
The Scheme of Things:

The June 1987 Meeting

William Clinger
Tektronix Labs

This monthIamp~asedtofeatureapoembyTigger , oftheHundred Acre Wood, assubmiaed
by John Ramsdell.

P o s t e d - D a t e : Non, 6 Ju l 87 0 7 : 4 6 : 3 9 EDT
Date: Non, 6 Ju l 87 0 7 : 4 6 : 3 9 EDT
From: T igger@Hundred-Acre -Vood .Mi lne .D i sney
To: r a m s d e l l @ l i n u s . u u c p
Subject: Scheme

The wonderful thing about Scheme is:
Scheme is a eonderful thing.
Complex procedural ideas
Are expressed via simple strings.
Its clear semantics, and lack of pedantics,
Help make programs run, run, RUN!
But the most wonderful thing about Scheme is:
Programming in it is fun,
Programming in it is FUN!

The second occasional meeting of people interested in the continuing evolution of the Scheme
programming language took place at the end of June on the MIT campus. This meeting was
less satisfying than the remarkably successful first meeting, at Brandeis in the autumn of 1984.
At Brandeis we had come prepared to agree on the core language, which is described in the
Revised a Report on the Algorithmic Language Scheme. At MIT we came prepared to agree on
what problems remain to be solved, but we did not bring complete solutions.

Henry Kissinger is said to have remarked that the reason academic politics are so bitterly contested
is that so little is at stake. Lacking major proposals that were ready for acceptance, we spent too
much time haggling over minor issues. We did accomplish a few things. Indeed, ff I count an
informal session Tuesday night after most participants had left following the weekend meeting,
then we accomplished more than I had expected. It wasn't fun, though, prompting John Ramsdell
to contribute the poem as a reminder of what we should be about.

We are generally pleased with Scheme as it stands. So far as it goes, it is pretty much the right
thing. The design has been very conservative, in the sense that we have tried to avoid creeping
featuritis--or feeping creaturitis, as the disease is known in the highly technical language of
detonational simplisfics---by refusing to agree on new features until a need for them has been
clearly demonstrated and we think we understand the semantics of the feature and its implications
for the rest of the language. This conservatism has been frustrating at times, but has kept the
language healthy.

We agree that Scheme needs a few more features, particularly for large-scale programming.
Scheme needs a standard macro facility, a standard module facility, a standard way to define

LP I - 5 . 2 5

new opaque types, and more extensive libraries. At MIT we heard a progress report on research
into better macro facilities, we discussed the kind of module facilities that we would like, we
heard Julian Padget explain an object system being proposed for EuLisp, and we established a
standard repository for user-contributed libraries.

Alan Bawden reported on recent research toward solving the problems of Scheme macros. His
report grew out of an earlier workshop that brought together the leading researchers in this area--.
many of them graduate students like Alan, or young faculty like Eugene Kohlbecker and Kent
Dybvig. It appears that Alan and his colleagues have designed an architecture capable of solving
most of the problems that have heretofore plagued Lisp macro facilities. There is much more
work to be done, but the macro issue seems to be in good hands.

One of the more controversial issues dividing the Scheme community has been the use of envi-
ronments as a module facility, as in Structure andlnterpretation of Computer Programs. Environ-
ments have been controversial primarily because they have been associated with MIT's peculiar
semantics for "incremental definition" and with the use of eva1 to extract values from an envi-
ronment. MIT-style. incremental definitions make compilers more complicated and less effective;
they break the important rule that says "the names of bound variables don't matter"; and the use
of eva1 to extract values from environments may mean that a compiler, or at least an interpreter,
must be present at run time.

At MIT, however, we heard the implementors of MIT Scheme say that they considered the
semantics of incremental definitions to be a feature of their programming environment, not a
language feature that they would expect anyone else to support. They also reported their experience
that the mechanisms they have been using to create environments are more powerful than necessary,
and they proposed a new mechanism called b u i l d - e n v i r o n m e n t that seems to have all the power
needed in practice. The syntax of b u i l d - e n v i r o n m e n t would be:

(build-environment <base-environment>
(define <varl> ...)
(define <var2> ...)

