
Dynamic Extent Objects
CHRISTIAN QUEINNEC

UUCP: , . ! n © v a x ! : t . n r l a ! l l t p ! q u e t n n e c

INTEB~ET: que:J.nnec@lttp, un.tp6-7, f r

Laboratoire d'Informatique Th4orique
et de Progr~mmation

Universit~ Pierre et Marie Curie - Paris VI
4, Place Jussieu - 75252 PARIS Cedex 05 - France

Greco de Progr~mmation

June 16, 1988

A b s t r a c t

Lisp objects are heap- rather than stack-allocated because thek extent is generally indefinite. Since
8tack-deaUocation k performed without running the garbage collector, speed hnprovementJ are expected.
Dedicated hardware can stack-allocate objects associated with reference counters or mJcrocode daemons such
that one can exactly know the status of the object to be deallocated and perform whatever appropriate
treatment (usually a copy in the heap) according to its reachab~ty. How~var such a solution k not e~cient
on stock hardware.

This paper presents and analyses a new technique to efficiently solve this problem. It creates first class
dynamic extent objects (DEe) that are stack-allocated, permits to access them only while they are in the
stack and prevent to follow up dangling pointers. Every msual indefinite extent object has its counterpart as
a D E e associated with the same set of operators. Finally D E e do not require dedicated hardware and may
be properly compiled. The technique can be used within other programming Innguages. Some performance
figures are discussed at the end of the paper.

1 I n t r o d u c t i o n

Lisp world is two-fold: there is a stack tha t contains continuations and pieces of environments, and a heap
where are allocated ahnost all objects (cons-cells, strings, arrays, code . . .). Since objects extent is usually
indefinite and cannot be simply bounded, they are heap.al located ra ther than stack-allocated; deaUocation is
then left to the Garbage CoUector. A typical l e t form such as

(l e t ((temp (foo)))
(bar t a p temp))

seems to introduce a stack discipline but tha t depends of the meaning of ba r . For example:

(d e f i n e (f o e) ; compute8 the 1010*°th alec~ma~ o / l r
• . .)

(d e f i n e (b a r n p)
(p r i n t n) (p r i n t p)
t)

II-l.ll

Covvri2ht 1988, Christian Queinnec

DYNAMIC EXTENT OBJECTS C. QUEmNEC

(let ((t a p (foo)))
(bar reap tenp))

is stack obedient while

(def ine (~foo)
(l:Lst 1 2 3 4))

(def:Lne (bar n p)
(nconc n p))

(let ((tamp (~'oo)))
(bar reap reap))

is definitely not. In the first case, after ex/ting the l e t form, the value of reap c u be scavenged since nothing
can point on it: reap can then be stack-allocated. In the second case since the value of temp is part of the value
of the l e t form, its extent cannot be known from the sole inspection of the l e t body nor from the body of
bar, it must probably be heap-aflocated. One cannot stack-allocate it since subsequent growth of the stack will
overwrite the value. Moreover the recently heed part of the stack cannot be guaranteed to remain unchanged
since garbage coUector or interrupts often use the complement of the active part of the stack.

However stack-ailocation is efficient and widely used in classical programming languages as C or Pascal
where the prevention of dangling pointers is left to the user: a fact Lisp cannot agree with ! Nevertheless some
compilers can stack-aJlocate objects which can be proved to obey a strict stack discipline. Among others ORBIT
[3] can stack-allocate contexts of some closures (typically lanbda in nap forms) while Symbolics Common Lisp
[11] offers stack-lists and stack-allocated variant of krent [9]. Moreover dynamic extent entities exist in Lisp.
These are special bindings from identifiers to values or from labeis to continuations. One can hope to extend
this behaviour to more tangible objects.

Compared to incremental or concurrent GC, using dynamic extent object is rather cheap and provides
a valuable alternative. Mo~sover stack discipline is approximatively respected except that scope and size of
resources needed for a computation are difficult to fwesee.

Our aim is to describe an efficient way to access, stack-allocate and stack-deallocate first class dynamic
extent objects providing a good compilabitity, avoiding birth of dangling pointers and, substantially better,
detecting any attempt to follow a reference to obsolete object. DEO must support the same set of operations
that their indefinite extent counterpart support and access to DEO must not be restricted to a lexical scope
which restrict their use.

