
Foreign Functions and Common Lisp

Harlan Sezton
Lucid, Inc., 707 Laurel St.

Menlo Park, CA 94025

Abstract

The language Common Lisp is a standard dialect of Lisp which has been imple-
mented on a wide range of machines by a variety of commercial and academic groups.
One serious flaw in the Common Lisp standard, at least to many Common Lisp users
on ~general-purpose ~ hardware, 1 is the lack of an defined foreign function interface,
or FFI. The subject of this note is a discussion of FFI's for three different Com-
mon Lisp systems on engineering workstations and some thoughts on what foreign
function interfaces ought to look like.

1 I n t r o d u c t i o n

To users of Common Lisp on engineering workstations, mini-computers, etc., the need
for a foreign function interface (FFI) is usually quite clear. Without it, the user is cut off
from the defined interface for the operating system (OS), and forced to get along with
the very limited OS services provided by Common Lisp. The user is also unable to make
use of non-Lisp code developed by co-workers or provided by system libraries. In short,
a Common Lisp system without an FFI on such hardware is very poorly integrated into
its environment, and its usefulness may be fatally hnpaired.

The purpose of this note is to look at aome hnplementatious for foreign function
interfaces on engineering workstations, and to extrapolate from these what a s tandard
Common Lisp F F I might be. We begin by mentioning informally some of the more obvious
problemR for Common Lisp hnplementations of foreign interfaces. We then describe the
FFI ' s in some Common Lisp implementations, and conclude with a general description
of an ~ideal" FFI.

There are two basic problems in developing a Common Lisp FFI. The first problem
is to figure out what is feasible. At one extreme, it should certainly be possible to invoke
something like a Fortran routine for convolving two simple-vectors of type f loa t and
placing the result in a third such vector (assuming tha t there is a Fortran compiler for the
machine in question). At the other extreme, requiring a Common Lisp implementation
to be able to load the binary object files for another Lisp or • Prolog and then he
able to call to and return from that other programming system as a foreign function
seems a bit extreme. Also, support for ca l l b y v a l u e for arguments of type f l x n u m is

X'General-purpoee t hardware is a marketing term that means computing hardware not specifically
designed to run a specific language such as Lisp, rather than something llke a combination computer,
all-terrain vehicle, and washer-dryer.

O copyr igh t 1988 Harlem Sexton, LUCID LP I -5 .11

quite reasonable. But, given that many Common Lisps implement f ixnum objects as
immediates, can we required an FFI to support call by re fe rence 2 for such arguments?
As a final example, it should certainly be possible for Lisp functions to somehow access
foreign data-structures, but requiring the sequence functions to apply to foreign arrays
is a bit excessive, so how much integration between Lisp and foreign data is enough?

The second basic problem is to decide how to express the connections between Com-
mon Lisp and foreign code. For example, on a UNIX s workstation, having a "foreign-
type" system that is analogous the s t r u c t mechanism of the C programming language
is natural and convenient for most OS needs, but such a design doesn't seem generally
applicable to other languages.

2 Current Implementa t ions

In this section we shall discuss the designs of the Common Lisp FFI 's from Franz
ExCL, DEC Vax Lisp, and Lucid CL. In order to keep the discussion simple, the examples
are drawn only from implementations for engineering workstations from these companies.
The choices here were motivated by three considerations, that the implementations be
familiar, that they have generally useful features, and that the n,lmher of implementations
discussed be small. The discussion is not intended to be and should not be considered
a product comparison; no attempt has been made to compare features on concurrently
available implementations for the same hardware. 4

The features of these foreign interfaces fall, more or less naturally, into three rough
categories: foreign-calling, foreign-loading, and foreign-types. We discuss how our repre-
sentative Lisps implement each of these categories in turn.

F O R E I G N - C A L L I N G - By the fore ign-cal l ing system we mean the mechanism
used by the FFI to allow Lisp code to execute foreign code that is present in the address
space of the Lisp process, including being able to specify ca]l-discipline, conversion, and
type-checking for the functions arguments. There is generally little difference in the basic
structure of the foreign-calling systemR for these FFI's, primarily because this aspect of
an FFI is constrained 'by the requirements of the calling-disciplines of the languages
being called. All of the foreign-calling systems support type-checking of arguments and
equivalent kinds of conversions of Lisp arguments to foreign formats.

