function to handle entering a form and then calls a second with the result of the
first when returning from that form. The first function determines whether the form is to be
stepped, highlights the form in the editor and accepts commands from the user if appropriate,
and then returns a value to ti~e second function that controls whether or not it should stop
and display the value when returning from the form. The second function evaluates the form

LP I ~4.7

normally, and, if appropriate, displays the value and accepts commands. For these actions to
occur it is necessary for the wrapper to receive several arguments that are determined when
it is first created, enveloping a form inside a user definition.

The condition flag allows forms to be wrapped, but not necessarily stepped without explicit
instruction from the user. It also permits user-defined conditional stepping. The internal
stepping functions also update the values in the viewer pane and maintain global information
for the preemptive navigation commands.

3 .2 A n n o t a t i n g a D e f i n i t i o n

When the user specifies that a definition is to be stepped, a central annotating function is
called. In order to prepare the definition, it must determine the na~ne of the definition,
the definition itself, and, if only a subexpression is being prepared for stepping, a unique
path specification for that form. One of the requirements of a LISP environment in order
to support VisiStep is the existence of editor functions that handle LISP syntax, enabling
VisiStep to determine the definition name and the subexpression path for the current location
in the editor buffer and permitting easy navigation amongst S-expressions in the buffer. The
editor must also provide source code location facilities to display and read the body of t h e
desired definition.

An annotation dispatcher is called on the body of this definition, and then recursively
on each subform. It deterrn|nes what the appropriate method for preparing each form is,
depending on such things as whether it is a |amhda-expression, a call to a special form, or
a symbol. For normal function-calling forms the form and each arg~Irnent to the function
are wrapped. However, some functional forms, among them special forms and macros, do
not necessarily evaluate all their arguments, but instead control the evaluation themselves.
VisiStep cannot, for instance, wrap the arg~lments to a COl/D, as each of these arguments is
itself a list of forms to be evaluated in a select way. Instead, it relies on knowledge (like most
code-walkers) about the evaluation of the arguments of system special forms and macros, and
thus is able to properly wrap them.

In the event that the user has specified when wrapping that only a certain section of a
definition should be stepped, the annotation mechanism wraps the whole definition but only
activates the stepping switch in the desired forms. The deactivated prepared forms evaluate
normally, albeit with the slight overhead of testing a flag.

4 L i m i t a t i o n s a n d E x t e n s i o n s

4 . 1 S i m p l i f y i n g A s s u m p t i o n s

As explained in Section 3, system special forms are able to be stepped due to extra information
found in a special form template provided for each of them. No user-defined special forms
are handled, as it is considered improper for the user to create his own special forms in LISPs
currently in use (e.g. Common LISP).

LPI-4.8

A significant limitation of the 'current prototype is in its source code higi:lighting in
instances of macro usage. This is due to the nature of macros in that the evaluable components
of the macro are not known until the macroexpansion time, which occurs either at compile
time or, if interpreted, at evaluation time. A user ca.n inform the system of how to step the
arguments of a call to a user macro by creating a specia~ form template for it. The system
uses several tricks to determine whether a form in the macroexpansion is an evaluable form
present in the user's original source code or whether it is a product of the macroexpansion.
Unfortunately, this is a difficult decision in the case of atoms in the arguments to the macro,
and certain ass-mptions are made regarding macroexpansions.

Support for the viewer display of lexical variables currently takes advantage of the fact
that special forms (such as the stepping wrapper) are passed an argument that specifies the
lexical environment in which they are to be evaluated or expanded (when being compiled).
However, this environment does not exist in the compiled code, and so the ability to display
local variables while stepping a compiled function is reduced. In particular, the local variables
are determined at the time the wrapper is compiled, as opposed to being determined at run
time.

The current system relies heavily on the state of the editor and the user's editor buffer,
and an undetected change in these can create problems. For instance, editing the code that
is current being stepped may invalidate the path information stored in the stepping wrapper,
and as a result the wrong forms may be highlighted in the buffer.

4 . 2 F u t u r e E x t e n s i o n s

There are several proposed extensions to the operation of VisiStep. The first k the ability to
make stepping conditional upon the values of arbitrary LISP expressions. Support for this
exists currently in the format of the stepping wrapper, but a user interface to this option is
necessary. Also, it would be helpful if the navigation feature allowed the user to select an
arbitrary number of points to which execution should continue without stepping. Finally,
several steppers have had at least some limited "backup" capability, whereby the user can
return to the beginning of a form that is an ancestor of the current form and restart the
computation.

Since the use of macros pervades modern LISP prog:r~-mm|ng, the lhnitation of the ap-
proach regarding macros is a serious one. Specifically, more study is needed with respect to
atoms in macros.

The system is written for a LISP implementation with both a window system and a
powerful editor, and such LISP enviro-ments are now found on conventional hardware as
well as on LISP machines. As a result, the system will be ported to other machines in the

near future.

It is envisioned that eventually most of the debugging capabilities of advanced LISP
environments, including the debugger and the tracer, can be enhanced and incorporated into
the VisiStep framework.