To present our proposition, we first define a denotational semantics for a tiny Lisp Kernel offering a new
special form, similar to l e t , that al]ocates a cons-ceil in the stack, binds it to a local name and evaluates the
body in that new environment. The cons-ceil is deallocated at the end of the body without any assumptions to
the final value of this body. This scheme is not very interesting with cons-cells but can easily be extended to
vectors, structures or bounded strings . . . The second part presents a raw implementation Of this new special
form that will be enhanced in a third part. In the fourth part will be discussed some performances.

2 The Lisp Kernel

To simply expre~ the technique we will use a small Lisp Kernel in the spirit of Scheme [8]. It will be defined
by a denotations/semantics [10]. The equations will use an environment p mapping identifiers to locations, a
store o mapping locations to values and a continuation ~ which encodes the rest of computations. We do not
give full equations and restrict ourselves to what is really necessary. The notation is surnmarised below

£(~') The meaning of the form x"
p[z ~ i] Substitution "p with z for i"
< e,, e2 > Binary sequence formation

The function e is not explicitely defined. C ~r I invokes after the syntaxic category of Ir the correct semantical
function explained below. Thus e ly] invokes identifier while £[(IBbda(v)~r)] calls abstraction.

The primitive domains are

II-l.12

DYNAMIC EXTENT OBJECTS C. QUEINNEC

,~o'pl¢,
C ("9 (o, p,,~,a,.

C(,r,)(e,, p,~,,=2.

w h e r e u = newlo.e~o~(o2)))

The new special form is called d y n s s i c - e x t e n t - c o n l - l e t (we shall abbreviate it to Dconslet). We restrict
ourselves to only one variable, one cons-cell allocation and a one-form body. It8 syntax is

(Dconslet (v f f,) f2)

and its formal definition is

ffa,zbr.dconalet(v, ~r, ~,, Ir2) =
Aop~.

C(.)
(o, p,Z~o,.

(o,, p,O~e, 02.
t (,~2)

,,(,,, ~,{~ ,- oboot,~-~o.-obj, c,l))
w h e r e a = ne.locat~on(o2)))

obsolete-dcons-object is the bottom element of domain Cons thai is to say I Cons • The di6erence
between the two previous forms is the final store. The equation for dcomJlet suggests a stack-allocation of the
freshly created cons-cell associated to a deallocation when exiting the body of the dcons le t . Although written
for a dynamic extent cons-cell, the lattest equation can also deal with any other DEO such as vectors, arrays,
stractures or bonnded strings.

3 Related Implementa t ions

The first implementation of dynamic extent objects that come to mind is to allocate them in the heap combined
with a flag which indicates their validity. Deallocation is simply achieved by changing the flag to mean
"obsolete". The GC will be responsible for scavenging them.

[reference I ~ I f l a g] object

Since garbage collection of varisised objects is p2;-ful, one can choose to stack-allocate the object but to

I

leave a handle with a flag in the heap. Something like

~ Heap back pointer

I flag Ist ack.axidres, J-....~ ob!ect

handle

back pointer to remove entry

II-I .14

DYNAMIC EXTENT OBJECTS C. Qu~mmzc

The GC is still responsible for recycling the handles but since they have a fLxed sise they can be grouped in a
common area and recycled there.

4 Feas ib i l i ty

We present a first raw implementation to explain the theory of operation. We shall tune it in the next section.
If we roughly allocate an DEO in the stack, the problem is to construct an indefinite extent reference to it

with the following properties:

• until being deallocated, the reference to the object must lead to its st~ckoaddrees,

• after being deallocated and whatever the stack can be (shrunk or grown) the reference must forbid any
access to the fields of the former object.

The reference cannot only be the at~ck-addrees since it would violates the second requirement. The reference
must provide a way to check if the stack still cont~i-- the object. We then propose to uniquely number the
DEO. We then record the association betw~n these numbers and stack-addresses in a hash-array indexed by
these numbers. Access to a DEO is done through

1. access to the hash-array, with the number of the wanted DEO,

2. check if the DEO is still in the stack and get its stack-address.