2By call by reference I mean that the foreign and Lisp code share the same '~value cells', not just,
e.g., the ability to pass Kxnum arguments to Fortran functions; requiring support for call by reference for
a Lisp data-type would make it essentially impouible to implement this type as an immediate type.

SUNIX is • trademark of AT&T Bell Laboratories.
4I am much more famil/ar with Lucid's FFI implementations that with any other vendors, since I have

been primarily responsible for the latest version Lucid's of foreign interfaces. The features described in this
note as being from Lucid CL are not all in any one version of • released product at the moment due to the
usual problems of development and release schedules not staying perfectly synchronized. Unfortunately,
my lack of similar information on the other implementations may have led me to leave out some of their
new and interesting ideas.

LP 1-5.12

The only notable difference between any of these three systems is that the Vax Lisp
foreign-calling system supports the call by va lue r e t u r n 5 discipline. We illustrate the
two different foreign-calling styles by slightly artificial examples, e

The Franz/Lucid style of foreign-calling supports only call by value and call by
reference 7, and use a single macro named (something like) d e f i n e - f o r e i g n - f u n c t i o n .
A declaration for a foreign-function with two integer arguments and an integer return-
value would look like:

(d e f i n e - f o r e i g n - f u n c t i o n f o r e i g n - p r o c ((a r g l : i n t e g e r) (arg2 : i n t e g e r))
: r e t u r n - t y p e : i n t e g e r)

Evaluation of this form would define an ordinary Lisp function named FOREIGN-PROC of
two arguments returning one value. For example, this Lisp function might be associated
with a Pascal function of the following form:

f u n c t i o n f o r e i g n _ p r o c (a r g l : i n t e g e r : arg2: i n t e g e r) : i n t e g e r ;

This Lisp function acts as a "stub" function that sets up the proper calling context for
the Pascal code, calls this Pascal function, restores the Lisp context, and coerces the
returned value to a Lisp format. This Lisp function may be used just as any other Lisp
function.

When type-checking is enabled, which may be through a keyword argument to the
d e f i n e - f o r e i g n - f u n c t i o n macro, through a declaration, or by some other means, this
function will verify that the arguments passed it are integers.

The DEC style of foreign-calling supports both call by value and call by value return.
It also uses a single macro referred to as d e f i n e - f o r e i g n - c a l l . A declaration for a
foreign-function with two integer arguments, the first by value and the second by value
return, and returning an integer value, would look like:

(d e f i n e - f o r e i g n - c a l l f o r e i g n - p r o c - 2
((a r g l : i n t e g e r : va lue) (arg2 : i n t e g e r : v a l u e - r e t u r n))

: r e t u r n - t y p e : i n t e g e r)

Rather than defining a Lisp function f o r e i g n - p r o c - 2 , it creates an internal function
that is indexed by the symbol FOREIGN-PROC-2, and is used as an argument to the macro
c a l l - f o r e i g n . This Lisp code might be used to call the following Pascal function:

f u n c t i o n fo re ign_proc_2 (a r g l : i n t e g e r ; va r arg2: i n t e g e r) : i n t e g e r ;

5Call by value return, also known -- call by value rein•It, is the call-discipline in which the formal
parameter in the calling code is identified with • local variable in the called procedure. This local variable
is initialized by evaluating the argument corresponding to this formal parameter st call-time, and then on
return from the procedure the argument (if it is • variable or other lvulue) is assigned the value of the local
procedure variable. If the argument is not • variable, then this assignment does not occur, and depending
on the compiler or language this may be an eaTor or • reduce to an instance of call by value. The semantics
differ somewhat from call by reference, but are similar, and it seems the best simulation of this discipline
for calls between functions that use dissimilar formats for storing data.

eThe forms we shall use to describe the two styles are not precisely the ones used by any of our three
implementations, but they are representative.

7Call by reference is supported for many non-immediate types such as vectore; this is easy, since Lisp
objects of these types are actually the (slightly modified) addresses of their contents.

LY I-5.13

Vax Lisp simulates call by reference using call by value return by expanding the form
(c a l l - f o r e i g n f o r e i g n - p r o c - 2 var-1 v a r - 2) t o :

(l e t ((.forelgn-functlon. (get-forelgn-functlon 'foreign-proc-2))
• return-value. .temp-varl.)

