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Welcome to the first appearance of this new Lisp Pointers department on Algorithms. It has' been 
noted by some editors that most Lisp hackers would rather write code than articles and I suspect that their 
reading preferences might run the same way. This department is an attempt to cater to those preferences. 
The articles you'll see here will tend to fit into one or more of three broad categories: 

• Annotated implementations of interesting and relevant algorithms that make 
particularly good or novel use of the unique features of the Lisp family of 
programming languages (e.g.. closures, continuations, code as data, polymorphism). 

• Annotated implementations of algorithms whose subject matter is the Lisp family of 
languages (e.g., code analysis tools, iteration facilities, generic arithmetic), and 

• Discussion of performance issues, benchmarking, or implementation experiences for 
interesting algorithms written in or about the Lisp family of languages. 

1 will be continually looking for ideas for appropriate articles for the department. If you've got a nice 
hack you're proud of, or a particularly elegant piece of code (you know, the kind that you call in one of 
your fellow hackers to see) and you'd like to see it written up in the Algorithms department, please send it 
along. What you give me doesn't have to be polished or even contain any prose: if I agree that it's 
appropriate for the column, I'll work with you to put together an article around it. My electronic and 
physical mail addresses appear above, so feel free! 

Our first topic for the department is syntactic extension, a mechanism known in most dialects of Lisp 
as macros. A lot of discussion on this topic has been taking place recently in both the Scheme and 
Common Lisp communities and one of the more comprehensive written pieces of that discussion is the 
Indiana University Ph.D. thesis of Eugene Kohlbecker, Syntactic Extensions in the Programming Language 
Lisp, submitted in 1986. 

Kohlbecker's thesis covers a lot of territory that I won't bring up here, but one of the most interesting 
pieces is a facility that he describes for the specification of syntactic extensions. He introduces a special 
form called e x t e n d - s y n t a x  that would fit into Scheme the way d e f m a c r o  fits into Common Lisp: that 
is, it's the form you use to define a new macro in the system. 
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In this column, rm going to ignore a number of  the interesting features of e x t e n d - s y n t a x  to 
concentrate on the piece that ! found most elegant, the little language in which both macro-call patterns 
and their corresponding expansions are written. A complete description of the facility, along with a formal 
semantics, appears in Kohlbecker's thesis. There is also a very good description and a large number of 
sophisticated examples in R. Kent Dybvig's fine book, The Scheme Programming Language, available from 
Prentice-Hall publishers. We'll first look at a few examples of  how the facility is used and then move on to 
the algorithmic aspect, talking about an implementation of ex t e n d-  sy  n t a x  also written by Dybvig, 

The canonical example of an e x t e n d - s y n t a x  form is this definition of the l e t  construct from 
Scheme: 

(extend-syntax (let) 
( ( let ((var val) 

. , , )  
exprl 
expr2 

((lambda (vat 
exprl 
expr2 
. ° . )  

val . . . ) ) )  

. . . )  

The symbol " ' . . .  "" is not. technically speaking, legal in either Scheme or Common Lisp, but we'll pretend 
that it is for the remainder of this column. 

An extend-syntax form starts with a list of keywords, special symbols that can appear in a use of 
the new macro and that match only themselves in the patterns found in the rest of the form. The first 
element of this list is always the name of the new macro. 

After the list of  keywords comes a series of  transcription clauses, each of which is a list of two elements, 
a pattern and an expansion template. To expand a use of a macro, the macro processor compares it to the 
pattern of each transcription clause. The expansion template of the first matching pattern is used to 
construct the transcription of the call. In the definition of l e t  above, there is only one clause: we'll see 
examples with more than one in a moment. 

Patterns and expansion templates are mostly made up of list structure and symbols. We refer to those 
symbols that appear in patterns and are not keywords as pattern variables, since they are, in a sense, the 
parts of the pattern that are allowed to vary. In the example above, the symbols var ,  va l ,  exp r l ,  and 
exp r2 are pattern variables. The symbols in expansion templates also fall into two categories: they are 
either occurences of pattern variables, or they are expansion constants. The only expansion constant in the 
example above is the symbol ] ambda. 

