
'VOLUME 1, NUMBER 6
APRIL-MAY-JUNE

1988

TABLE UP CONTENlS

EDITORIAL BOARD

EDITOR, MAILING LIST
Mary S. Van Deusen
IBM Watson Research
P.O. Box 704
Yorktown Heights, NY 10598
(914) 789-7845
(914) 232-7490
(617) 384-2526
maida@ibm.eom

LISP IMPLEMENTATIONS
Walter van Roggen
DEC AITG
290 Donald Lynch Blvd.
DLB5-2/B I0
Marlboro, MA 01752
(617) 490-8012
vanroggen @hudson.dec.corn

X3JI3
Robert F. Mathis
9712 Ceralene Drive
Fairfax, VA 22032
(703) 425-5923
mathis@b.isi.edu

TECHNICAL ARTICLES
JonL White
Lucid, Inc.
707 Laurel Street
Menlo Park, CA 94025
(415) 329-8400
edsel!ionl @labrea.stanford.edu

PROGRAMMING ENVIRONMENTS
John Foderaro
Franz Inc.
1995 University Avenue #275
Berkeley, Ca. 94704
(415) 548-3600
jkf%franz.uucp @berkeley .edu

TILE SCHEME OF TttlNGS
Will Clinger
Semantic Microsystems, Inc.
4470 SW Hall Blvd, Suite 340
Beaverton, OR 97005
(503) 643-4539
wiUc%tekchips.tek.com at tektronix.es.net

QUERY-IO
Patrick Dussud
Texas Instruments
12501 Research Boulevard
MS 2201
Austin, TX 78759
(512) 250-7483
dussud%jenner%ti-csl.csnet@csnet-relay

INT'L NEWS
Christian Queinnec
LITP
4 Place Jussieu
F-75252, Paris Cedex 05
FRANCE
tel: +33 (1) 43 36 25 25 x 5251
UUCP: ..!seismo !mcvax!infia!queinnec
INTERNET: queinnec @infia.inria.fr

ALGORITIIMS
Pavel Curtis
Xerox AIS
3333 Coyote Hill Rd.
Palo Alto, CA 94304

This issue Of the Lisp Pointers newsletter has been funded by I.N.R.I.A. and The Mitre
Corporation. Neither corporation has directed or controlled its publication. The opinions
expressed herein are solely those of the authors, editors, publisher and other contributors and do
not necessarily reflect the opinions of I.N.R.I.A or The Mitre Corporation or the opinions of
companies affiliated with individuals involved with this effort.

Dear Colleague,

Here we are again, blooming along with the lilacs. Although Christian Quiennec and Patrick
Dussud are taking a rest from their departments this issue, you'll still find them represented with a
puzzle and a technical article. We've added a new section this issue. Pavel Curtis is joining us with
a department describing (Algorithms). This is in answer to all those who claim that Lispers don't
write, they just code. Now n o n e of you can escape us as potential contributors. You might also
notice that I've started a news column. Cyril Alberga came up with the name. Dribble File. Blame
him. Contributions, however, should come to me.

We're always looking for frier items, art, cartoons, etc. There are few things as threatening a.~ an
entire page of white. It occurs to me that reviews of video tapes of Lisp, Scheme, AI, or expert
systems might also fit within our purview. I am especially reminded of a video done at MIT
showing the solution to the Towers of llanoi problem. A professor was intercut with students in
saffron robes moving very large disks. At the end of his leclure, the professor described the legend
behind the tower and said that the monks believed that the world would end when the last disk
was moved. As he was saying this, the video went back to the students laying the last disk and the
screen suddenly went black. Wonderful video!

Our thanks to Mitre Corporation and I.N.R.I.A. for sponsoring this issue. There is a call for
sponsors for future issues (starting with July-August-September). I.N.R.I.A. has been kind enough
to sponsor all non-US mailings. This means that we only need sponsorship for the US mailings.
The bottom line for those who don't want to read the page of text is that you can work out the
costs of sponsorship for US subscribers by looking at what it costs your duplicating department to
make 1300 copies of this issue and what it costs your mail room to mail I100 copies. Contact me
if you have any additional questions.