(multlple-value-bind (.return-value. .temp-varl.)
(funcall .forelgn-functlon. var-i var-2))

(serf var-2 .temp-varl.)
• return-value.)

(We used variable names like . t emp-va r l , in this example instead of gensyms to make
the "intent" of these variables clearer.) This style of foreign-calling has the advantage
over the "functional" style that the natural form of call by value return can he used from
Lisp; that is, the calling form has side-effects on its parameters.

F O R E I G N - L O A D I N G - By the fo re ign- load ing system we mean the mechanism
used by the FFI for "loading" foreign code and data objects into the Lisp address space
and determining the addresses of these objects. There is also great similarity in the basic
structure of the foreign-loading systems for these FFI's, since the function of this type of
system is limited. The slight differences that do exist seem to be primarily due to some
differences in implementation strategies.

The approach taken by Vax Lisp and Franz ExCL is to make use of the llnker/loader
provided by the operating system, and so these two implementations differ relatively
little. In contrast, the Lucid foreign-loading system (on UNIX hardware) includes a loader
written specifically for this purpose, and this allow the Lucid system to have complete
access to the foreign "name-space". The primary user-visible difference between this
system and the others is a consequence of this special loader, and it is that the Lucid
system can dynamically redefine individual foreign symbols, e.g., f o r e i g n . f u n c t i o n _ l ,
by "remembering" all references to fo re ign_func t ion_l and linking in the new address
for this symbol at each of these references. This means that the Lucid foreign loading
system can dynamically redefine individual foreign functions.

Another difference between these implemelitations is in support for cal lback, which
is to allow foreign functions to "call back" to Lisp code from a foreign context. Callback
is not supported by Vax Lisp, while the other two implementations have very similar
versions. We illustrate these versions with more slightly artificial examples. Both Franz
ExCL and Lucid CL would declare a C callback "function" CALLBACK-FUNCTION-1 of two
arguments, a double-float and an integer, and which returned a double-float, using the
macro d e f u n - c a l l b a c k in essentially this manner:

(d e f u n - c a l l a b l e (c a l l b a c k - f u n c t i o n - 1 : r e t u r n - t y p e : d o u b l e - f l o a t)
((arg-i :double-float) (arg-2 :integer))

(+ arg-1 (f l o a t a r g - 2))) ,~

This macro creates a Lisp function indexed with the name CALLBACK-FUNCTION-1 that
is suitable for being treated as a C function with arguments of type double and i n t and
returning a value of type double• The only difference between these two implementations
is how the connection between the Lisp function and the C code would be established.

LP 1-5.14

Hwe suppose tha t the C function is denoted in C by the name c a l l b a c k ~ u n c t i o n _ l ,
then the C code to use the Franz ExCL callback function looks something like: s

double (* c a l l b a c k _ f u n c t i o n _ l) () ; /* d e c l a r e c a l l b a c k f u n c t i o n p o i n t e r * /
e e .

/* use sys tem p r o v i d e d C _ c a l l b a c k _ i n i t t o i n i t i a l i z e c a l l b a c k f u n c t i o n
p o i n t e r AFTER d e f u n - c a l l a b l e macro i s e v a l u a t e d * /

c a l l b a c k _ f u n c t i o n _ l f f i C _ c a l l b a c k _ i n i t (" c a l l b a c k _ f u n c t i o n _ l ") ;
e e e

/* call t h e initialized f u n c t i o n */
temp_float_l = (*callback_function_l)(temp_float_2, temp_int_3);

The C code to do the same thing in Lucid CL looks like:

/* d e c l a r e c a l l b a c k f u n c t i o n p o i n t e r ; t h i s f u n c t i o n will no t be d e f i n e d
b e f o r e d e f u n - c a l l a b l e macro i s e v a l u a t e d * /

e x t e r n double c a l l b a c k _ f u n c t i o n _ l () ;
• • •

/* c a l l t h e f u n c t i o n * /
t e m p _ f l o a t _ l = c a l l b a c k _ f u n c t i o n _ l (t e m p _ f l o a t _ 2 , t emp_ in t_S) ;

The reason for the difference between the two methods for calling back into Lisp from
C is tha t the Lucid system is able to introduce new symbols into the foreign name-space
while the Franz system does not support this feature. ~

F O R E I G N - T Y P E S - By f o r e i g n - t y p e s we mean how the FFI assigns some attr ibutes
to an area in memory (foreign-storage) tha t determine how the bits stored in this area
are to be interpreted. The pr imary function of a foreign-type system is to define a
correspondence between some Lisp types and low level foreign-types so tha t areas of
"foreign-typed" memory may be accessed and set from Lisp. For example, suppose a
foreign-type system defines a Lisp to C type correspondence of f l oa t to double . This
would mean tha t a given 64 bits of foreign-storage tha t was assigned the foreign-type
double would have defined Lisp access and set functions to convert these bits to and from
Lisp objects of type f loa t . It is normal for a foreign-type system to define correspondences
between types tha t are natural ly related, and all of the systems we describe here do
considerably more than this.