The most interesting and elegant thing about the patterns and expansion templates in e x t e n d -  
s y n t a x  is the use of the ellipsis (the " . . . "  symbol). Whenever a piece of a pattern is directly followed by 
an ellipsis, the pattern matcher will be looking for zero or more occurrences of that sub-pattern. The 
definition of l e t  says "exp r l  exp r2 . . . "  instead of  simply "exp r . . . "  so as to require, as Scheme 
does, that at least one expression always appear. We'll refer to sub-patterns that are directly followed by 
ellipses as iterated patterns and we'll say that the pattern variables appearing in iterated patterns are iterated 
pattern variables. 

TO avoid extra complexity and the need for any form of backtracking in the implementation, ellipses in 
e x t e n d - s y n t a x  patterns must appear at the very end of lists, as they do in the definition of l e t .  
Ellipses in expansion templates, though, are not constrained in this way. 
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In the expansion template, the ellipsis is again used to denote repetition, in this case of some sub- 
template. Somewhere within such an iterated sub-template, there must appear one or more iterated pattern 
variables: it is the appearance of such variables that "drives" the template repetition. The repetitions of the 
expansion will use successive values of those variables, in the order that the pattern matcher found them. 

Let's look at a couple more examples. The following definition of the cond macro from Scheme 
illustrates the use of both more than one keyword and more than one transcription clause. For those who 
are less familiar with Scheme. beg i n is equivalent to p rogn in Common Lisp. 

(extend-syntax (cond else) 
( (cond (else exprl expr2 

(begin 
exprl 
expr2 
. . . ) )  

. . . ) )  ; f i r s t  pattern 
; f i r s t  expansion template 

(cond (expr) 
more-clauses . . . )  

(or expr 
(cond more-clauses • . . ) ) )  

; second pattern 

; second expansion template 

(cond (predicate body . . . )  
more-clauses . . . )  

( i f  predicate 
(begin 

body . . . )  
(cond more-clauses . . . ) ) ) )  

; third pattern 

; third expansion template 

Finally. for a slightly more complex use of the facility, here's a definition of the e t y p e c a s e  macro 
from Common Lisp: 

(extend-syntax (etypecase) 
( (etypecase expr 

(type bodyl body2 . . . )  . . . )  

( le t  ((v expr)) 
.(cond ((typep v 

bodyl 
. . .  

( t  (error 

'type) 
body2 . . .  ) 

"~S is not of type -S" 
V 

' (or  type . . . ) ) ) ) ) ) )  

The variable v in the expansion template should, of course, really be a gensym'd symbol, but the 
e x t e n d - s y n t a x  mechanism for accomplishing this is outside the scope of this article. See the 
description in Dybvig's book for more information. 

With this intuitive understanding of the facility, let's begin considering Dybvig's very clean and 
elegant implementation. A complete listing of a simplified version of the code appears at the end of the 
column, along with some explanation of Scheme for Common Lisp programmers. 

In m y editing of Dybvig's code, i've dodged the question of how e x t e n d - s y n t a x is registered with 
the Scheme system. Since the Scheme specification doesn't yet cover macros, the details vary from 
implementation to implementation. It is assumed in the code that, one way or another, the function make-  
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s y n t a x  will be called with the list of keywords and a list of the transcription clauses from an e x t e n d -  
s y n t a x form. its job is to translate that specification into the 1 arab d a-expression for a function mapping 
macro-call forms to their expansions. Thus, for the definition of l e t  given above, we assume that the 
following call takes place: 

(make-syntax ' ( le t )  '( ( ( le t  ((vat val) . . . )  exprl expr2 . . . )  
((lambda (var . . . )  exprl expr2 . . . )  val . . . ) ) ) )  

The value returned from this call would be the following ] ambda-expression: 

(lambda (gO01) 
(cond ((syntax-match? '(let) 