Sincerely,

Mary S. Van Deusen, Editor

LP I-6.1

DRIBBLE FILE

Scheme Release Notes

The MIT AI Lab is sponsoring a series of notes on Scheme. The first one describes the "Avail-
ability of the Scheme Programming Language." For further information, contact:

Scheme Development Team
c/o MIT Artificial Intelligence Laboratory
545 Technology Square
Cambridge, MA 02139

AI Conference

The International Computer Science Conference '88 will be held in |Iong Kong, December 19-21,
1988. The topic will be "Artificial Intelligence: Theory and Applications." The conference is
sponsored by the Computer Society of the IEEE, llong Kong Chapter. Paper submissions are due
June 15, 1988. For submission information, contact:

Jean-Louis Lassez
IBM Watson Research
PO Box 704 (ttI-AI2)
Yorktown tteights, NY 10598

For conference information, contact:
Computer Society of IEEE, ttong Kong Chapter
G.P.O. Box 5318
Hong Kong

Lisp Puzzles

Chr is t i an Queinnec J~r6me Chai l loux

Apri l 16, 1988

1 Firs t P u z z l e

J~rSme and I asked our students at]~cole Polytechnique to program the following function

(x p l ' (a b c d))
--~ ((a) (a b) (a b c) (a b c d))

Given a list, x p l returns the list of all its initial segments ordered by increasing length.
We got seven different solutions, more than expected. We propose you to program x p l and

compare, elsewhere in this issue, your own solution with ours. Good luck !!!

LP 1-6.2

1988 ACM Conference on
LISP AND FUNCTIONAL PROGRAMMING

Snowbird, Utah, July 25-27, 1988

The 1988 ACM Conference on LISP and Functional Programming is the fifth in a series of
biennial conferences devoted to the theory, design, and implementation of programming
languages and systems that support symbolic computation. The conference is jointly sponsored
by ACM SIGPLAN, SIGACT, and SIGART.

The major topics that have been addressed at previous conferences include:

1) programming language concepts and facilities

2) implementation methods

3) machine architectures

4) semantic foundations

5) programming logics

6) program development environments

7) applications of symbolic computation

The conference ~ite at Snowbird, Utah is a resort located in the rugged Wasatch
mountain range approximately 35 miles from Salt Lake City. Summer activities include
hiking, climbing, swimming, tennis, and wildflower photography.

Program Committee Chairman

Robert (Corky) Cartwfight
Attn: LFP 88
Rice University
Department of Computer Science
P. O. Box 1892
Houston, TX 77251-1892
(713) 527-4834
cork@rice.edu

General Chairman

Jerome Chailloux
INRIA
Domaine de Voluceau-Rocquencourt
B.P. 105
Le Chesnay Cedex
France
chaillou @inria.inria.fr

Program Committee

llarold Abelson, MIT
Richard Bird, Oxford University
Luca Cardelli, DEC Systems Res. Ctr.
Robert Cartwright, Rice University
Richard Gabriel, Lucid Inc.
Christopher ttaynes, Indiana University
Gerard ltuet, INRIA Rocquencourt
Gilles Kahn, INRIA Sophia Antipolis
David Moon, Symbolics Inc.
Guy Steele, Thinking Machines Corp.
Carolyn Talcott, Stanford University

Local Arrangements Chairman

Robert Kessler
University of Utah
Department of Computer Science
3190 M.E.B.
Salt l_xtke City, Utah 84112
kessler@cs.utah.edu

LP I-6.30

SPONSORSHIP OF LISP POINTERS

Lisp Pointers is a non-profit publication created by the Lisp community for the Lisp community.
Currently, Lisp Pointers is not affilated with any organization. For this reason, it is dependent
upon the sponsorship of companies interested in l,isp for its publication.

The following companies have in the past, or are currently, sponsoring Lisp Pointers:

IBM Thomas J. Watson Research
lnstitut National De Rechere En hfformatique Et En Automatique (I.N.R.I.A.)
Xerox Pare
Microelectronics and Computer Technology Corporation (MCC)
Texas Instruments
Digital Equipment Corporation
Mitre Corporation

Lisp Pointers is a newsletter, that is, it contains technical articles which are not refereed and which,
therefore, may be republished in other technically refereed journals later. Lisp Pointers is a forum
for preliminary papers, as well as for the fast interchange of ideas. As well as technical articles, Lisp
Pointers contains columns and departments, such as the following:

Query IO - The Scheme of Things - International News - Programming Environments
Book Reviews - Lisp Implementations - ((lambda (discussions) (report on X3JI3)))

Sponsors are permanently listed on the back cover of Lisp Pointers. We do this to thank those
companies who have joined us in producing a publication which we think is both needed and
wanted by this important research and production community.

Because no organization is involved, the board running Lisp Pointers tends to be very conservative
both legally and financially. A disclaimer for a sponsor company appears on the inside front cover.
The disclaimer for the first issue reads as follows:

This issue of the Lisp Pointers newsletter has been funded by the IBM Corporation.
The IBM Corporation has not directed or controlled its publication. The opinions
expressed herein are solely those of the authors, editors, publisher and other contribu-
tors and do not necessarily reflect the opinions of the sponsoring company, the IBM
Corporation, or the opinions of companies affiliated with individuals involved with this
effort.