Another important function of a foreign-type system is to allocate and manage storage
used by foreign code. The areas of foreign-storage for most systems must protected
from scanning by the Lisp system's garbage collector (GC), since most da ta for foreign-
code may contain "arbi t rary bits" confusing to the GC. Another par t of this storage-
management function is to make the assignment of a foreign-type to an area of foreign-
storage; tha t is, to create typed foreign-storage. Sometimes this assignment is implicit, in
tha t the only legal foreign-storage is tha t explicitly created by the system with a specific

SThe initialisation method used by Frans ExCL is different from that de~ribed below; the method
shown here seems easier to understand from a =pkture" than the slightly more complex and flexible
method actually used by ExCL.

9This capability can usually be implemented in Lisp systems that use OS provided loaders, although
having a native Lisp loader makes it easier.

LP I-5.15

foreign-type, but in other systems foreign-storage may be assigned any foreign-type at

any time.

To be somewhat pedantic then, we may define f o r e i g n - s t o r a g e as any area in mem-
ory tha t may be legitimately used as data-storage by foreign code, and t y p e d fo re ign-
s t o r a g e is any area tha t has been assigned a foreign-type and Lisp access and set
functions. 1° The two major functions of a foreign-type system are:

(1) to define the correspondences between Lisp types and foreign-types, provide the
conversion functions from Lisp types to foreign-types, and

(2) to allocate and maintain areas of foreign-storage, and to control the assignment of
foreign-types to these areas.

As running example for the foreign-types section, consider the following C s t r u c t
definitions:

/* C t y p e s examples * /
t y p e d e f s t r u c t f l a t _ e r r

l ong f l a t l ;
l ong f l a t 2 ;) f l a t _ s t r u c t ;

t y p e d e f s t r u c t e i g h t _ e r r ~char s t r i n g [8] ;) e i g h t _ c h a r s ;

typedef s truct compound_str (
long compound1;
long compound2;
eight_chars compound3;
f l a t _ s t r u c t compound4;} compound_struct;

These examples are chosen to be simple and so tha t the alignments of the slots are
unamSiguons. In each of the Lisp systems we ex~rnlne we'll look at how foreign-types
corresponding to these C types would be defined.

The foreign-type system for Franz ExCL (for UNIX workstations) is the simplest of
the three we are considering, and the easiest to use for many applications. It is modeled
on the s t r u c t mechanism of the C programming language (the foreign-types it defines
are referred to as C s t r u c t s) and provides a straightforward means of t ranslat ing UNIX
OS system structure-types into Lisp.

The mechanism only provides correspondences between Lisp types and the s tandard
low level types from C, it only allows the user to define foreign-types tha t are analogous
to structs in C, and it is not possible to access %lots ~ in a foreign-structure unless the

1°These definitions are somewhat simple-minded. First, the idea of foreign-storage as being limited to
the are• where foreign code c u legitimately read or write is somewhat limited if we want to use foreign
code to examine and modify Lisp objects. Second, one can imagine assigning • foreign-type to areas of
memory where it is only possible to read the bits (such as the text area in • UNIX process), or to areas of
memory where it is only meaningful to write (special bus addresses for output device,), so the definition
of typed foreign-storage is somewhat cramped, M well.

LP 1-5.16

slot's type is one of these low level types. The system will, however, allow the user to
create compound types and allocate storage for them that can be modified by foreign
functions; there is, apparently, no way provided by the system for Lisp code to examine
or modify compound structures. In this system the only legal foreign-storage is explicitly
created.

