
Common EVAL

Henry Lieberman

Media Laboratory
Visible Language Workshop

Massachusetts Institute of Technology
Cambridge, Mass. 02139 USA

H e nry @ ALAL MIT.Edu

Christopher Fry

Hip Sofm, are Corporation
150 Walnut St.

Somerville, Mass. 02145 USA

Abstract

We propose that the Common Lisp standard be extended by adding to the language specification
a short program, itself written in Common Lisp, to implement the KVAL function. We call this
Common Ev~.,. The interpreters for every correct implementation of Common Lisp would be
required to match the ~mantics of Common EVA/., on valid Common Lisp expressions. It
should treat other expressions as errors or as implementmion dependent extensions.

There are three cogent reasons for including a Common ~VA.L in the standard: First, since EVA.L
definitively specifies the behavior of Lisp programs, Common EVA., would insure uniformity of
program semantics across implementations. Second, it would aid validation efforts, since the
behavior of a particular implementation could always be compared to the behavior of Common
EVAL. Third, it would facilitate the creation of debuggers and other program-manipulating
programs that could be ported across Common Lisp implementations.

O Copyright 1988, Henry Lieberman and Christopher Fry

II-1.23

"Gross internals: Do not look at the code on this page if you value your sanity."

o- Comment found in the code for EVAL in a popular Common Lisp implementation

The Status Quo

One of the marvelous things about Lisp is that the language can be written in itself. In Lisp,
programs can be data and data can be programs. The overall operation of the language can be
described as a function written in the very same language: the ~rM., function. Lisp advocates
always point with pride to this fact as a major reason for Lisp's superiority over conventional
languages. It is why Lisp has tzaditionally supported the best debugging environments. It is why
Lisp can be used to write the program-manipulating programs which are essential in artificial
intelligence work, and in building advanced interactive programming envixouments.

Sadly, this important advantage is becoming steadily eroded by some of the modem production
implementations of Lisp. The quest for efficiency and experimentation with esoteric
programming constructs are leading to non-standard implementations of Lisp interpreters that
foil attempts to make use of Lisp's self-descriptive capability.

How Did We Get Here?

There are many pressures to deviate from standard Lisp semantics in production implementation
of Lisp. Below are some real-life situations.

The primary temptation is to improve efficiency. The interpreters for MIT-descended Lisp
Machines by SymboLics, LMI and TI show how production implementations have compromised
Lisp semantics. Surprisingly, if you look at the system's definition of the EV~.L function, you
will f'md that it only appears to be written in Lisp. It calls "subprimitives" which are special-
cased by the compiler, compiling into specialized microcode. For example, some subprimitives
violate the stack discipline of Lisp. These optimizations undoubtedly make the interpreter more
efficient, but the consequence is that the system's definition of ErVM., cannot even be interpreted
by EVA.L itself!

Because of the additional complexity that machine-dependent efficiency hacks add to the
evaluator, it is no longer feasible for a user to write an ~ without subprimitives, and have
any confidence that the results will be equivalent to the a particular implementation's EVa.L.
Worse, if the code for the evaluator relies on subprimhives, it won't even be inteUigible to the
human reader literate only in Lisp. This is not to say that we are against subprimitives;
obviously, they are necessary for such functions as CAR and EQ. But the behavior of CAR and
EQ is not problematic; the behavior of EVM., is.

II-1.24

Language Extensions

Another central problem is that "extensions" to the Lisp language may be implemented in the
interpreter by low-level constructs that cannot be directly implemented by a Lisp program.
While Common Lisp is designed to permit extensions to the language, it should not allow
extensions which rely on microcode and other non-Lisp implementation techniques to change the
basic semantics of the language. Such extensions effectively prevent any program-manipulating
program written in Common Lisp from operating on code containing the extensions.

Spaghetti stacks in Interlisp are an example where an attempt to implement non-standard
programming constructs wreaks havoc with the interpreter's semantics. It is impossible for an
Interlisp user to write a stepping debugger capable of working on interpreted code that uses
spaghetti stacks.

The Symbolics flavors implementation relies on microcode for message reception and method
invocation, and has no fully specified Common Lisp description. A significant [though not
serious] semantic discrepancy was discovered by one of the authors in the course of porting a
Symbolics flavors program to Franz Allegro Common Lisp, of the sort that could be easily
settled by a procedural implementation standard.