Sponsorship involves the commitment to cover cost and work involved in the printing and dis-
tribution of a single issue of Lisp Pointers. The editor creates a camera-ready copy which is sent
to the sponsoring company. The sponsor arranges for the duplication and mailing o f the issue.
Cost to the sponsoring company is dependent upon the size of the mailing list, which will increase
over time, the access to in.house duplication facilities, the size of the issue, and the cost of mailing
to subscribers within the US. INRIA has accepted permanent sponsorship of all non-US subscribers.
The number of US subscribers has grown from 500 to approximately 1100 over six issues and it
can be assumed that that growth will continue for at least the next year. In addition to the number
printed and mailed, the sponsor is asked to print an additional 150-200 copies which are used to
satisfy requests for backorders. Previous issues have run between 40 and 60 pages. Your mailroom
should be able to estimate the cost of mailing out each issue.

At the time this letter is being sent to you, we are looking for sponsors for issues 7 and beyond.
Lisp Pointers is publislaed four times per year on a regular schedule.

LP I-6.34

Implementation Summaries

Walter van Roggen
Digital Equipment Corporation

290 Donald Lynch Blvd. Marlboro MA 01752
vanroggen@hudson.dec.com

This list represents the descriptions I have received between 12 November 1987 and 20 April 1988. The
long span is due to the last two issues having been combined.

N a m e NanoLISP

S t a n d a r d Common Lisp subset

Add i t iona l Features .

screen graphics
low-level DOS control

Miss ing Features .

compiler
ratios, complex numbers, packages, arrays of rank 3 or higher, hash tables, readtables,

random-states
multiple values
BLOCK, RETURN-FROM, COMPILER-LET, EVAL-WHEN, LABELS, FLET, MACRO-

LET, PROGV, UNWIND-PROTECT

Vers ion 1.4e-g

S u p p o r t Fully supported by Microcomputer Systems Consultants

H a r d w a r e / S o f t w a r e 8086 family, MS-DOS or PC-DOS 2.1 or higher

Con tac t Microcomputer Systems Consultants, Box 747, Santa Barbara, CA 93102, (805)963-3412

N a m e Pearl Lisp

S t a n d a r d Common Lisp subset

Add i t iona l Features .

Object Lisp
Macintosh windows, menus, dialogs as objects
EMACS-style editor
native-code compiler
window-based stepper, inspector, trace
can produce stand-alone applications which can be distributed without licensing fees

LP 1-6.37

M i s s i n g F e a t u r e s .

packages, structures, hash-tables, displaced arrays, adjustable multi-D arrays
multiple values
programmable editor
-IF and -IF-NOT sequence functions
PROGV, THE
many FORMAT directives, binary I/O, compound streams

Vers ion List price $175.

H a r d w a r e Apple Macintosh

S u p p o r t Fully supported by Coral Software

C o n t a c t Coral Software Corp, PO Box 307, Cambridge MA 02142, (800)521-1027 or (617)547-2662

N a m e The T Programming Language

S t a n d a r d Scheme

A d d i t i o n a l Fea tu res .

multiple return values
a simple object system
debugger and inspector
locales - first class environments
macros - a syntax system
unwind-protect
dynamic binding
structures
tables - a generalized package
pools, weak pointers, and weak tables

Ver s ion 3.0(17), January 1987

S u p p o r t Unsupported (but new releases and bug fixes are available from Yale)

H a r d w a r e Vax (4.2bsd, 4.3bsd, Ultrix), M68000 (SunIII, Apollo, HP9000/300)

C o n t a c t .

T Project
Yale University Dept. of Computer Science
PO Box 2158 Yale Station
New Haven, CT 06520
Email: t-project@yale.edu, decvax!yale!t-project.uucp, tproj@YALECS.BITNET
Phone: (203) 432-2381

T is available via lnternet FTP. Telnet to PREP.AI.MIT.EDU and log in as user scheme, password
scheme. The login shell is an FTP program. Send one or more of the following files:

LP I-6.38

/ t / readme.tar .Z
/ t /hp. tar .Z, executable image for HP-UX
/ t /sun. tar .Z, executable image for SUN
/t/aegis. tar.Z, executable image for Apollo Domain
/t/vax_unix.tar.Z, executable image for VAX running 4.2BSD, 4.3BSD or Ultrix
/t /sources.tar.Z, source code for compiler and runtime system

If you can't get T this way, try to get it from someone who has it, or, Yale will mail you a tgpe for
$200 (outside US $250).

For more information contact Linda Abelli or Chris Hatchell at the above address.

Comments Although the default environment is the T programming language (a Scheme dialect based
on the Revised Report on Scheme), an environment comforming to the Revised s Report on Scheme
is also available. T is intended for use in education, systems programming, AI programming, and
for programming language design and development. The system and compiler are written almost

entirely in T.