The C example types could be readily defined as follows:
(d e f c s t r u c t f l a t - s t r u c t (f l a t l : long) (f l a t 2 : long))
(d e f c s t r u c t e i g h t - c h a r s (s t r i n g 8 : cha r))
(d e f c s t r u c t compound-struct

(compoundl : long)
(compound2 : long)
(compounds e i g h t - c h a r s)
(compound4 f l a t - s t r u c t))

In these examples, both slots of the f l a t - s t r u c t , all of the entries of e i g h t - c h a r s , and
the first two slots of compound-struct may be accessed and set from Lisp. The last two
slots of compound-struct are not accessible from Lisp. In the terms we defined above,
all of these C structures reside in foreign-storage, but the area comprised of the last
two ~compound" slots are not typed foreign-storage, u Foreign-storage created using the
function make-compound-struct is actually part of a Lisp object of type (s i m p l e - a r r a y
(uns igned -by t e 32) *), as is all foreign-storage.

The foreign-type system for DEC Vax Lisp provides the tightest integration with the
Common Lisp type system of any of the foreign-type systemR we are discussing here. It is
modeled on the lisp d e f s t r u c t system (it creates types referred to as al ien s t ruc tu re s) ,
and the types defined by this mechanism automatically become Common Lisp types.
The mechanism also automatically defines related functions analogous to those defined
by de f s t ruc t .

It is the most verbose to use, since it is up to the user to specify the details of the
layout of the foreign-type's components, but this allows almost complete control over the
structure of a foreign-type. The mechanism only provides correspondences between Lisp
types and a set of generic low level types, and it is not possible to define compound types.
In this foreign-Wpe system the only legal foreign-storage is that explicitly created by the
system.

In Vax Lisp the C example types could be defined by:
(d e f i n e - a l i e n - s t r u c t u r e f l a t - s t r u c t

(f l a t l : s i g n e d - i n t e g e r 0 4)
(f l a t 2 : s i g n e d - i n t e g e r 4 8))

(d e f i n e - a l i e n - s t r u c t u r e e i g h t - c h a r s
(s t r i n g : s t r i n g 0 8))

(d e f i n e - a l i e n - s t r u c t u r e compound-struct
(compo~mdl : s i g n e d - i n t e g e r 0 4)
(compound2 : s i g n e d - i n t e g e r 4 8)
(compounds : t e x t 8 16)
(compound4 : t e x t 16 24))

11Obviously, if it were important to access the sub-slots of compound4, it would be easy to define a fiat
version of compound-struct by using the ability to make structure alot8 into arrays.

LP 1-5.17

In these examples the foreign-storage and typed foreign-storage areas are identical to
the examples above. 12 Foreign-storage created by the function make-compound-struct
is identified with a Lisp object of Lisp type c o m p o u n d - s t r u c t , which is a subtype of
type a l i en - s t ruc tu re , as is all foreign-storage.

The foreign-type system for Lucid CL is the most general of the foreign-type systems
we are discussing here. It is also modeled on the lisp defs t ruc t system, but foreign-types
do not become Common Lisp types. The mechanism also automatically defines creation,
access and modification functions analogous to those defined by defs t ruc t , but no others.

It is slightly less verbose to use than Vax Lisp even though the user is allowed to
specify the details of the layout of the foreign-type's components, since there are "rea-
sonable" default values for most things. It is possible to specify not only the layout of the
components of foreign-storage of a defined type, but also the address alignment require-
ments of the foreign-storage for that type. This is needed for hardware implementations
that, for example, require loads and stores of double-floats to be double-word aligned.

The mechanism has built in correspondences between Lisp types and a set of generic
foreign types, and it is possible to define arbitrary compound foreign-types (except that
array types must have their dimensions completely specified). In this foreign-type system
any part of the address-space may be treated as foreign-storage; this correspondence is
implemented through Lisp objects of type fore ign-poin ter , which have as attributes an
address and a foreign-type. The Lisp inspector also understands objects of type foreign-
po in te r .