3. extract from the stack the desired field of the DEO

It is the responsibility of the deallocation process to remove the cmTesponding entry from the hash-array thus
forbidding, given a reference, to obtain the associated stach-address.

If we used tagged pointers and dynamic extent cons-cells then the previous technique will look like

I DCONSl i DS.ay
Stack

DCONS frame

P
CAR yule
CDR V~ue

back pointer to remove entry

The deallocation process just removes the entry thus making the reference now erroneous, car, cdr,
rp laca and rp lacd will then raise an error. The hash-array looks like a set of handles from references to
objects, maintained by allocation and deallocation processes. Mcfe precisely we can name DH this hash-array
and Dcons\ 1 (for allocation), Dcmr, Dcdr, Drplaca, Drplacd, Dconsp (to check if the object is still accessible),
Duncons (for deallocation) the operators to deal with dynamic extent cous-cella. Except Dcons and Duncons,
all of them can be directly invoked by the user. Dcone and Duncons are only part of the opaque definition of
the Dconslet macro, but are simpler to be described as functions.

(defnacro D c o u l e t ((i d ca r -va l cd~-val) body)
' (l e t ((, i d (Dconu , ca r - re1 .cd~-val)))

(unwlnd-protect , body •
(Duncone , Id))))

tWe chore to prefix usual cona-celk operlstora by • D but thm spocialiNd methods can be added to prmsxisting generic functions
such M first , rest . ..

II-l.15

DYNAMIC EXTENT OBJECTS C. QUEINNEC

In order to allocate: Dcona builds a new frame onto the stack named Dcons-fr tae, with the two usual
fields of a cons-cell (cat and cdr fields) and a back pointer to allow the removal of the cmTesponding entry in
DH.

(de:fun dcons (caz-va l cdz-val)
(l e t* ((p (naw-nunber))

(alpha (push-:frame 'Dcons-fxane
p car-veX cdr -va l)))

(s e r f (gethanh p DH) (set-DynF.xt-addzese alpha))
(nake-zefezence 'Dcons p)))

new-number returns a new number for a new dynamic extent object. It can be implemented by a global
counter regularly incremented as

(let ((DynY.xt-counter - I))
(de:flne (new-nuaber)

(eetq DynExt-countez (i+ DynF.xt-countez))
l)ynF.xt-counter))

(push-:fzane type . a r g t m e n t s - o : f - t h e - : f r m) pushes a new frame onto the stack and returns the stack-
address of the frame. To this address get-DynExt-addzeee adds an offset to get the direct stack address of
the dynamic extent cons-ceiL

nake-ze:fezence builds a pointer onto the pth DEO which type is Dooms. In a tagged architecture, the
reference is compound of a tag (Dcone) and an information (p, the dynaJnic extent cons-cell number).

Dear and others are are all built on the same model. We resume references to be regular Dcous references.

(de:fun Dcaz (reference)
(le t * ((p (extzact-l)ynF, xt-numbez reference))

(alpha (gethanh p DH)))
(i:f alpha (take-caz alpha)

(erzoz "Obsolete Object"))))

extzact-Dynext-nunbez is • reciprocal to make-reference. It extracts the number- c/~ the dynamic extent
object from a val/d reference built by nake-zefezence. Dcaz checks ff the object is still in the stark (alpha is
not n i l) and pe~orms a car on the obtained stack-address (by take-caz) . No~e that errors are only ra~ed
when one tries to access part of a dynamic extent object. It is therefore legal and safe, but not very useful (and
contrary to dynamic extent sph'/t) to return an obsolete reference outside the Dconslet scope as can be seen
in

(Dconslet (L I 2) (equal L (Dconelet (L I 2) L)))

The result is obviously false since one compares two dlferent references, one of which being obsolete.
We slightly lie in the opaque macro definition for Dconslet where, given a reference, the deallocation is

explicitely done by the user. A real implementation dealiocaZes the DEO while unwinding the stack, that is to
say invokes Duncone on a frame-address and not on a reference. This l~ter version follows. Duncons deallocates
the frame and cleans up DH.

(de:fun Duncon8 (fzamo-addzoss)
(l e t ((p (extzact-DynExt-nunbez-:fzom-frame f rame-address)))

(renhash p DH)
(pop-:frane :fzane-eddress)
t))

II-l.16

DYNAMIC EXTENT OBJECTS C. QUEINNEC

Given a Dcons-frame address, ex t r ac t -Dyn ex t -nuabo r - f ron - f r aae extracts the Dcono-number from the
frame.