LP I-6.39

Scheme Implementations

Compiled by Jonathan Rees on 15 November 1985, updated 27 December 1987. This is the file LSPMAI;
SCHEME IMPLS at AI.AI.MIT.EDU.

Send inquiries about the Scheme@MC.LCS.MIT.EDU mailing list to Scheme-Request~MC.LCS.MIT.EDU.
The "Revised 3 Report on the Algorithmic Language Scheme" is in SIGPLAN Notices 21(12), December

1986. It can also be ordered from:

Elizabeth Heepe
Publications, Room NE43-818
MIT Artifical Intelligence Laboratory
545 Technology Square
Cambridge MA 02139

Ask for MIT AI Memo 848a, and enclose a check for $6.00 per copy (U.S. funds) payable to the MIT
Artificial Intelligence Laboratory.

(This report supersedes the "Revised Revised Report on Scheme", but the differences in the language
between the two versions are not major.)

I m p l e m e n t a t i o n MacScheme, MacScheme+Toolsmith

Implemented by Will Clinger, John Ulrich, Liz Heller, and Eric Ost

S u p p o r t e d by Semantic Microsystems

H a r d w a r e Apple Macintosh, Macintosh Plus. Requires 512K bytes RAM. 1024K recommended for Mac-
Scheme-FToolsmith.

O p e r a t i n g S y s t e m s Finder (Macintosh).

P r i c e / A v a i l a b i l i t y $125 for basic system; available since August 1985. $250 (introductory price) for
MacScheme+Toolsmith; available since December 1986.

I m p l e m e n t a t i o n Compiles to interpreted byte code.

I n t e n d e d Use Education, personal computing, AI applications

C o n t a c t Semantic Microsystems 4470 S.W. Iiall St., Suite 340 Beaverton, OR 97005 (503) 643-4539

MacScheme supports all essential and most optional features of the Revised 3 Report on the Algorithmic
Language Scheme. It includes a compatibility package for use with "Structure and Interpretation of
Computer Programs" by Abelson and Sussman. Approximately 15 universities and colleges currently use
MacScheme in their courses.

MacScheme includes facilities for breaking, tracing, and debugging. Most run-time errors can be
repaired in the debugger. Numbers are implemented as a union of 30-bit fixnums, bignums, and 32-bit
flonums; bignum arithmetic is slow. Procedures are provided for pretty-printing and sorting.

The system includes a simple editor that understands Scheme syntax and makes good use of multiple
windows and the mouse. This editor runs as a foreground process while Scheme runs in the background.

LP I -6 .40

Simple graphics are included in the basic system, together with an escape to machine code for direct access
to the Macintosh Toolbox.

MacScheme%Toolsmith adds very high-lcvei support for interactive menus, windows, and text editors,
high-level support for Macintosh file i/o, and a comprehensive library of type declarations and Scheme
procedures for calling the low-level Toolbox traps described in Inside Macintosh. MacScheme+Toolsmith
also features multi-tasking and a versatile interrupt system for handling events. Scheme source code is
provided for the standard interrupt handlers and high-level objects, together with several examples that
show how to program standard features of the Macintosh user interface.

The ResEdit graphical resource editor is included with MacScheme%Toolsmith. Complete applica-
tions can be dumped as "double-clickable" heap images, from which unused procedures (the compiler, for
example) have been removed through selective linking.

[1-7-87]

I m p l e m e n t a t i o n PC Scheme

Developed by Texas Instruments Computer Science Lab

Supported by Texas Instruments Digital Systems Group

H a r d w a r e TI Professional and TI Business-Pro Computers, IBM PC, PC/XT, PC/AT and IBM com-
patibles

Opera t ing Systems MS(tm)-DOS 2.1 (PC-DOS) or better (at least 320K, dual floppy)

Pr lce /Avai lab i l i ty List price - $95

Implementation Incrementally compiled to byte-codes

Intended Use Education, research, and support of AI software on PCs

PC Scheme is an implementation of Scheme for the TI Professional Computer and IBM(r) Personal
Computer families. The product consists of an optimizing compiler, a byte-code interpreter, extensive run
time support, an interactive, display-oriented editor, a language reference manual, and a user's guide. The
system was developed on the TI Professional Computer in Scheme itself, with critical run time routines
coded in C and assembly language for increased performance.