'(let ((var val) 
exprl 
expr2 
, , . )  

gOOl) 

. . . )  

"((lambda (,@(map (lambda (gOO2) ,(car gOO2)) 
(car (cdr gO01)))) 

,(car (cdr (cdr gO01))) 
,@(map (lambda (gO03) ",gO03) 

(cdr (cdr (cdr gO01))))) 
,@(map (lambda (gO02) ,(car (cdr gO02))) 

(car (cdr gO01))))) 
(else 

(error ' le t  gO01 "invalid syntax")))) 

Not a pretty sight, eh? It does work, though. The variable g001 is bound to a given l e t  expression 
and the function s y n t a x - m a t c h ?  performs the pattern-matching. The first call to map in the expansion 
is constructing the argument list for the resulting l ambda; it maps over the c a d r  of g001 (the list of 
bindings in the l e t ) ,  returning a list of the c a r s  (note that ",expression is equivalent to simply 
expression). The expression ( c a r  ( c d r  ( c d r  g001)  ) ) is extracting the value of the pattern variable 
exp r l ,  and the second call[ to map is splicing in the expressions covered by "exp r2 . . .  ". The final call 
to map again maps over the binding list, this time extracting the cad rs. 

This code is not terribly readable and, in fact, I've done Mr. Dybvig a bit of a disservice by presenting 
only this simplified version of his implementation. The code generated by the real implementation is the 
following: 

(lambda (gO01) 
(cond ((syntax-match? ' ( l e t )  

' ( l e t  ((vat val) . . . )  
exprl 
expr2 
. , . )  

gO01) 
"((lambda ,(map car (cadr gO01)) 

,(caddr gO01) 
,@(cdddr gO01)) 

,@(map cadr (cadr gO01)))) 
(else 

(error ' l e t  gO01 " inval id syntax")))) 
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! leave it as an exercise to you readers to find the small number of tweaks to the code that make it generate 
this much prettier output. 

Now that we know where we're going to get, let's look at how the implementation, which is much 
prettier than its output, gets us there. The expansion function is always of the form 

(1 ambda (form-var) 
( con d --one coati-clause per transcription clause-- 

(else 
--signal an error--) ) ) 

and is put together by the function m a k e - s y n t a x .  That function calls m a k e - c l  ause  to construct each 
of the cond-clauses, which have the form 

( ( s y n t a x - m a t c h ?  'keywords 'pattern form-var) 
-- q u a s i quo to-expression based on the pattern and the expansion template-- ) 

Thus, the pattern in each transcription clause is :used for two purposes: first, to determine which cond- 
clause to select and second, to label the parts of a macao-call form that will appear in the expansion. The 
function s y n t a x - m a t c h ?  is a reasonably ~raightforward recursive procedure that walks along the 
pattern and the macro-call form in parallel, checking that they have the same tree-structure and that the 
macro-call contains the keywords at the places indicated in the pattern. The only interesting case occurs 
when the matcher finds an iterated sub-pattern: in such a case, the sub-pattern is recursively matched 
against each element in the remaining tail of the macro-call form. 

A more subtle problem concerns the translation of a pattern and expansion template into a 
q u a s i  q u o t e  expression that does the right thing. (See the notes on reading Scheme programs at the end 
of this column for the meaning of q u a s i q u o t e.) The implementation does this in two phases: parsing the 
pattern and generating the code. 

The idea of the parser (implemented by the function p a r s e )  is to summarize the the semantic content 
of  all the pattern variables in some form that's convenient for code generation. In essence, the generator 
needs to know how to extract the appropriate piece of the macro-call form given only the name of one of 
the pattern variables, if  no ellipses were present, the problem is simply one of associating the names with 
expressions that evaluate tothe appropriate piece of the form. 