LP I-4o9

5 R e l a t e d W o r k

Stepping is an old idea. The research related to VisiStep consists of two main areas: the
development of other LISP steppers and the use of program monitoring tools. Much of this
work has originated from the debugging tools used in old assembly-language programming
systems. The result of the development of other LISP steppers was the generation of a stzm-
dard stepper command set. More recent attempts in this category have focused on integrating
steppers with the advanced user interfaces available under current LISP implementations.

Most of the related stepping tools were developed during the late 1970's in the MACLISP
environment at MIT. Several were implemented, each providing some functionality not yet
available. VisiStep has included the best ideas from each. The typical stepper command set
presented earlier in the paper applies to most of the following.

One of their fundamental limitations was that they could only be used with interpreted
code, due to the use of the evalhook mechanism inside the interpreter. Although they suffered
no overhead when turned oft, these steppers did incur a small bit of overhead with each
evaluation with this mechanism turned on. STEP [Rich 76] provided the ability to select
certain functions for stepping, but did so only with a significant ~mount of overhead on each
execution. It also provided the ability to step inside the expansion of a macro. STEPMM
[Morgan.stern 76] was another of the early MACLISP steppers. It permitted the user to specify
conditional stepping and conditional breakpoints. It also included the ability to substitute a
form to be evaluated in place of the current form. STEP* [Waters 78] included the ability
to reevaluate the arguments to a function, the ability to reevaluate a function with stepping,
and the ability to stop after the evaluation of a form.

More recently, two steppers are significant for their attempts to integrate display of the
program source code with the output from the stepper. These are DIDL [Halbert 78] and
Zstep [Liebennan 84], operating under MACLISP and LISP Machine LISP, respectively.
DIDL had two main objectives: (1) to be a totally comprehensive debugging tool, includ-
ing breakpoints, tracing, and stepping, and (2) to use display terminals to display program
text in a flexible manner. DIDL introduced the use of display termlnals to highlight the
user's code; however, it displays the internal representation of function definitions and not
the original source code.

Zstep [Lieberman 84] extended the concept of contextual display by using the LISP Ma-
chine editor to display evaluation inside the editor. Zstep used two editor windows, one which
maintained the unchanged source code being stepped, and the other which replaced the cur-
rent expression with its value. Zstep did this in order to model evaluation as a substitution
process. It also m~-tained a history of past expressions. It permitted the user to "backup"
and reevaluate a prior form, but it did not handle the presence of side-effects. When an
evaluation produced an error, an object representing the error was returned.

The EXDAMS system [Balzer 69] is one of the earliest departures from the assembly-
language style of debugging tools. The EXDAMS philosophy is that the user first ascertains
what is happening, decides if it is incorrect behavior, and, if necessary, determines how the
program produced this behavior. In order to provide a flexible monitoring system that could

LP I-4. i0

be easily extended, EXDAMS executes a program and records a file of all history and execu-
tion information. Then, interactively, the user can go back and trace the path of execution,
monitoring the values of variables in a viewer window. The user can move both forward
and backward in the execution with relation to time. In order to facilitate the recording of
this execution data the original program is annotated with history-generating statements.
[Balzer 69] demonstrates the use Of the system on PL/I code, underscoring the language
independent nature of the annotation-based approach.

Acknowledgements

Not enough credit can go to Dick Waters, whose ideas provided the foundation for this paper.
Critical commentary of drafts of this paper was provided by Dick Waters, JonL White, and
Shane Hartman. Previous versions of this paper also benefited from discussion with Kent
Pitman, Henry Lieberman, and Chuck Rich.

R e f e r e n c e s

[Balzer 69]

[Halbert 78]

[Lieberman 84]

[Morganstern 76]

[Parker 86]

[Pitman 83]

[Plattner 81]

[Rich 76]

[Steele 84]

[Symbolics 85]

[Waters 7S]

Balzer, R. M. EXDAMS - EXtendable Debugging and Monitoring Sys-
tem. pp. 567 - 580, in Proceedings of the AFIPS Spring Joint Computer
Conference, Vol. 34, 1960.

Halbert, Daniel C. A LISP Debugger for Display Terminals. B.S. Thesis,
Dept. of EECS, Massachusetts Institute of Technology, May 1078.

Lieberman, Henry. Steps Toward Better Debugging Tools for LISP. Pro-
ceedings of the 1084 ACM Conference on LISP and Functional Program-
ruing. Austin: ACM, 1084 pp. 247 - 255.

Morganstern, Matthew. MIT online documentation for the STEPMM
MACLISP stepper, March 1076.

Parker, Glen R. Annotation-Based Program Stepping. MIT AI Lab Work-
ing Paper 283, June 1986. Available only from the author.

Pitman, Kent M. The Revised MACLISP Manual, Saturday Evening Edi-
tion. MIT Laboratory for Computer Science TR 295, May 1983.

Plattner, Bernhard, and Jurg Nievergelt. Monitoring Program Execution:
A Survey. pp. 76 - 93, IEEE Computer, November 1981.

Rich, Charles. MIT online documentation for the STEP MACLISP stepper,
November 1976.

Steele, Guy L., Common LISP: The Language. Maynard, MA: Digital
Press, 1984.

Symbolics, Inc. Documentation for the Symbolics 3600 Release 6, 1085.

Waters, Richard C. MIT online documentation for the STEP* MACLISP
stepper, 1978.

LP I-4. i i