PC Scheme provides all the essential and most of the optional features of the Revised Revised Report
on Scheme. It fully supports the dialect used in the book "Structure and Interpretation of Computer
Programs" by Abelson and Sussman as well as many extensions developed at Indiana University, MIT, and
TI. These incl,de first-class engines and environments and an experimental, object-oriented programming
system with dynamic multiple inheritance called SCOOPS. Data type support includes symbols, lists,
vectors, strings, fixnums, bignums, flonums (64 bit IEEE floating point), characters, closures, continuations,
environments, and I/O ports.

Evaluation is based on incremental compilation to byte-coded "virtual machine" code which is emulated
using threaded code techniques. Informal benchmarks, including some of the Gabriel set, show PC Scheme
programs to be about 3-10 times faster than interpreted IQLISP(tm) and 2-4 times faster than interpreted
Golden Common LISP(tin).

To order, write to Texas Instruments, 12501 Research Blvd., MS 2151, Austin, TX 78759 and ask for
TI Part number #2537900-0001. You may also order by telephone using MasterCard or VISA by calling
1-(800)-TI-PARTS.

LP 1-6.41

Questions or comments on the product may be directed to the address given above. We also welcome
less formal technical questions and comments, which may be directed via CSNET to Oxley@TI-CSL.

[11-12-85]

I m p l e m e n t a t i o n Chez Scheme

Wr i t t en by Kent Dybvig and Bob Hieb

Suppor t ed by Cadence Research Systems

H a r d w a r e VAX (VMS, Ultrix, 4.2 or 4.3 BSD UNIX), Sun-3 (SunOs), Apollo {Domain/IX), and Alliant
(Concentrix)

I m p l e m e n t a t i o n incrementally compiled to native code

I n t e n d e d Use education, research, systems development

Pr ice ranges from $1500 for one machine to $12,000 for site educational institutions receive 50% discount

Chez Scheme was first released in early 1985, and is in use at several dozen sites. Now in its second
major released version, it supports all of the required features of the R3RS, and all but one or two optional
features. It also supports all of the features in The Scheme Programming Language. It features an
incremental optimizing compiler with variable optimization levels.

In addition to the features of the RRRS, Chez Scheme provides programmable error and exception
handlers, engines, programmable cafes and waiters (fancy read-eval-print loops), tracing and statistics-
gathering facilities, a high-level syntax-specification facility (extend-syntax), and fast-loading compiled
files. Chez Scheme provides floating point numbers and arbitrary- precision ratios and integers, but no
imaginary numbers at present.

Most of our development time has been spent making the implementation as as reliable and as efficient
as possible. In making the system efficient, we have concentrated on memory and disk utilization and
storage management as well on as compiler speed and speed of generated code. For example, the initial
load image for the VAX is under 3/4 megabyte, of which all but 1/4 megabyte is read-only and sharable.
Working-set size is typically under 1/2 MB per process for many applications.

For information contact:

Sue Rykovich
Cadence Research Systems
620 Park Ridge Road
Bloomington, IN 47401
812/333-9269

You can also request information through Kent Dybvig at dyb@cs.indiana.edu (include physical mailing
address).

[10-30-87]
I

I m p l e m e n t a t i o n SIOD (Scheme In One Defun)

I m p l e m e n t e d by George Carrette (GJC~MIT-MC)

LP 1-6.42

C o n t a c t GJC@MC

S u p p o r t GJC, for use in LMI lisp classes.

H a r d w a r e LMI-LAMBDA, ZETA(FOO?)LISP.

A v a i l a b i l i t y Given out at m y "guest lectures" to LMI lisp classes.

D i a l e c t Sufficient to run S&ICP problems I find most interesting. Especially streams, the meta-linguistic
abtraction section, and the interpreter/hardware sections.

I n t e n d e d u se Education. Both to introduce S&ICP and to show interpreter implementation, also "WHY
MACROS OR BAD, or WHY CANT YOU READ MY CODE?"

I m p l e m e n t a t i o n The function SEVAL (scheme EVAL) is one DEFUN. The "text" being interpreted is
syntax-checked first, but is otherwise just the obviou s s-expression. The environment representation
is an ALIST. Because of the underlying simplicity it was possible to code special cases such as look-
ahead for simple variable lookup, and primitives such as + , / ,CAR,CDR, applied to simple variable
lookups without fear. There is very little overhead in the interpreter besides variable lookup (a single
instruction, %ASSQ) and environment consing, (cheaper by the dozen and with the volatility based
GC). The resulting interpreter is somewhat gross because of its use of specialized macrology, but is
extremely fast, especially when compiled into MICROCODE by the Microcompiler.

R e m a r k s One reason for this was to see just how far a few hours work on a simple idea implemented
somewhat grossly could go. Whenever 1 was too burned out to do design-level work or debugging
work (presumably on jobs that I was paid to do) I might feel like trying to code another SIOD special
case. It is also a study for "how much effort should go into avoiding CONS, vs other things?" It
could be interesting to compare its efficiency with JAR's compiler-style CLSCH.