Suppose that the pattern was as follows: 

(fooa (b c) (d e) ...) 

and assume thatform-var is a variable bound to ~e macro-call form. The parser can associate the names a. 
I0 and c with the following forms respectively: 

( c a r  ( c d r  form-var)) 

(car (car (car (cdr form-var))) )  

( c a r  ( c d r  ( c a r  ( c d r  ( c d r  form-var) ) ) ) )  

(Isn't it fortunate that we, the users of e x t e n d - s y n t a x ,  can write in terms of patterns and templates 
rather than such expressions?) The representation of the iterated pattern variables d and e is accomplished 
by a little trick: the implementation makes up a new pseudo-pattern-variable that represents all of the 
macro-call form that's matched by the iterated sub-pattern. Thus, in this case, it might make up a variable 
g004 and associate it with the expression 

( c d r  ( c d r  ( c d r  form-var))) 
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Such variables will be used by code generation as iteration variables in loops. The variable g004 will be 
bound in the generated code to each of the elements of the list that's the result of the above expression. As 
will be seen later, while such iteration variables are associated by the parser with expressions yielding lists 
of values, the code generator will end up binding them to the individual values in those lists. 

Given this structure to work from. the pattern variables d and e can now be associated with 
expressions in terms of 9004. rather than forrn-var. To be exact, d and e could be associated with these 
expressions, respectively: 

( c a r  g004)  
( c a r  ( c d r  9004) )  

Let us now give the names to these concepts that are used in the implementation. Each pattern 
variable (real or made up by the parser) is represented by an "i  d" structure with three fields: 

name - For real pattern variables, this is the name given by the user in the pattern itself. For the 
pseudo-pattern-variables made up by the parser, this is a gensym'd name to be used as an 
iteration variable in the generated code. 

a c c e s s  - This is the expression to be associated with this variable; the expression tells the code 
generator how to access the part of the macro-call form corresponding to this pattern 
variable. 

con t re  1 - For non-iterated pattern variables, this is the empty list. For Variables inside ellipses, 
such as d and e above, this is the i d structure for the corresponding iteration variable, made 
up by the parser. 

Thus. the i d structures for the variables a, b, c and g004 would have null c o n t r o l  fields, while those for 
d and e would point to the i d structure for 9004. 

Note that the chain of i d structures through the c e n t  t e l  field could be arbitrarily long, depending 
only on how many times iterated sub-patterns are nested in the pattern. For example, consider the pattern 
variables t y p e  and body2 in the definition of e t y p e c a s e  earlier. The variable t y p e  is inside one 
ellipsis, but body2 is inside two. Thus, the parser would make up an i d structure to represent the outer 
ellipsis (name it g005)and give it the access expression 

( c d r  ( c d r  form-vat)) 

and a null c e n t  ro l  field. The i d structure for t y p e  would have the access expression 

( c a r  g005)  

and its c o n t r o l  field would point to the i d structure for 9005. To represent body2, though, a second, 
nested iteration variable is required. The parser would create another i d structure (name this one 9006) 
with the access expression 

(cdr (car 9005)) 

The c e n t  ro l  field for this i d is the i d structure for g005. Finally, body2 would get an i d whose access 
expression was simply "9006" and whose c e n t  ro l  field would point to the i d structure for 9006. Thus, 
the parser would have recorded the fact that body2 appears two levels deep in ellipses by giving its i d 
structure a c o n t r o l  chain that's two steps long (from body2 to 9006 and from g006 to g005). 

Given this understanding of the data structure in use, the function p a r s e is easy to read. (Recall that 
a complete listing of the implementation code appears at the end of the article.) It takes four arguments: 
the list of  keywords (so that it won't generate i d structures for them), a piece of the pattern, an access 
expression to get this piece of the pattern, and the value to be placed in the c o n t r o l  field of any new i d 
structures. The parser returns a list of  the i d structures it creates. 
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The code-generation phase is carried out by the functions gen and gen-1  oop. Once the list of i d 
structures has been constructed by the parser, the job of the code generator is a fairly simple recursion over 
the structure of the expansion template. The generator returns a quasiquotte-expression (like a 
backquote-expression in other Lisp dialects) that evaluates to the proper expansion text. 