/f we want to be more preciso, we must exhibit the way such references behave under garbage collection.
Marking is simple since we have only to follow the references only when permissible.

(defun mark (r e f e rence)
(se t -aazk reference)
(let8 ((p (extzact-DynZxt-numbez reference))

(alpha (gethash p DH)))
(i f alpha (hark alpha)

n l l)))

and naturally we can collect every unmarked references. Remark that it is not interesting to collect unmarked
but valid dynamic extent objects ! They will be automatically deallocated when the stack is unwound.

The cost of this raw implementation is high since Dcons and Duncons madnly involves updates of DH, while
Dcar and others require one access through DH. The next section will lessen it.

5 E n h a n c e m e n t s

We discuss in this section some variations in order to l emn the price of acce~ to DEO. The main cost k due
to the DH hash-array which involves index computation and collision handling. The first cost can be reduced if
we arrange DH to be an array with some power of two entries. Therefore the hash function can be as simple as a
logical AND: a simple instruction on mainly all computers. The collision handling can be avoided if we manage
to avoid any collisions ! This is possible since new-number can choose s good number which corresponds to a
free entry in DH. For example, with the previous scheme, any number greater than DynF.xt-counter is possible
and new-number can choose the first one which leads to the next free entry of DH.

The access now looks like

I DCO Sl P I DH, pha

. ~ hp p
hp = p m o d 2 a

l DHsise = 2hentries

;tack

DcONS k~me
hp

- CAR Value

DHmru

J
back pointer to remove entry

DH is no more an hash-array but a set of two vectors DHp and DHalpha. DHp records the dynamic extent
objects numbers while DHalpha contains the associated stack-addresses. Dcaz and s/m/larly Dcdz, Drplaca and
Drplacd become 2

(defun DCaZ (reference)
- (let* ((p (extract-DynExt-numbez reference))

(dh *cuzzent-DH*)
(hp (nod p [DHslze dh])))

(if (= (azef [D~p dh] hp) p)
(take=car (azef [DHalpha dh] hp))
(DHezzor "Obsolete Object"))))

SFor reasons that will soon appear dearly we mmJt use the current DH table: we then write [D b l s e dh] instead of accessing
the global variable DHslze. In fact, DH can be modeJisod by a structure with at leMt slots Dllslse, DHp and DHalpha. Structures
accedes are emphu i sod by square brackets.

II-l.17

DYNAMIC EXTENT OBJECTS C. QUEINNEC

An access is then compound of a mask operation (nod), an indexed load (a r e f) , a test (=) and another indexed
load followed by the s tandard c a r operation. As we said, t k k cost is not so high and is only a maximal cost
which can be reduced by compilers in good situations. However we can estimate the maximum cost of Dear to
approximately five to seven times the cost of a c a r on an a v e r s e stock hardware computer.

Two problems can arise:

• DH is exhausted,

• new-number f a ~ to find a good number.

The sise of DH (DHsize) is the total number of permit ted DEO that can simultaneously reside in the stack.
DHeize must then be related to the length of the stack. When DH is exhausted, some solutions must be taken.
The cheapest way is probably to map Dcons on cons thus allocating in the heap ra ther than in the stack
according to one of the two first ways given in section 3. The other solution is to double the size of DH and to
rehash all entries.

The implementation of new-number follows directly from the previous section: a global counter DynExt-
c o u n t e r is maintained for the whole DH table. The problem is to minimise the growth of the counter, that is
to say, to choose the lowest number greater than DynF.xt-counter and corresponding to a free entry of DH. We
name DJhnzu a pointer correspondiug to the most recent used entry in DH. Then new-number is

(de f un new-number 0
(b lock found

(r e p e a t [DHsize *cmrzent-DH*]
(setq Dyn,F.xt-countez (1+ DynExt-countez))
(s e t q DHmru (nod (1+ DHmzu) [DHsize ecuzTsnt-DH*]))
(i f (equa l (a z e f DHp DHmzu) D H fzee -en t ry)

(zeturn-fzon found DynF.xt-countor)))
(error nDH exhausted n)))

The algorithm is at its best when DH is sparse since then Dynll'.,xt-countez ~ not grow too quickly. But a
new problem arises: DynExt -coun tez can over~ows. This problem will be soon addressed.