In Lucid CL the C example types could be defined by:
(d e f - f o r e i g n - s t r u c t f l a t - s t r u c t

(f l a t l : type : s i gned -32b i t)
(f l a t 2 : type : s i gned -S2b i t))

(d e f - f o r e i g n - s t r u c t e i g h t - c h a r s
(s t r i n g : type (: a r r a y : cha rac t e r (8))))

(d e f - f o r e i g n - s t r u c t compound-struct
(compoundl : type : s igned -32b i t)
(compound2 : type : s tgned-32b i t)
(compound3 : type e i g h t - c h a r s)
(coffipound4 : type f l a t - s t r u c t))

In these examples all of the foreign-storage is also typed foreign-storage. Foreign-storage
created by the function make-compound-struct is identified with a Lisp object of Lisp
type fore ign-poin te r , as is all foreign-storage. A foreign-pointer so created would
have foreign-type (:POINTER COMPOUND-STRUCT), and applying the function compound--
struct-compound3 to this pointer would return another foreign-pointer of type (: POINTER
EIGHT-CHARS), and this object has slots that are immediate types. Thus, the Lucid sys-
tem is able to define a correspondence between any foreign-type and some Lisp type by
the expedient of taking all of the "hard" foreign-types and assigning them to a new Lisp
type called fore ign-poin te r .

12The same remarks about flattening the compound structure definition apply here as in the Frans ExCL
example.

LP I-5.18

S U M M A R Y - To review, we see the FFI implementations tha t we considered tend to
share many features. The category for which there were the most significant differences
was foreign-types, which is probably a result of the wide gulf between the type systems
for statically typed languages such as C and (dynamically typed) Lisp. The variations
in the foreign-loading category are mostly due to implementation decisions, since the
requirements for such a system are quite straightforward. Finally, the almost complete
coherence between the different versions of foreign-calling systems described here is due to
the high degree of s tandardizat ion in supported languages such as Pascal, C and Fortran.

3 T h o u g h t s o n a S t a n d a r d F F I

The categories described above, foreign-calling, foreign-loading, and foreign-types,
seem a sufficiently natural way to break down the requirements for a foreign function
interface tha t we shall use them in describing our thoughts on what an FFI ought to
include. We discuss the foreign-loading and foreign-call categories first, and since the
requirements for these are fairly simple, we shall be brief. We then give a fairly lengthy
discussion of what a foreign-type system ought to contain. In each of these cases the
discussion stops far short of providing a complete list of user functions; the goal is to
provide an outline for a Common Lisp FFI, not a specification. In particular, the precise
names and syntax of macros and functions proposed here is not central to the discussion,
and would be spelled out at length by such a specification. 13

F O R E I G N - C A L L I N G - The foreign-calling mechanism proposed here is a hybrid of
the two different styles we have seen above; we shall describe it in terms of two new
macros d e f u n - f o r e i g n and de f u n - f o r e i g n - c a l l b a c k . (The second macro will require
some support from the foreign-loading mechanism, and this will be discussed below.)

The d e f u n - f o r e i g n macro takes two required arguments, NAME-AND-OPTIONS and
ARGLIST, with an optional documentation string following the ARGLIST argument. The
NAME-AND-OPTIONS argument specifies the function name and the values of all rele-
vant addit ional information such as which foreign language is being called, the type of
the function's return-value, and the function's foreign name. The ARGLIST is a list of
argument-specifiers and the ampersand keywords &opt lona l , &rest , and &key. (Use of
both &res t and &key in the same arglist is not allowed.) An argument-specifier contains
both a formal parameter (to be used as part of the Lisp function's a r g l i s t) a n d key-
words specifying foreign-type and call-discipline. Foreign-types such as : d o u b l e - f l o a t
or : s i g n e d - 3 2 b i t correspond to Lisp types such as f loa t and in t ege r , respectively, and
both call by value or call by value return must be legal for arguments of these types. Call
by reference for arguments of foreign-types such as : s t r i n g and : a r r a y must also be
supported, but support for call by value for such arguments is implementation-dependent.
The macro d e f u n - f o r e i g n defines an ordinary Lisp function, as in the Franz/Lucid ex-
ample above. Call by value return must be supported by having foreign functions with

ISThis is not to minimise the importance of the names and syntax; the formal differences between
the vm'ious implementations of these foreign interfaces are more than enough to infuriate users, and a
well-specified standard would be very welcome. This is just an inappropriate forum for that level of detail.

LP 1-5.19

: v a l u e - r e t u r n arguments return multiple values. Specifically, for a foreign function with
N arguments passed by value return, the foreign function returns N + 1 values. The first
value is the foreign code's return value, and the rest of the values are the "terminating"
values for the value return arguments (in the same left to right order).