The recent convergence on CLOS [l] as a standard for an object-oriented programming
extension to Common Lisp is commendable. Xerox has made publicly available an
implementation called PCL, an object system approaching the proposed CLOS standard.
Widespread dissemination of CLOS implementations in Common Lisp will likely result in
greater uniformity than the several flavor implementations that have appeared. [PCL does
contain, however, both implementation-dependent non-Common-Lisp conditional code, and a
code walker, both of which may give rise to discrepancies. This kind of problem might be
alleviated by a complete Common Ev2eJ.,] The Common Lisp CLOS could be viewed as being a
piece of a Common EV~_L, restricted to that part of the interpreter concerning the object-oriented
programming constructs.

Why Make Evai Precise?

Many advanced Lisp applications rely on the precise details of the operation of EVAL.
Implementing a sin#e-stepping debugger for Lisp code, for example, requires imitating gvgl.,
on Lisp expressions, while inserting display operations and requesting input at events during
evaluation [2, 3].

The lack of a Common EVA.L means that implementors of programming environment tools must
now track intemal changes to a particular implementation's evaluator. For example, Symbolics
recently changed the function cell of an interpreted function from containing a list beginning
with the symbol LAMBDA to SI :DIGESTED-LAMBDA, which necessitated similar changes m
any program which expected to interpret functions. A standard EV2Lh would clarify what
representations a user could rely on, and clarify what representations an implementor could
change without breaking system code or affecting users.

II-1.25

Lisp's extensibility makes it ideal for defining embedded application.dependent or experimental
languages, which may even have a different control structure than Lisp's. Often, these languages
need to "use Lisp" as a subset, call Lisp functions from code in the other language, or even
invoke foreign language code from Lisp code, to avoid having to dupficate all of the host
irnplementation's facilities. For the interface to be smooth, the language designer must be able
to depend on how Lisp code is evaluated, perhaps including details such as variable

environments and function defirfitions.

Many programs which need to analyze Lisp programs staticaUy require a "code walker", a
program that determines which subexpressions of a Lisp expression represent code to be
evaluated, and which represent data, like expressions which appear inside a QUOTgd list. Such
code walkers, which separate the uses of Lisp expressions as programs from uses as data, appear
in virtually every Lisp compiler. Smart pretty-printers that print expressions according to their
semantics, indexers, or other "programmer's apprentice" tools need this, too. Code walkers
anticipate the action of gVA.h on an expression, so they are inextricably tied to gv2aJ./s

operation.

With Common EVAL, a designer of a program-manipulating program can base their tools on the
definition of Common hgv~2., rather than the details of a particular Lisp implementation. The
implementor can then have confidence that the tools will work in all valid implementations of

• Common Lisp.

Introducing Common EVAL

" e v a l form [Flmctioll]

Whatever results from the evaluation is returned from the call
tO eval."
-- I'zo~ Common Lisp: The Language

With Common Lisp, we have a unique opportunity to insure that the program-data equivalence
which is one of Lisp's cornerstones remains available as Lisp implementations proliferate. But
the English description ~ the Steele book is not detailed enough to exclude semantic deviations
which frustrate serious developers of program-manipulating programs. Specifying the Zv~d.,
function as a Common Lisp program can provide a concise, precise, and easily understood
description which could serve as a guide for implementors and a meansby which to evaluate the

results.

Implementors would not be required to run the exact code for common gV2LL in their
implementation. They could provide another implementation, which may be more efficient or
include extra features, but they would be required to assure that their version matched the
semantics of Common gXrAL. Differences in behavior between a particular Lisp implementation
and Common ~ would be evidence for violations of the Common Lisp standard.

II-l. 26

Implementing Common EVAL

How detailed should the Common EVA.L implementation be? It is possible to implement a wide
range of meta-circular interpreters ranging from a one-page interpreter in the vein of the original
Lisp 1.5 book [4], to one that is so detailed it specifies every bit and would probably nm to
hundreds of pages. Clearly, a middle course is called for. We would aim for a manageable
ten-to-twenty pages.

The interpreter should be the minimal size necessary to specify the interpreter unambiguously in
terms of calls to "simple" Common Lisp functions. Some judgmem is required on which
functions are "simple", but we assume that, in the compromising spirit of Common Lisp, some
consensus could be reached. The English description of the behavior of the lowest level
functions like CAR or SYI~OLP in the Steele book [5] seems adequate to prevent significant
divergence among Common Lisp implementations, as is the description of middle level functions
like APPEND. It is only when the complexity of something like EVAL is reached that divergence
among implementations becomes a real problem. Thus, Common EVA.TJ can use CAR and EQ in
its definition without further specification, but must say explicitly how EVAL and APPLY work.

Particular attention should be paid to the behavior of the 26 Common Lisp "special forms".
Differences in behavior of the special forms could be one of the worst potential problem areas.
Common EVA.L should certainly be detailed enough to specify the behavior of all the special
forms. At the same time, we do nor want to make Common EVAL specify the precise format of
lexical environments, to give implementors freedom to optimize their representations.