When symbols are found in the expansion template, they are looked up in the list of i d's: ifa match is 
found, then this is one of the pattern variables. The generated code is an unquotte (like a use of comma in 
other Lisp dialects) wrapped around the access expression associated with the pattern variable. Symbqls 
that are not the names of pattern variables and all other atoms are treated as constants in the expansion 
template and are simply returned as-is. 

For list-structured expansion templates, there are two cases, depending upon whether or not the first 
element of the list is immediately followed by an ellipsis. If it isn't, then the code generator can simply 
recursively descend both the c a r  and the c d r  of the template and cons  the resulting code together. For 
the iterated case. however, some more mechanism is required. 

Ellipses in the expansion template must be translated into loops that map over some pieces of the 
macro-call form. each time executing the code generated for the iterated sub-template. For example, recall 
the f o o  pattern given as an example in the discussion of parsing above. If the corresponding expansion 
template were the following: , 

( b a r  (a  b c)  (e  d) . . . )  

then the code generated for the "( e d ) . . . ' "  piece would involve a loop looking something like this: 

(map ( l ambda  (g004)  " ( , ( c a r  ( c d r  g004) )  , ( c a r  g 0 0 4 ) ) )  
( c d r  ( c d r  ( c d r  form-var)))) 

But how is the code-generator to know what to loop over? The answer is that it is determined entirely 
by which pattern variables are used in the iterated sub-template, Each one's chain of con tt ro l variables 
indicates the names of the variables that need to be bound in the loop and also the expressions over whose 
values the loop is supposed to map. In the case above, because the variables e and d appeared in the 
iterated sub-template, their common c o n t r o l  variable g004 was bound in the loop and g004's access 
expression provided the value to map over. 

The code generator therefore passes around an extra argument aside from the piece of the template 
and the list of  i d structures; each call to g e n also includes a list of structures representing the loops inside 
of which the current piece of the template is nested. These loop  structures are very simple, having a single 
"i  ds'" field that will hold a list of  the i d structures for the iteration variables to be bound in that loop. 
Each time the generator comes across a pattern variable, its chain of c o n t r o l  variables is traversed one- 
by-one in parallel with the list of  surrounding loops: the current c o n t r o l  variable is added to the list of 
i d's in the current loop. (This traversai is carried out by the a d d - c o n t r o l  t procedure.) Thus, in a 
sense, the pattern variables are responsible for recording their iteration needs in the list of  1 oop structures. 
The loop-generator then uses that information to construct the looping form. 

So finally we can see how the iterated sub-template case of the code generator should work. It 
recursively generates code for the sub-template, passing along a new list of  Ioop structures that includes a 
freshly-minted one for this loop. The information stored into that new 1 oop structure then guides the 
construction of a map expression that will contruct a list of expansions. This map expression is wrapped in 
an u n q u o t t e - s p l  i c i n g  expression (like a use of comma-at-sign in other Lisp dialects) and the lot is 
consed onto the generated code for the the part of the template following the ellipsis. 

The interested reader of the code should now be able to understand precisely how the expansion 
function for 1 ett expressions, shown earlier, was generated. Because every step of the parsing and code 
generation is simple, only a few simple idioms appear in the final code. With a little more complexity in the 
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implementation, the nicer-looking (though not very much faster-executing) code produced by Dybvig's 
unsimplified algorithm can be produced. 

As I mentioned at the beginning of the column, the version of e x t e n d - s y n t a x  described here is 
somewhat simpler than the true version implemented in the Chez Scheme environment. That version 
allows for selectively escaping from the pure world of pattern-matching into arbitrary Scheme code and for 
adding an extra condition, written in Scheme, to each transcription clause in order to more finely control 
when a given clause will be selected. ! encourage those of you with an interest to take a look at the full 
description in Dybvig's book and then to try adding support for the missing features to this 
implementation. 