The d e f u n - f o r e i g n - c a l l b a c k macro takes three required arguments, NAME-AND-
OPTIONS and ARGLIST and BODY, with optional documentation string and declarations
following the ARGLIST argument. The NAME-AND-OPTIONS and ARGLIST are similar to
those for d e f u n - f o r e i g n , except tha t no keywords are permit ted in the ARGLIST. The
BODY form is evaluated in an implicit p r o g n , and this value is returned to a foreign
context as the value of the function.

F O R E I G N - L O A D I N G - The only feature not consistently supported by Common
Lisp systems to be included here is the ability to dynamically insert new foreign-symbols
into the foreign name-space. This feature would be used to support the more straight-
forward callback style of Lucid CL, described above.

I t will be up to the implementation whether or not dynamic redefinition of individual
foreign-functions is supported. (Requiring this feature could force implementors to write
their own llnker/Ioader, and this is infeasible on systems with undocumented object-file
formats.)

F O R E I G N - T Y P E S - The foreign-type mechanism proposed here is a hybrid of the
three styles we have seen above with some additional features. The mechanism is defined
in terms of three underlying ideas: a new Lisp type call f o r e i g n - s t o r a g e , aprlmitive"
foreign-types, and a macro for defining foreign structures named d e f s t r u c t - f o r e l g n .

Sizes of foreign-types discussed below will be those which would be natural for ma-
chines tha t are byte-addressable with 8bit bytes and 32bit words, but this is just for
purposes of exposition. The foreign-type system must support the native addressing-
units for whatever machine it resides on.

In this foreign-type system, all foreign-storage looks to Lisp like objects of type
f o r e i g n - s t o r a g e , and all foreign-types are Lisp subtypes of this type; this is analogous
to Vax Lisp alien-structures. The attributes of an object of type f o r e i g n - s t o r a g e are
its address, size in bytes, and its type. The first two would be returned by the function
f o r e i g n - s t o r a g e - a d d r e s s and f o r e i g n - s t o r a g e - s i z e , respectively, and the third by
the Common Lisp function t y p e - o f . If the type of a foreign-storage object is fo re ign-
s t o r a g e and not some proper subtype of this type, its size would be I~IL. 14 Instances of
storage of a given foreign-type (other than f o r e i g n - s t o r a g e) would have a well-defined,
positive size; variable-size foreign-storage, if needed, would be supported by mechanisms
distinct from those discussed here. 15

All foreign-types have the following attributes: : a l i gnmen t comprised of :modulus
and : r emainder , : e i z e , and print method. Saying that a foreign-type f t has :modulus

14Objects of type foreign-storage correspond to • normal usage in C of the type-cast (chLv *). That
is, they correspond to areas of foreign-storage where the type is indefinite, but the address is not.

XSSome support for variable-else foreign-types is • good idea for such applications as databases, but
incorporating variable sises into the design described here would complicate matters substantially, and the
need for such generality is unclear.

LP I -5 .20

.M and : remainder R means that any foreign-storage of type ft with address A is required
to satisfy A = M z + R.

A "primitive" foreign-type is, roughly, one that is the foreign equivalent of Lisp type.
For example, a foreign-type of : d o u b l e - f l o a t can be regarded as being 64 bits of foreign-
storage that contains the foreign equivalent of a Lisp object of type f loat . More precisely,
a primitive foreign-type is a foreign-type for which direct conversions to and from Lisp
objects of a given "non-foreign" type is defined. The system must provide at least prim-
itive foreign-types corresponding to signed and unsigned integers of sizes 8, 16, and 32
bits, single and double floats, characters, strings of specified length, and bit-fields of sizes
0 to 32 bits. The system also must provide exported versions of the conversion methods
for these, so that users can build their own primitive foreign-types. Finally, the system
must provide the function d e f i n e - p r i m i t i v e - f o r e i g n - t y p e , for making user-defined
primitive foreign-types. Its required arguments are NAME, INPUT-METHOD, OUTPUT-
METHOD, and SIZE. It also takes keyword arguments for, :modulus, : remainder , and
: p r in t -method.

The macro d e f s t r u c t - f o r e i g n , which is very similar to the Common Lisp d e f s t r u c t le

macro, is used to define foreign structures. The primary differences between the structure
options for the macros d e f s t r u c t and d e f s t r u c t - f o r e i g n are that, for the "foreign"
version:

: type The : type structure option specifies what kind of Lisp storage is allocated for
this type of foreign-storage by the default constructor function. It may be at least
one of :dynamic, meaning that the foreign-storage is susceptible to being move or
reclaimed by the GC, and : s t a t i c meaning that the foreign-storage may not be
reclaimed or moved.