)

This expression would evaluate to an environment that contains all the bindings in the given
base environment plus bindings for the variables defined in the body of the build-environment
expression. If a variable is defined in both the body and in the base environment, then the
definition in the body would shadow the binding in the base environment Though we did
not formalize the semantics of build-environment, I assume that the environment returned
by the build-environment expression would not contain bindings for variables in the Icxical
environment in which the build-environment expression is evaluated unless they happen to be
in the base environment as well. I would also guess that the right hand sides of the definitions
are evaluated in the lexical environment of the build-environment expression, augmented by
the definitions in its body, rather than in the environment returned by the build-environment
expression. Clearly we do not yet have enough experience with this new proposal to adopt it, but
we should have plenty of time to try it out before our next meeting.

If, as in MIT Scheme, a special-purpose syntax like access is used instead of eva1 to fetch values
from environments, then build-environment answers most of the objections that have bccn
raised to environments in Scheme. That is not to say that environments arc the best mechanism
possible, but they certainly form one of the best module facilities that has ever been used in a
Lisp-like language.

A library of user-contributed portable code has been established, with Bill Rozas as first librarian

LP 1-5.26

and referee. Contributions should be sent to scheme- l ib ra r i an©me, l c s . mi t . edu When you
submit code, please specify it well. and note the implementations you have used to test it. Rozas
has indicated that code might not be accepted into the library unless it has been shown to run in
at least two different implementations of Scheme.

On Tuesday night, we agreed on a syntax and a family of about five possible semantics for multiple
return values. The possibilities are linearly ordered by upward compatibility, so each will be a
compatible extension or subset of whichever semantics we eventually choose.

Participants workings in private sessions also developed a proposal for minor changes in the syntax
of numbers, improved the description of exact and inexact numbers, and agreed on the concept
of a proposal to rewrite the section on the equivalence predicates eq?. eqv?, and equal? .

In a previous article on continuations I left you to puzzle over Eugene Kohlbecker's classic
mind-bender: What does the following program print?

(define (mondo-bizarro)
(let ((k (eall-.ith-current-continuation (lambda (c) c))))

(.rite 1)
(call-.lib-current-continuation (lambda (c) (k c)))
(. r i t e 2)
(call-.ith-current-continuation (lambda (c) (k c)))
(.rite 3)))

Several of you have complained that I owe you an explanation of this contorted, nay twisted,
example. Remember. you asked for it.

When mondo-b iza r ro is called, k is bound to a continuation ,q that will accept a value and bind
k to it before continuing with the body of the l e t . The program then prints 1. Then ,q is called
with a continuation ,c2 that will accept a value, throw it away, and continue the program at the
expression (,~r i t e 2) . Since ,q is called, we get a new binding for k, to ,c2, and we start back
at the body of the l e t . Hence the program prints another 1. Then ,c2 is called with a continuation
,cz that will accept a value, throw it away, and continue the program at the expression (w r i t e 2) .
Obviously ,cz is very much like ,~2, but there is one major difference: within the continuation ,c2,
k is bound to ,q . but within ,c3 k is bound to ,c2. This doesn't matter, though, because ,c2 just
ignores its argument ,c3.

By calling ,~2 we continue at the expression (, r i t e 2) with k bound to ,q . Hence we print a 2,
so the output thus far is 112. Then we call ,q with a continuation ,c4 that will ignore its argument
and continue at the expression (, r i t e 3) with k bound to ,q . By calling ,q with argument ,c4,
we bind k to ,q and start over with the body of the l e t .

This is beginning to look circular. But we dutifully print a 1. and then call ,c4 with a continuation
,~5 that will accept a value, throw it away. and continue the program at the expression (, r i t e 2)
with It bound to ,~4. Since ,c4 ignores its argument, however, the fate of ,c5 is the same as that of
,c3. By calling ,~4, we execute (, r i t e 3) and then return from mondo-bizazro . The complete
output is therefore 11213.

My computer agrees, so this explanation must be correct.

LP I-5.27