6 W h e r e to p u t DH

If the DEO stack allocation is to work well, everybody will use it and it will increase references to the stack and
to DH. The stack will be bigger since it will contain environments, continuations but also local data. Dedicated
hardware with the top of the stack in the main processor will have considerably more stack page default but
this will be partially corrected by the fact they have a stack cache. On the other hand dedicated hardware do
not often have a heap can:he, thus DH must not reside in the heap. The best way is then to allocate DH in the
bot tom of the stack but we can fortunately remark that DH ~ itael/a DEO !

Suppose DH initially in the bot tom of the stark. We want to create a new DEO and we must make room
for its entry in the current DH. If DH is saturated then we must use a greater DH which extent is precisely the
extent of the new DEO. So

• We stack allocate a new DH of greater sise (two or four times the previous sise),

• and we initialise the new DH w/th the old one and make the new one current. The haeh-function is now
a new mask operation. If we double the sise of DH, we then take one more bit in the reference number to
get the entry number.

- We now allocate the new DEO,

- resume computat ion . . . and on return

- we deallocate the entry

II-l.18

DYNAMIC EXTENT OBJECTS C. QUEINNEC

• we synchronise the old DH table with the current one (Dyn~:xt-counter has been incremented and Dltmru
must respect DHm.ru = DynExt-counter mod DHsize),

• we deallocate the current DH table,

• and we make the old Dll table again current.

The greatest possible number of DH entries is bounded by the greatest p~sible reference number. This
number is approximatively *moet-poei t ive-f ixnum. and rarely under 215 I

7 Cooperat ion with the GC

When DynF.xt-counter overflows (ie. can be no more a ffiznum) we cannot use b/fnuma since they are heap
allocated I We are thus constrained to reuse the same set of reference numbers. But at a given time, at
most OHsize reference numbers are valid since DH can contain at most DHaize DEe simultaneously. Other
reference numbers obviously correspond to obsolete objects. A solution is to invoke the GC (or only the sweep
phasis) to renumber all references. If a reference number p designate &]/ving DEe we can then renumber it as
(p mod DHaize) and in case of obsolescence we can just turn it into .J. Dcons so future access will be more
quickly erroneous.

8 Performance Analysis

Performance analysis is quite difficult since we have to compare prices of heap-cone operations versus stack-
cons operations. The former are very dependent of the performance of the GC whi/e the latter cannot be
approximated by an implementation in Lisp. A proper implementation of D c o u l e t requires access to the
virtual machine below the Lisp system and particularly the ability to push and pop frames onto the stack.
Nevertheless the DEO mechanism presented so far does not induce runtime overhead when one does not use it.

However we can examine the behaviour of the algorithm managing the DH array. Since now-mmber guesses
a number corresponding to a free entry in DHp, bad cases may occur incrementing Dyngxt-counter too quickly
and thus forcing a garbage collection when DynY.xt-counter overflows, n n - m m b ~ r implements a linear probing
algorithm which performances fire analysed in [2], page 539. First, if we want the median of ~DynKxt-counter
to slowly advance, say by 1.5 (reap. 2.5) for each allocation, the load average of DE must not exceed 30% (resp
50%). Thus to double DH is better triggered by the load average rather than by complete saturation. Second,
since doubling DH is not c~tless, the greater is the initial DH and the better are the performances. This is
particularly sensible in case of a bounded stack where the maximum number of simultaneous DEO can be
known.

9 Extensions

Dconslet is restricted in several ways. Dconelet can only handle one variable and Ll/ocate a single cons-cell.
To deal with multiple variables is stra/ghtforward. Let just have

(Dconelet ((L , car, cdrl)
(I,2 car2 cdr2)
• - .)

body)

A single frame can be allocated for multiple dynamic extent objects but the local variables L , / , 2 . . . must be
given as many different rderences as there are objects. The multiple variables Dconelet form is just a syntactic
convenience.

