
Lisp Hardware Architecture: The Explorer II and

Patrick H. Dussud
Texas Instruments Incorporated

Data Systems Group
Austin, Texas

January 15, 1987

Beyond

1 Motivat ions for Lisp Hardware

1.1 Language Requirements
Common Lisp, as described in [1] has several character-
istics that make it harder to implement as efficiently as
conventional computing languages on ordinary architec-
tures. Those characteristics motivate the design of spe-
cialized hardware optimized for Lisp execution.

D y n a m i c T y p i n g a n d O b j e c t R e f e r e n c e

Lisp is a run-tlme typed language. Variables do not have a
type; the type of a variable depends on the object it refers
to. The type information has to be kept along with the
object reference or within the object itself. During execu-
tion, the machine must maintain this typing information.
There can be multiple references to an object but there is
only one stored representation of this object. Typically,
Lisp execution requires more references movement than
data movement.

F u n c t i o n a l L a n g u a g e

Most operations In Lisp are implemented as function calls.
Traditional Lisp programs make heavy use of recursion,
so fast execution of function calling and return is essential
for good performance.

G e n e r i c o p e r a t i o n s

In Common Lisp, many of its functions are not specific
to a type of object, but to a collection of types. There
is only one ADD function: +. It works on every valid
representation of a number (fixnum, float, ratio...). It Is
~Iso desirable to detect invalid operations (such as adding
a list to a floating point number).

O b j e c t - o r i e n t e d S u p p o r t

Several implementations of Common Lisp are extended by
a Object-oriented system. A standard object system for
Common Lisp , CLOS [2], is being developed. CLOS ex-
tends the concept of generic functions. Programmers can

define their own types and write type-specific code (meth-
ods) for generic functions. The implementation, typically
at runtime, selects the code to execute the generic func-
tion based on the type of its arguments.

M e m o r y M a n a g e m e n t

Lisp frees the programmer from memory management
tasks such as deallocating data storage and memory com-
paction. Conceptually, Lisp executes in a large, single ad-
dress space. Lisp memory management systems include a
garbage collector, whose task is to get rid of the objects no
longer accessible by the program and optimize the place-
ment of usable objects in order to maximize the locality
of reference for memory intensive programs. This is seen
as having a large impact on performance for nontrivial
Lisp progran~s.

1.2 Program Development Require-
ments

Lisp hardware machines traditionally were program de-
velopment oriented. Lisp program development stresses
some other features of a Lisp system. It is worth mention-
ning that often, Lisp hardware machines are configured
as Lisp development workstations.

M a c h i n e R e a c t i v i t y

Developing a Lisp program is largely an Interactive task.
It is desirable to work in an intagrated environment where
the editor, compiler, debuuer and program can access
the same data. This requires a large address space. 100
IvfB of virtual space is not unusual for a high end Lisp
workstation.

Another key feature IS the reactivity of the machine.
During interactive edit and debug sessions, the machine
response time must be kept under one second or the pro-
grammer will get frustrated. This puts severe constraints
on the memory management system.

LP 1-6.13

C o m p i l e r Performance a n d d e b u g g i n g

A fast compiler is an important feature on a Lisp work-
station, where compilation is done frequently. If the de-
bugger supports symbolic debugging of compiled code,
programmers will tend to debug their code in compiled
form which will maximize performance and let the pro-
grammer get to the next bug quickly. Another reason
for compiled code debugging is that a bug in a program
can manifest itself inside of a system library function call,
implemented as a Lisp compiled function. The program-
mer will get some clues if he can examine the state of the
system right inside the library function call.

C o d e e n g i n e e r i n g

In order to maximize programmer productivity, it is de-
sirable to let him concentrate on the program semantics
instead of seeding the code with type declarations and
compiler directives in order to boost the performance.
The programmer's time should be spent getting the pro-
gram right, and the implementation should make it run
fast.

C o d e S a f e t y

Complex programs are not immune to bugs, even in their
production state. The error should be detected ms soon
as possible in order to maintain the integrity of the mem-
ory system and allow the programmer to take corrective
action easily. This means that the system should per-
form runtime type checking on object access, even if the
compiler could infer the object type.

2 The Explorer "Virtual Machine

The Explorer Virtual Machine is an architecture model
for the Explorer family. I t describes the memory model,
the instruction set, the calling discipline, and the stor-
age management system. It is virtual in the sense that
it can be emulated in software, or implemented in hard-
ware. It is also concrete because it is what is presented to
the programmer at the lowest level. On both members of
the Explorer family (Explorer and Explorer II), the vir-
tuai machine is implemented partiMly by the microcode,
partially directly by the hardware.