: a l i gnmen t There is a structure option named :a l ignment that allows the user to spec-
ify alignment requirements for foreign-storage of this type. The default values are
system-dependent.

: include The structure option : inc lude is not allowed.

: n a m e d The structure option :named is not allowed.

: |n i t]a l -offset The structure option : i n i t i a l - o f f s e t specifies a minimum number of
bytes to skip over before allocating storage for the structure slots.

The slot options for d e f s t r u c t - f o r e l g n would differ from those of d e f s t r u c t as
well. The primary differences for these options are:

: type The : type slot option is required. It must be an already defined foreign type,
although recursive types may be defined using types of : po in t e r .

:offset The precise offset of the slot in bytes may be specified.

:un ion A slot may be defined to be an element of a union of some previous slot. This is
analogous to union in C structure types or case in Pascal record types.

16See Common Lisp, The Language, by Guy Steele, Chapter 19.

LP 1-5.21

The details of how d e f s t r u c t - f o r e i g n constructs the layout of a foreign structure are
fairly tedious. Generally, the slots in the structure are layed out in the order specified in
the body of the macro, as compactly as possible while satisfying alignment requirements.
Slots with specified offsets are layed out independently of all the other slots. Component
slots of a :un ion are treated as being part of an "amalgamated" type whose size is the
maximum size of each component type and whose alignment is the smallest alignment
satisfying all the component constraints 17.

The combination of user-definable primitive foreign-types and user definable foreign
structures will give most of the functionality of a d e f - C - s t r u c t , at least for compilers
tha t lay out structures "from left to right" using simple alignment criteria. Trying to
handle the most general case is hopeless, and individual compilers of interest may be
modeled by a macro defined in terms of d e f s t r u c t - f o r e i g n that sets the : o f f s e t value
for each slot.

4 C o n c l u s i o n

In this note we have looked at some basic problems faced by Common Lisp FFI 's
and described the foreign interfaces in some common implementations. We closed with
a fairly conservative set of suggested features to include in a s tandard FFI.

The basic principles used in selecting these features were:

(a) Consider only features t h a t are feasible within the current "standard" implementa-
tions of Common Lisp.

(b) Include features tha t are of proven usefulness, or tha t make the overall design more
coherent.

(c) Defer on features whose correct design is not yet clear. (Premature specification of
a feature might restrict future growth of the FFI in some unfortunate way.)

(d) Defer on ideas of unproven value, or those tha t may require an inordinate amount
of effort to implement.

It is worth applying these principles to a few potential FFI features tha t have not been
included here. For example, there is no suggested means of providing a way for users to
provide support for new languages. This idea has been rejected on the grounds of (d) ,
with some concern tha t (a) might apply, too. There are also no proposals for support for
foreign structure-types tha t are not constructed "left to right" or for making user-defined
primitive types be automatically integrated into the forelgn-calling mechanism. Is These
are definitely type (d) features, too.

17That is, the amalgamated type's alignment is given by the smallest solution to the simultaneous
congruences specified by the alignment of each component type. If a solution does not exkt, then it is an
e r r o r .

ISThat is, defining a new primitive type called : s i s n e d - 6 4 b i t would not automatically make it legal to
declare an integer argument to a foreign function to be of this type.

LP 1-5.22

There is no support proposed for variable sized foreign-types. This is a type (e) fea-
ture. It is pretty likely that some such support is needed, but the precise requirements are
not yet clear. And finally, there is no inherited ~analogy" between compound types; that
is, even though : s igned -16b i t and (s igned-byte 16) are regarded as being analogs,
the same does not apply to arrays of these respective types. This is also type (c), since
the only clear use for such support is to allow the use of Common Lisp sequence functions
on Lisp arrays displaced to foreign-arrays, and it is unclear that this is more than a minor
convenience.

Common Lisp as currently defined has no requirements for a foreign function interface,
but almost all implementations provide some sort of FFI; in fact, such interfaces may be
critical for the usefulness of a Common Lisp in "general-purpose" environments. Since
some of the most widely used Common Lisps have evolved functionally quite similar FFI 's ,
choosing a generally acceptable set of features for a foreign function interface should be
straightforward.

LP 1-5.23