[10-28-85]

I m p l e m e n t a t i o n Scheme84

Scheme84 is a version of Scheme that has been under development at Indiana University for the past
few years, and is used there to support half a dozen different Computer science courses. The system runs on
the Vax under either VMS or Berkeley Unix. The developers of Scheme84 intend to supply a compatibility
package that will allow the MIT materials to be run without modification. The Scheme84 software is in
the public domain, and can be obtained by writing to

Scheme84 Distribution
Nancy G a r r e t t
c /o Dan Friedman
Depar tment of Computer Science
Indiana University
Bloomington, Indiana
(812)-335-9770
E-mail address nlg@indiana

LP I-6.43

The current distribution policy for Scheme84 is that Indiana University will supply it for free, if you
send them a tape and return postage. (Please specify whether the system is to be for VMS or for Unix.) On
the other hand, the University reserves the right to begin charging a fee to recover the cost of distribution,
should this become necessary.

]early 19857]

I m p l e m e n t a t i o n T

T is a version of Scheme that was developed at Yale University, and is available for distribution.

The system runs on Vaxes under Unix (4.2bsd) and on Motorola 680x0 systems (Apollo Domain, Sun, HP
9000/300). Although the default environment is the T programming language, an environment comforming
to the Revised s Report on Scheme is also available.

A new version of T (version 3.0) was released in January 1987. This includes the optimizing compiler
described in a paper by Kranz et al. in the Proceedings Of the 1986 SIGPLAN Compiler Construction
Conference.

T is available via Internet FTP. Connect to host PREP.AI.MIT.EDU, log in as user scheme password
scheme, and get the appropriate compressed tar files from the directory/t:

• readme.tar.Z installation and release notes

• hp.tar.Z executable image for HP-UX

• sun.tar.Z executable image for SUN

• vax_unix.tar.Z executable image for VAX running 4.2BSD or Ultrix

• sources.tar.Z source code for compiler and runtime system

If you can't get T this way, try to get it from someone who has it, or, as a last resort, Yale will mail

you a tape for $200 (?).

For more information, contact Jim Philbin at Yale (t-project@Yale.ARPA, 203-432-1266) or write to

T Project
Yale University Dept. of Computer Science

PO Box 2158
Yale Station
New Haven, CT 06520

[1-16-87]

I m p l e m e n t a t i o n Vincennes Scheme

Vincennes Scheme is a version of Scheme written entirely in portable C, for Unix V7 and Berkeley
4.1 and 4.2. It runs on 32-bit machines (e.g. 68K or Vax) as well as on 16-bit machines (e.g. Z8000 in
which it can fit in 128K). This Scheme is compatible with the MIT version, and includes an interpreter
with the basic environment: debugger, history, break, stepper, where. A compiler that generates C code
is available. For more information, contact

LP 1-6.44

Patrick Greussay
Universite Paris-8-Vincennes
2 rue de la Liberte
Saint-Denis CEDEX 02 93526
France

[early '857]

I m p l e m e n t a t i o n Pseudoscheme (Scheme embedded in Common Lisp)

I m p l e m e n t e d by Jonathan Rees

S u p p o r t Unsupported, although I'll probably continue to improve it.

H a r d w a r e ~ etc. Will run in any implementation of Common Lisp.

A v a i l a b i l i t y Free. Distributed as source via electronic mail or FTP. (I won't make tapes.)

D i a l e c t Subset. Tail-recursion is not supported except in the special case that a loop is found stati-
cally, which is when the loop is written explicitly using LETREC or something that expands into
LETREC (DO, named LET, internal DEFINE). Tail-recursion will of course be inherited from the
host Common Lisp if it has it. All of the essential features of R 3 Scheme exist, except for a correct
CALL-WITH-CURRENT-CONTINUATION (some of you will say that it's not Scheme at all, and
I don't disagree) and number exactness; most of the non-essential features are there too, and a few
things needed to run code from S&ICP.

I n t e n d e d use Running Scheme programs using any Common Lisp.

I m p l e m e n t a t i o n A preprocessor translates Scheme code into Common Lisp code, which is then inter-
preted or compiled by the host Common Lisp system. The source code seems to work well, but it's
unclean.

R e m a r k s I did this mostly for my own personal use. Maybe other people will find it useful too.

C o n t a c t Jonathan Rees (JAR~AI.AI.MIT.EDU), MIT Artificial Intelligence Laboratory, 545 Technology
Square, Cambridge MA 02139, (617) 253-8581. Also distributed with VAX LISP.