Memory Model

The memory is organized in 32 bit words and is tagged.
The object type is stored along with the object reference
itself. The tag is 5 bits wide, allowing 32 primitive repre-
sentation types. More elaborate data types are built, but
they are extension of those primitive ones and are stored
along with the object. A reference to an object can be
by address where the reference contains the address of the
stored object it refers to. The address field is 25 bits wide,
giving an effective address space of 128M Bytes. A refer-
ence can be immediate, where the object in contained in

the reference. Immediate object reference is used for 25
bit fixnum, short-fioat and character types.

'1%g Object Address [[

Ob jec t Re fe rence B y Addre s s

l q ~g i4 01 Fixnum Tag 2~bit Fixnum

I m m e d i a t e O b j e c t Re fe rence

S t o r e d O b j e c t s

Most stored objects begin with a tagged word called the
Header Word. It further specifies the type and access
mode of the object. There are two kinds of stored objects:
the 6ozedobject and partially fagged(oru,6oze~ object. In
a bozed object, all the words of the object are tagged. In
an u,bozed object, some words are pure data. They don't
contain a tag. This ailows for storage of 32 bit integer
arrays and a more compact representation of uniform data
structure.

Art. Head. ' l~g ' Elem. Type and Length
!

Tag ! Object Addr./Immed. Object

Tag I Object Addr./Immed. Object '

Boxed A r r a y

Lq ~g 14
Arr. Head. ~ag Elem. Type mad Length

\ I #\R # \ T # \ S

\ G #\N

24 16 8 0
U n b o x e d Arrays W S T R I N G "

F o r w a r d i n g P o i n t e r s

Forwarding pointers redirect the reference to an object
transparently. They are used internMly by the system
to grow arrays, rearrange lists, and by the incremental
garbage collector.

C o m p a c t L i s t S t o r a g e

The upper two bits of each word uled for CONS storage
make up the car code [5]. In traditonai Lisp systems,
CONS objects have two words, one for the CAR of the
CONS, one for the CDR. When the conses make up a list,
half of the words point to the next CONS of the list. On

LP 1-6.14

the Explorer, a list can be stored as one block of memory,
using the cdv code to interpret the next word of the llst.
The cdv code can take four values:

• Nezt: The next word is the next element of the list.

• End: This is the last word of the list. Its CDR is
NIL.

• Cons: The next word is the CDR.

• Error: This is the last word of a CONS. Its CDR is
illegal.

A RPLACD on a cdr coded list will cause a forwarding
pointer to redirect the rest of the list to the new CDR.

1 42~ ~ ?.4 N

Next Symbol Tag. Addr. of FOO

Next Fixnum Tag 34

End Symbol Tag Addr. of BAR

C d r C o d e d (FOO 84 B A R)

The design of the memory model allows fast runtime type
checking because of its large tag space. Since every stored
object is tagged, the garbage collector has less context in-
formation to keep. It can be driven by the tag values.
However, the presence of partially tagged objects compli-
cates the garbage collector. Partially tagged object are
used in order to achieve acceptable storage compactness
on string and numeric arrays. The address space (128M
Byte) is considered small by today's standards. This de-
cision was made in order to use an industry standard bus
for memory access (NuBus).

E x e c u t i o n M o d e l

The machine uses a stack or pdi for its execution. There
is no visible register. Each function call has a ~ a m s al-
located. It contains the arguments, some return inform~-
tion, the local variables, and the temporary spa~:e of the
current function. The following diagram represents the
stack in a state where the current, executing function is
C, which was called by B, itself called by A.

Arguments for B

Return State for A

Locals for B

Argument 0 for C
Argument 1 for C

.

Argument N for C

Call-info for B

Saved Arg. Pointer for B

Saved Loc. pointer for B

Function Object B

Return PC for B

Local 0 for C
Local 1 for C

. . . . o

Local N for C

Working Space for C

m A P

__LP

~P

Call F rame Layou t

Instructions are divided in two classes:

• Mainops: They can have 0 or 1 address. 1 ad-
dress instructions include data movement (PUSH
and POP). They compute the effective address of
their operand by adding an offset to base address,
which can be:

- The beginning of the passed arguments (AP).

- The beginning of the current local variables
(LP).

- The top of the stack (SP).

- The current Function data constant portion.

- a higher]ex]cal context.