One final puzzle for the reader: about the tenth time that ! used e x t e n d - s y n t a x  for a real macro in 
my work, I discovered that there was a facility missing from the ellipsis mechanism that could greatly 
simplify certain macros. It concerns the desire occasionally to apply an ellipsis to more lhan one sub-pattern 
or sub-template. For example, suppose that I wanted to implement a "flattened" version of 1 e t  in which 
the parentheses around each variable-binding are not given. That is, the form 

( f l a t - l e t  (a 1 b 2) body) 

should expand into 

( le t  ((a I) (b 2)) body) 

Working in the other direction, i might want to implement another version of 1 e t  that takes two variables 
and two values in each binding. Thus, the form 

(doublet ((a b I 2) (c d 3 4)) body) 

should expand into 

( le t  ((a 1) (b 2) (c 3) (d 4)) body) 

It is somewhat problematical to implement these with the simple extend-syntax given here. But 
suppose that I could "group together" sub-patterns and sub-templates with the symbols { and } for the 
purposes of ellipses. Then, I could write these two macros as follows: 

(extend-syntaX ( f l a t - l e t )  
( ( f l a t - l e t  ({ var val } . . . )  body . . . )  

( l e t  ((var val) . . . )  body . . . ) ) )  

(extend-syntax (doublet) 
( (doublet ( (var l  var2 val l  val2) . . . )  body . . . )  

( le t  ( { (var l  va i l )  (var2 val2)} . . . )  body . . . ) ) )  

Canyouseehow ~ elegantlyaddthis ~nctionality ~theimplementation we'veseen? 

Well, that ties it up for this issue. On the next few pages you'll find the notes on reading Scheme for 
Common Lisp programmers followed by a complete listing of the code for the implementation. If you 
have comments on the algorithm or implementation, please send them to me: I'll pass them along to Mr. 
Dybvig as appropriate. 

Finally, remember this: whether you've got a cute hack or an elegant example of Lisp code as Art, 
send it along, l'm also open to suggestions, comments and/or criticisms of the column, so feel free! 
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Some notes on Scheme for Common Lisp programmers 

The implementation discussed in this issue's column is written in Scheme. but should be readable by 
most Common Lisp programmers. There are a few features of the Scheme language that deserve 
explanation, though. 

Scheme uses the notations # t  and # f  to represent the boolean values true and false. 

Several functions exist in both Scheme and Common Lisp. but with different names. O f  particuPar 
interest for this issue are the Scheme functions p a i r ? and map. which correspond closely to the Common 
Lisp functions c o n s p and m a p c a r. respectively. 

Scheme does not treat the names of functions differently from normal variables. It thus does not need 
a facility akin to the f u n c t i o n special form in Common Lisp. Where a Common Lisp program might say 

( m a p c a r  # ' ( l a m b d a  ( f )  ( f u n c a l l  f 2 3 ) )  
( l i s t  #'+ # ' *  # ' - ) )  

the equivalent Scheme program is 

(map (lambda ( f )  ( f  2 3)) 
( l i s t  + * - ) )  

Both programs yield the list ( 5 6 - 1 ). 

The Scheme form 

(define (name arg ...) 
body . . .  ) 

is analogous to the Common Lisp form 

(defun name (arg ...) 
body ... ) 

While Scheme supports roughly the same backquote/comma notation as Common Lisp. it treats them 
somewhat differently at read time. In the same way that both languages specify that ' foo reads as the list 
(quote foo). Scheme specifies that "foo reads as (quasiquote foo). that ,foo reads as 
(unquote foo). and that ,@foo reads as (unquote-spl icing foo). Thus. programs can write 
code using the backquote/comma facility without having to go through the reader. 

Finally. Scheme provides an iteration facility known as "'named I e t " .  The form 

( I e t name ( ( varl expr~ ) 
. . °  

( var~ exprk ) ) 
body . . . )  

is much like the Common Lisp form 

( l a b e l s  ( (name  (varl ... vark) 
body ..,)) 

( name exprl ... exprk) ) 

except that, in Scheme, the exprs are not in the scope of  name. The named 1 e t  form is a very convenient 
notation for simple loops and recursions. 
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