[2-27-86]

I m p l e m e n t a t i o n MIT Scheme

There are currently 2 implementations of MIT Scheme:
"Gator" Scheme runs on HP 9000 series 200 (and old model 9836 plus variants) computers under the

Pascal 3.1 operating system. It is quite dependent on this operating system and the tools provided with it.
This is currently our main implementation. Most of the code is written in Scheme, but the interpreter and
support procedures (operating system interface) are written in assembly language (Motorola 68000) and
Pascal (HP dialect). There is a very idiosincratic compiler (Liar) in this version which with motherly care
or luck can give very good performance, but which will not perform so well without pampering. There is

LP 1-6.45

also a very good editor (Edwin) written in Scheme. It is very similar to GNU Emacs, but its interface to
Scheme is (for obvious reasons) better.

CScheme (pronounced like "see-scheme") runs on a variety of machines which have C compilers. In
particular, it runs on Vaxen (both BSD4.2 Unix and VMS), various flavors of Unix (HP-UX, Sun BSD),
and is quite portable, but may require some work on "strange" machines and/or operating systems. This
version (the interpreter and support routines, which are written in C) was originally written to illustrate
how a Scheme system could be built, not as a "production" version. Its main emphasis was clarity, rather
than efficiency. As of late, with (slowly) increasing efficiency and use, it is becoming the base for a variety of
projects. Its performance is adequate (although not great) on the latest generation single user workstations
(Suns, HP 9000 series 300, etc). There is currently no compiler for this version. There is a moderately
good (although not perfect) interface to GNU Emacs, and a barely adequate interface to DEC Emacs for
VMS.

Both systems are pretty similar as far as "normal" users are concerned (the systems share the code
written in Scheme although they are currently somewhat out of phase). Both versions also require large
amounts of memory (upwards of 4 Mb for Gator Scheme With all the features, somewhat over 2 Mb for
Cscheme).

Within the next few months (by September '86 probably) we will shift from Gator Scheme to CScheme
(CScheme will become our main implementation), and there will be a (new) compiler for CScheme with
back ends at least for the common machines (68k family and Vax). Eventually we plan to have a C back
end also (does anybody know of a portable dynamic loader for C/Unix ?). Edwin will also be ported to
CScheme (at least under versions of Unix providing the curses(3) library).

For more information about either version, send (arpa) mail to
SCHEME-TEAM%MIT-OZ@MIT-MC
or US Snail to

Scheme Team
c/o Prof. Hal Abelson
545 Technology Sq. rm 410
Cambridge MA 02139

For particular information about CScheme, send mail to
INFO-CSCHEME%MIT-OZ@MIT-MC (send mail to info-cscheme-request to be added to this mailing

list)
To obtain a copy of MIT Scheme:

. If you want CScheme, and have access to the arpanet, a "tar" file (for Unix) exists on MIT-PREP
/scheme/dis t . ta r . There is usually a "compressed" (dist.tar.Z) file also. If the file does not exist for
any reason, log in (via telnet) to MIT-PREP as scheme (no password). The files will be re-generated
by the log in program.

2. If you can use ftp over the arpanet, but cannot use a tar file, get in touch with us describing what

version you want, and we may be able to arrange some way to get the sources across the net.

3. Otherwise, try to get a copy from someone who already has it.

4. As a last resort (unadvisable), send $200 to the address above, and specify what form of tape you

want. We can currently provide

• 1600 bpi standard tar tape

LP 1-6.46

• 1600 bpi standard VMS backup tape

• HP-UX cartridge tar tape

[4-1-86]

1Name skim (a low fat implementation of Scheme)

A u t h o r s A. Deutsch, R. Dumeur, C. Consel, J.D. Fekete.

H a r d w a r e / S o f t w a r e Sun[23], Vax, Orion under BSD Unix.

Has An interpreter and a compiler (VAX only for now).

Fea tu re s .

• R3RS compatibility (but misses complex, bignums and ratios)

• extensible type system and operations

• stop/copy gc
• scode based interpreter

Ava i lab i l i ty The system has been registered; binaries are available (we do not plan to distribute
sources now).

P e r f o r m a n c e The interpreter is quite fast (5 times faster that MIT-scheme). The compiler is not
an optimizing compiler.

C o n t a c t the authors at ...mcvax!inria!litp!ald, ...mcvax!inria!litp!chac, ...mcvax!inria!litp!jdf, ...mc-
vax!inria!litp!red

[,2-27-s7l

LP 1-6.47

LISP A N D SYMBOLIC COMPUTATION:
An International Journal

Volume 1 Issue 1 Available May 15, 1988

Scope:

Programming language notations for symbolic computing (e.g., data abstraction, paral-
lelism, lazy evaluation, infinite data objects, self-reference, message-passing, generic func-
tions, inheritance, encapsulation, protection, metaobjects).