- A Flavor Instance.

• Auzops~ ~/lia¢ops: These instructions behave like or-
dinary Lisp functions. They get their arguments
on top of the stack and leave their result on top
of the stack. These instructions include a num-
ber of list primitives, specially optimlsed for speed
Ovw~vm Fro., ASSOC...).

The design of the instruction set allows for fast com-
pilation because the instruction set is optimized for Lisp.
It supports generic primitive functions. The compiler can
ignore type declarations and does not have to generate
instructions for runtlme datatype checks.

LP 1-6.15

The design of the instruction set allows for easy de-
bugging of complied code because most instructions map
directly into Lisp functions. With a minimum of experi-
ence, programmers can read disassembled code.

F u n c t i o n C a l l i n g

The virtual machine supports fast function calling in sim-
ple cases. It involves accessing the function argnment-
descriptor to check for the number of required arguments,
taking care of the &REST [1] argument, pushing the
saved context for the caller and branching to the first in-
struction of the callee. The optional argument defaulting
and key argument decoding is done by some code gener-
ated in the called function. The RETURN handles the
following: It makes sure that the returned values are not
allocated on the stack as temporary structure, it pops off
the arguments and the saved context, and pushes the re-
turned value(s) on the stack. There are several CALL and
RETURN instructions depending upon the complexity of
the call and the return.

Memory Management
The garbage collector is incremental [9] and generational
[6]. This neccessitates two runtime mechanisms called the
Read Barrier and the Write ~arrier. When the machine
reads an object that needs to be relocated, an exception
is raised by the machine and when the access is resumed,
the object has been relocated and a forwarding pointer
is stored in its place. A special forwarding pointer is in-
serted during an object write access, when an object of a
higher generation refers to an object of a younger gener-
ation. On generation collection, the generation roots are
contained in these forwarding pointers. The system optl-
mizes the placement of objects based on their inactivity.
Objects that have not been accessed recently are moved
to inactive regions.

3 The Explorer II C P U

The Explorer H CPU hardware consists of a Explorer Lisp
Microprocessor [8], an exteru~l writable mlcrocode mem-
ory, a virtual memory mappe]r and a high speed memory
cache.

Lisp Chip

1Vllcrocode
Memory

Virtual Memory
Mapper

Cache

Data Physical Address

Explorer I I C P U

The memory mapper is reponsible for implementing the
page fault and read/write barrier exceptions. The auto
transporter is able to follow forwarding pointers without
CPU intervention .This makes the incremental garbage
collector very efficient.

Since the Explorer Lisp Microprocessor is too fast for
the NuBus memory, a cache has been added. The cache
and mapper are accessed in parallel. On read, when the
reference is in the cache, the memory mapping operation
is aborted. For a cache miss, the mapper will access the
memory over the NuBus. On memory write, the data is
always written over the NuBus, even for a cache hlt.

The Explorer Lisp Microprocessor
The Explorer Lisp Microprocessor has been optimized in
order to implement the Explorer virtual machine.

Since the Virtual Machine executes mainly on the
stack, the top 1K words are cached on chip. Overflow
and underflow of the cache are checked and handled dur-
ing CALL and RETURN.

The Address bases of the instruction are materialized
by on chip registers and the effective address computation
is done in hardware, with prefetching on external memory
access .

The Explorer Lisp Microprocessor has extensive sup-
port for tag oriented computation:

s The 32 bit ALU is conventional. It can operate in
32 bit mode, or in a mode where the cdr code and
tag bits are ignored for the operation, and gener-
ated in the result in the same clock cycle.

• The ALU is complemented by a masker/barrel
shifter able to deposit any number of contiguous
bits in a 32 bit word taken from a 64 bit source.
This masker/shifter is used for tag extraction as
well as bit oriented and graphics instructions.

LP 1-6.16

• Multiway (up t o 128) branch is accomplished in one
cycle using a large dispatch memory. This is used
for generic operation dispatch.

• For runtime type checking, a tag clone memory
checks the tag portion of the operands during
ALU instructions and can generate a jump if the
operands don't belong to a specific tag class. This
is done during the ALU cycle.

Measurements of execution show that about 50% of the
executed instructions are one clock cycle instructions.