The strategy is to implement EVAX., and APPLY in terms of each other, a few helping functions,
and list manipulation. One of these functions, NOT-CL :EWCA.TJ, provides an explicit way for a
user to extend the evaluator for new data types. Most of the other functions are for manipulating

lexical environments. The actual data structure used by a lexical environment is not important
and is intentionally not specified by Common EVA.T.,. But the behavior of manipulator functions

is clearly specified.

We propose a few modifications to Common Lisp. First, that lexical environments become first
class data objects. Second, that both EVA.L and APPLY accept lexical environments as
arguments. To ~ the impact of this on existing code, EVA.T, can be extended to have an
optional second argument of a lexical environment [defaulting to the nuLl environment]. APPLY
can take a keyword : ENVIRONMENT to enable it to accept a lexical environment.

To illustrate the intent of our proposal more concretely, we present a short segment of Lisp code
for a skeleton Common EVA.L. See the appendix. Don't take this code too literally -- we mean it
only to illustrate the style and the level of detail we would expect of the real Common EVAJ.,, and
as a springboard for discussion. Having actual code to discuss facilitates precise communication,
one of the key features of Common EVA.T.,.

II-1.27

Summary

When Lisp enthusiasts debate the merits of the language with adherents of other languages, their
best ammunition is the superiority of the programming environment tools that have grown up
around modem Lisp implementations. The acceptance of Common Lisp in the world will surely
be dependent on the quality of its programming environments, including debuggers, editors, and
program analyzers. Common Lisp has achieved some success in facilitating the portability of
Lisp applications, but making the next generation of Lisp environments truly portable requires
taking the next step: Common ~'WAL.

Appendix: Lisp code for Common EVAL

Some notes about the code:

• The LE package contains the lexical environment manipulator functions, many of
which are yet to be written. If the CL community decides to provide advertised
support for lexical environment functions, some of the functions here could be
moved into the LISP package.

• The NOT-CL package contains miscellaneous support functions for Common EVAL.

• An implementation of eval is permitted to differ semantically from Common EVAL
only by redefining NOT-CL:EVAL. This provides a well defined place for
modifications to take place. Our default definition here simply errors, as would a
pure CL implementation.

• Functions here which are called, not in CL, and intended to be defined by Common
EVAL include:

• APPLY

• The lexical environment accessors.

• The functions for handling individual special forms.

• Closures and lexical functions are not dealt with yet.

A few of the functioiis ~ r dealing with lexical variables are defined here as an example of how
this code can be extended to make a full implementation of Common EVAL.

APPLY should be pan of the Common EVAL spec. It does not need to be passed a LEX-ENV.

APPLY makes a new LEX-ENV containing only the variables specified by the function's
lambda-list.-The values of those variables will initially be those values specified in the function
call.

II-1.28

(in-package 'CE) ;Common Eval package. Just used so that you can
; t e s t this ¢ode without munging functions in
;youE CL environment.

(s h a d o w ' (e v a l) ' CE)
(e x p o r t ' (u s e r - e v a l) ' CE)

(make-package • LE)
(shadow ' (boundp symbol-value) ' LE)
(export ' (le: :boundp le : : symbol-value le: : set-symbol-value) ' LE)

(make-package ' NOT-CL)

(defun eval (exp &optional fez-shy)
"cuzzently doesn't check foe lex-env fnm.
Right now, CL doesn't peEmit EVAL t o t a k e a 2nd azg.
T-tX-ENV defaults to the null lexical environment."
(¢ond ((not-el : : self-evaluating-p exp) exp)

((symbolp exp) (not-cl: :symbol-eval ezp lex-env))
((eonsp exp)

(c o n d ((s y m b o l P (ca= e x p))
(c o n d ((~ m c r o - f u n c t i o n (c a r exp))

(e v a l (m a c r o e x p a n d exp) l e x - e n v))
((special-form-p (ca= ezp))
(not-el : : eva!-special- function-call

exp lex-env))
((~:~oundp (ea r exp))
(apply (ca= ezp)

(not-el : : list-of-values (cxL~ exp)
lex-env)))

(t (ule=-eval exp lex-env))))
((end (consp (ca= u p))

(eq (ca r (ca= exp)) ' lambda))
(a p p l y (ca r exp)

(not-el : :list-of-values (cdr exp)
lex-env)))

(t (use=-eval exp lex-env))))
(t (user-eval exp lex-env))))

11-1.29

(defun not-el: : 8elf-evaluating-p (form)
(send ((o= (n,,-~rp form)

(stringp form)
(chazacterp form)
(keFwozc~p fozm)
(null form))

f o r m)))