• Implementations and techniques (e.g., specialized architectures, compiler design, combi-
natory models, garbage collection, storage management, performance analysis, smalltalks,
flavors, common loops, etc.).

• Programming logics (e.g., semantics and reasoning about programs, types and type infer-
ence).

• Programming environments and tools (e.g., knowledge-based programming tools, program
transformations, specifications, debugging tools).

• Applications and experience with symbolic computing (e.g., real-time programming, artifi-
cial intelligence tools, experience with LISP, object-oriented programming, window systems,
user interfaces, operating systems, parallel/distributed computing).

Editors-in-Chief:
Richard P. Gabriel, Lucid, Inc. and Guy L. Steele Jr., Thinking Machines, Inc.

.Articles of "Voblme 1, Issue 1 include:
Ezpansioa-Passiag Style: A General Macro Mechanism, R. Kent Dybvig, Daniel P. Friedman,
Christopher T. Hayes; OAKLISP: An Object-Oriented Dialect of Scheme, Kevin J. Lang, Barak
A. Pearlmutter; The Mystery off the Tower Revealed: A Nonreflecti~e Descriptioa of the Reflective
Tower, Mitchell Wand, Daniel P. Friedman; Technical Issues of Separatios in Function Cells and
Value Cells, Richard P. Gabriel, Kent M. Pitman

Submissions and more informat ion contact:

Jan Zubkoff
Associate Editor, LASC
Lucid, Inc.
707 Laurel Street
Menlo Park, CA 94025
edsel!jlzQlabrea.st anford.edu
415/329-8400

LP 1-6°48

Solut ions to the Firs t Puzzle , Second Puzzle

Hereafter are the seven solutions we got. They are all written in Le-Lisp z. The problem is now
uWhich one is the more e~cient" ? The solution is elsewhere]

2.1 S o l u t i o n s 1 a n d 2

The trick is to notice that, given (a b c) it is straightforward to obtain ((c) (b c) (a b c)) by
a recursive function such as

(de:tun :[oo (1 r)
(i~ (consp 1)

(:too (cdr I) (cons 1 r))
r))

With some reverse, one can obtain

(defun xpl l (1)
(xp l l l (reverse 1) n i l))

(de~u.u x p l l l (1 r)
(if (consp I)

(x p l l l (cdr 1) (cons (reverse 1) r))
r))

xp111 is tail-recursive, the following is not

(de funxp l2 (I)
(reverse (xp121 (reverse I))))

(defu~ xp121 (i)
(i~ (connp i)

(cons (reverse 1) (xpl2l (cdr 1)))
all))

2.2 S o l u t i o n s 3 a n d 4

The trick is to use rdc (the mirror of cdr) which, given a list, returns the list except its last term.
rdc is better explained as

(defun rdc (1)
(reverse (cdr (reverse I))))

With rdc, the result is easily computed

(defun xplS (i)
(xplSl I 0))

(defnn xpl$i (I r)
(i~ (consp 1)

(xp151 (reverse (cd.r (reverse 1))) (cons 1 r))
r))

The following is the non-tail-recnrsive equivalent

(de,us xp14 (1)
(reverse (xp14! 1)))

(defun xp141 (1)
(if (coasp 1)

(cons I (xpl4! (reverse (cdr (reverse I)))))
~ t l))

~Le-Llsp JJ • trademark of INRIA.

LP 1-6.49

2.3 S o l u t i o n s 5 a n d 6

Iterators such as aapcar can be used

(defun xpl5 (i)
(i f (consp 1)

(cone (cons (car I) n i l)
(mapcar (lambda (r) (cons (car I) r))

(xp:6 (cdr 1))))
n i l))

But one can also rediscover aapcar and obtain

(defun xpl6 (I)
(i f (consp 1)

(cons (cons (car i) n i l)
(c o n s l i s t (car 1) (xpl6 (cdr I))))

n i l))

(defun c o n s l i s t (a 1)
(if (consp I)

(cone (cons a (car I))
(c o n s l i s t a (cdr I)))))

2.4 L a s t S o l u t i o n

The last one bears some resemblance to Ashcroft's definition of reverse, i.e.

(defun reverse (1)
(i f (consp 1)

(i f (consp (cdr i))
(cons (car (reverse (cdr i)))

(reverse (conB (car i)
(reverse (cdr (reverse (cdr 1)))))))

1)
hi:))

xpl7 uses four. embedded calk to reverse but it works I

(defun xpl7 (1)
(if (consp I)

(reverse (cons I (reverse (xpl7 (reverse (cdr (reverse I)))))))
nil))

Lisp Puzzles

Christian Queinnec J~r6me Chailloux

April 16, 1988

LP 1-6.50