- t Scratchpad I

[[Tag [l Dispatchl [

1 [ciassl I RAM, I I

Decode

Data Virt Address

Lisp Chip D i a g r a m

4 The I v o r y P r o c e s s o r

The Symbolics Ivory Chip [10] is a VLSI custom micro-
processor which implements a complete Lisp CPU. It con-
tains the microcode ROM, a virtual memory mapper and
a memory controller. Its 40 bit word (2 cdr code bits ,
6 tag bits and 32 bit address) allows for a much larger
address space than the Explorer Lisp Microprocessor. In-
dustry standard 32 bit address and floating point format
are contained inside the reference field. A co-processor
handles the floating point cases of generic instructions.
The I-machine virtual machine [11] is derived from the
3600 machine architecture [7]. Ivory is on an evolution
path where two trends can be seen:

• Shrinkage of the microcode over time, and migra-
tion of low level functions into Lisp. The 3600 im-
plements the device drivers, page faults and some
other low level operating system functions in Lisp.
The Ivory goes beyond and implements some com-
plex instructions (BITBLT, CONS) in Lisp using
special primitives.

Migration of functions from separate hardware into
the processor. The virtual address mapping, mem-
ory control and memory error correction are imple-
mented on chip.

5 F u t u r e d i rec t ions

The future of specialized hardware lies in its ability to
keep pace with the development of conventional processor
technology. For this, some issues are of primary impor-
tance.

* As the IC technology evolves, the VSLI design of
the processor must be adapted to new VSLI pro-
cesses. In addition to having an adaptable design,
this issue requires powerful design tools which al-
lows for quick target technology adaptation.

• The architecture of the processor must support the
gain in speed due to IC technology improvement.
The critical data paths of the processor must stay
on chip, because off chip communication is going
to scale at a slower pace than the internal circuitry.
The microcode program memory is on one of these
critical paths. It will be essential to implement it on
chip or get rid of it. Some other areas of integration
are the data cache and the floating point hardware.

• The issue of integration with conventional lan-
guages and industry standard operating systems
will be more and more important. This can be
addressed by having the Lisp processor run con-
ventional languages, or by using a co-processor ap-
proach.

6 Summary

This paper has presented some motivation for specialized
Lisp CPU, described the Explorer virtual machine, the
Explorer II CPU, and the Symbolics Ivory CPU. Some
issues critical to the future of Lisp specialized processors
are listed.

References
[1] Guy L. Steele Jr. Common Lisp, Digital Press, 1984.

[2] CLO8 ANSI X3J13 Standing Document 87-002.

[3] Linda G. De.~fichiel, Richard P. Gabriel The Com-
mon Lisp Object System: An Overview, ECOOP'87
AFCET BIGRE + GLOBULE n ° 54.

[4] Richard P. Gabriel Performance and Evaluation of
Lisp Systems IVIIT Press 1985.

[5] D. G. Bobrow and D. W. Clark, "Compact Encoding
of List Structures', ACM Transactions on Program-
ming ILanouagu and 8ystemJ, pp 266-286.

[6] David A. Moon "Garbage Collection in Large Lisp
System', 1984 ACM Symposium on Lisp and Func-
tioncd Programming, pp 235..246.

LP 1-6.17

[7] David A. Moon "Architecture of the Symbolics
3600", Proceedings of the l£th $¥mpodum on Com-
puter Architecture, June 1985, pp 76-85

[8] Patrick Bosshart "A 553K-Transistor LISP Proces-
sor Chip", IEEE Journal of Solid-State Circuita, VOL
ac-~, nr 5, October 1987.

[9] H. G. Baker, "List Processing in Real Time on a
Serial Computer", Communicatiom~ of the ACM 21,
4(Apri: Ig78) zso-zg4.

[10] Clark Baker, David Chan, Jim Cherry, Alan Corry,
Greg Efland,Bruce Edwaxds, Mark Matson, Henry
Minsky, Eric Nestler, Kalmam Reti, David Sar-
razin, Charles Sommer, David Tan and Neil Weste,
"The Symbolics Ivory Processor, IEEE Interna-
tional Conference on Computer Deaign '87

[11] Bruce Edwards, Greg Efland, and Neil Weiste *The
Symbolics I-Machine Architecture", IEEE Interna-
tional Conference on Computer Deaign '87

[12] Ezplorer System Design Notre TI PN 2243028-001A.

QUESTION:
What is the difference between a squeamish housekeeper and the CLOS

metalanguage protocol?

ANSWER:
One really objects to fmding dead flies on the window sill after

using the Flit sprayer a bit.

The other is silly -- it redefines dead window objects on the fly,
but then BITBLT hasn't a prayer.

Richard P. Gabriel
and Guy L. Steele Jr.

March 16, 1988

LP 1-6.18