(defun n o t - e l : : s y m b o l - o v a l (symbol l e x - e n v)
" I f SYMBOL i 8 a v a r i a b l e i n LEX-ENV, re tuEn i t 8 v a l u e .
Else I£ SYMBOL is bound, return its value,
e l s e ezzoE. "

(send ((no t l e x - e n v)
(i£ (bounc~p symbol) ;check global binding

(symbol-value symbol)
(eEEoE "Attempt tO evaluate an unbound symbol ~S"

s y m b o l)))
((l e : b o u n d p symbol l e x - e n v)
(is : symbol-value symbol lex-env))

((lex-env-parent lex-env)
(not-el : : symbol-eval symbol (lez-env-pazent lez-env)))

(t (ezzor "Symbol-eval passed bad azg8 -8 -S"
symbol lex-env))))

(d e f u n n o t - e l : : l i . s t - o f - v a l u e 8 (l i s t l e x - e n v)
(i f l i s t

(cons (e v a l (ca= l i s t) l e x - e n v)
(not-el: :list-of-values (ceLt l i s t) lex-env))))

II-l.30

(defstruct lex-env variables £unctions tags blocks parent}
;only the slots variables and parent arm used An the code below
;Full Common EVAL may require additional slots.

(defun le:boundp (sym lex-env)
"Returns non-nil i£ SMM ks a variable in LEX-ENV."
(assoc sym (lex-env-variablms lex-env)))

(de£un io:symbol-value (sym lex-env &aux sym-val parent-lex-env)
(setq sym-val (assoc sym (lex-env-variables lex-env)))
(tend (sym-val

" (cdr sym-val))
((lex-env-parent lex-env)
(le: symbol-value sym (car (lex-env-parent lex-env))))

(t (error "Symbol -S is not bound in lex-env -S."
sym lex-env))))

(defun le:set-symbol-value (sym lex-env new-value &aux sym-val)
"Finds or creates a lexical variable named SYM in lex-env and
sets its value to NEW-VALUZ. Returns NEW-VALUE. "
(setq sym-val (asset sym (lex-env-variables lex-env) })
(cond (sym-val (rplacd sym-val new-value))

(t (serf (lex-env-variables lex-env)
(cons (cons sym new-value)

(lex-env-variables lex-env}) } })
new-value}

II-l.31

(defun not-cl::eval-special-function-call (exp lex-env)
(case (car exp)
(let (not-cl::eval-let exp lex-env))
;other special forms go here.
(otherwise (error -not-cl::eval-special-function-call passed

non-implemented special £ozm -S" exp))))

(defun user-eval (exp &optional lex-env)
"To extend EVAL, the user is permitted only to redefine
this function."

(error "Eval passed non-eL form -S" exp)}

(defum not-cl: :eval-let (ezlP lex-env &a~ vats new-lex-env
result)

(dolist (eli (cadz exp))
(push (i£ (s~bolp elt)

(cons eli nil)
(cons (car elt) (eval (cadz elt) lex-env)))

v a = s))
(setq new-lex-env (make-lex-env :variables (nreverse vats)

:parent lex-env))
(dolist (expr (cddz exp))

(setq result (eval expr new-lex-env)))
result)

l TZSTS
(= (eval 3) 3)
(eval ' (setq a 2)) => Errors with SETQ special form not yet

implemented
(= (eval ' (+ 2 3)) 5)
(equal (eval ' (let ((a i) (b 2) c) (list a b c))) ' (I 2 nil))
(equal (eval ' (let ((a I) (b 2))

(append (list a b)
(le t ((c a) (d 4))

(list c d)))))
' (i 2 I 4))

(eval 'no-exist) => Errors with attempt to eval an unbound symbol

I#

II-1.32

[1]

[2]

[3]

[4]

[5]

References

Linda deMichiel and Richard Gabriel.
The Common Lisp Object System.
In ECOOP-87 : European Conference on Object-Oriented Programming. Springer

Verlag, Paris, France, Jtule, 1987.

Henry Lieberman.
Steps Toward Better Debugging Tools for Lisp.
In Proceedings of the Fourth ACM Conference on Lisp and Functional Programming.

Austin, Texas, USA, August, 1984.

Henry Lieberman.
Reversible Object-Oriented Interpreters.
In EC OO P-87 : European Conference on Object-Oriented Programming. Springer

Verlag, Paris, France, June, 1987.

John McCarthy.
Lisp 1.5 Programmer's Manual.
MIT Press, Cambridge, Mass., 1963.

Guy Steele (and a cast of thousands).
Common Lisp: The Language.
Digital Press, Maynard, Mass., 1985.

II-l. 33