Following deciaration style[9], one can prefer to introduce & new declaration specifier and write

II-l.19

REFERENCES

(lot ((L, ear, edr,)
(f. car2 cdr2)

ooo)

(dec l a re (dynamlc-extent L,/,2 . . .))
bodll)

We can also extend the form to dynamic extent objects other than cons-ceils, such as lists, strings, vectors
(any bounded resource): for example

(Dvectozlet ((V, term, terms ...)
(v2 termi te.,~ ...)
• ..)

body)

Dvectozle t is superior to Dconslet since it is not reduced to & cons-cell with just two pointers. A whole
structure with numerous fields can be stack-allocated under a single reference.

10 C o n c l u s i o n

We have presented an implementation technique for a new kind of first class objects with a dynamic extent
which are allocated in the stack rather than in the heap. Every indefinite extent object has its counterpart as a
DEO and support the same set of operators without restriction. DEO represent local and temporary resources
which will be released without overhead. The proposed implementatio n respects the safety of references to
such objects avoiding to create dang]tug pointers when they leave the stack. The access cost is not so high and
the offered safety can be valuable during the debugging process. Surprisingly tables needed to access DEO are
themzelves DEO and thus reside in the stack. The technique is operated by new special forms or declarations
and offers some speed improvements since the GC is not involved.

References

[1] J~6me ChaiUoux, Matthieu Devin, Jean-Marie Hullot, IA.f~p: A Portable and Efficient Lisp
System, 1984 ACM Symposium on Lisp and Functional Progranuning, Austin, Texas.

[2] Donald E Knuth, The Art of Computer Proframming, Volume 3, 8oft/rig and Searching, Addison-
Wesley, 1973.

[3] David Kra~ , Richard Kelsey, Jonathan Item, Paul Hudak, Jmnes Phi/bin, Norman Adams, OR-
BIT: An Optimising Compiler for Scheme, Proceedings of the SIGPLAN '86 Symposium on Corn-
prier construction, Palo Alto (CA), June 25-27, 1980, SIGPLAN Notices Vol 21, No 7, July 1986.

[4] Bernard Laag, Francis Dupont, Incremental Incrementally Compactin¢ Garbage Collection, SIG-
PLAN'87 Symposium on Interpreters and Interpretive Techniques, Saint paul, MA.

[5] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, Michael I. Levin, Lisp
1.5 Programmer': Manua4 MIT Computation Center and Research Laboratory of Electronics,
August 17, 1962.

[6] David A. Moon, Garbage Collection in a Large Lisp System, 1984 ACM Symposium on Lisp and
Functional Programming, Austin, Texas, pp 235-246.

[7] Jonathan A. Rees, Norman I. Adams, James R. Meehan, The T Manu~, Fourth Edition, 10
January 1984, Computer Science Department, Yale University, New Haven CT.

[8] Jonathan Rees, William Clinger, Ree/~ed s Report on ~e Aigori~mic Langttage Scheme, ACM
SIGPLAN Notices, 21, 12, Dec 86, pp 37 - 79.

II-l. 20

REFERENCES

[9] Guy L. St,~h, Jr. Common Lip, ~le LanCuage, Digital Press, Burlington MA, 1984.

[10] Joseph E. Stoy, Denotational 5emantice: The 5¢ott-Straehey Approach to Proqramming Language
Theory, MIT Press, Cambridge, 1977.

[11] 5ymbolica Common Lisp Reference Manual, Symbolics.

LISPcr's Lament

He flies through development with effortless grace. With a superbly integrated system, thought
becomes code in an instant. Ideas are formulated and tested (and thrown away) in the blink of an
eye. No lengthy edit/compile/test cycle for him! Algorithms formulate, evolve, broaden as if
alive. In days, not months, a system grows.

Demo time grows near. His tools allow scripts and displays to be created in an afternoon. Elegant
tools allow complete tuning of the system. The system responses with ever increasing executiong
speeds. Nothing slows the progress. The LISP-world grows and solidifies until it is The System.

At last the moment of truth has arrived. The system creator assembles a group of eager
spectators. With a grin he starts the demo! Bells ring, whistles blow, windows display their beauty,
then ...

Garbage Collecting ...

Steve Pothier
Science Appfications International Corporation
Tucson, Az
< pothiers %tuva.sainet @ nmfecc.arpa >

II-l.21

