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I n t r o d u c t i o n  

Algorithms that display a piece of an arbi- 
trary, infinite surface with a vector display 
or pen plotter are well-known (Figure I). It- 
erative algorithms can be time-consuming to 
implement in Fortran or PL/i. We designed, 
coded and debugged a substantially more per- 
spicuous implementation in Common Lisp in 
about two hours on a Symbolics 3670. 

Shortly thereafter, Greenspun was teach- 
ing a Lisp programming course to a group of 
Fortran graphics programmers at a company 
producing computer-aided drafting software. 
Due to Greenspun's fine pedagogical skills, 
after eight weeks many students maintained 
that one could program any algorithm just as 
easily in C or Fortran as in Lisp. This tom- 
pany had spent over a year trying to debug a 
multi-thousand line Fortran surface displayer. 
We decided to ~,~ite-the following paper de- 
scribing our 70-1ine Lisp implementation of 
the same algorithm. 

Greenspun was trying to convince these 
Fortran users of the advantages of the philoso- 
phies espoused in Structure and Interpretation 
of Computer Programs by Abelson and Suss-. 
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man (McGraw Hill: New York 1985). Tradi- 
tional programs, such as multi-pass compilers, 
serially convert data from one format to an- 
other until the desired final format is achieved, 
The most important features of Lisp for our 
algorithm are recursion and dynamic storage 
allocation. Using these mechanisms, the pro- 
gram can decompose the problem as it re- 
curses, then incrementally construct the so- 
lution as it returns. This technique is similar 
to that employed by simple (and somewhat 
inefficient) compilers that associate code with 
each node in a parse tree and then collect that 
code as the tree is collapsed. 

R e s t r i c t i o n s  on  s u r f a c e s  

Let us restrict ourselves to surfaces defined by 
z(z, y) so that the surface has a unique eleva- 
tion for a given point in the z-y plane. In sur- 
face topography, for example, this restriction 
would prevent us from modelling overhangs 
and caves. 

We shall assume that our surface has infi- 
nite extent, even if our data represents only a 
finite portion of the surface. This assumption 
enables us to worry only about showing one 
side of the surface. In computer cartography 
this assumption reflects realRy. For example, 
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Figure 1: Perspective view of a site in New Hampshire 

if the surface is a small oil field in Texas with a 
5,000 meter deep hole in the ground, we can- 
not see the exterior of the hole poking out 
from underneath our surface if our view point 
is above the surface. Even if the exterior bot- 
tom of the hole does not project (in the di- 
rection of the viewing plane normal) against 
a part of the surface covered by our model, we 
can assume that its projection reaches the un- 
derside of the Earth before reaching the view- 
ing plane. 

General procedure 

First, we intersect the surface with a series 
of vertical planes orthogonal to the projection 
of the viewing direction onto the z-y plane 
(Figure 2). We then convert each intersec- 
tion into a list of ].me segments (if the surface 
is not piecewise planar we must approximate 
higher-order curves in a piecewise linear fash- 
ion, something w-e-would have to do anyway 
for most output devices) and call the list a 
profile. We make a list of the profiles by step- 
ping in fixed increments along the viewing di- 
rection projection (if profile A is closer to the 
view point than profile ]3, then A precedes 13 
in the list). 

We accomplish hidden-line elimination by 
two dimensional clipping against a horizon on 
the view plane. We display only those line 

segments (or portions of line segments) whose 
projections are above a horizon established by 
projecting and drawing previous profiles. Our 
initial horizon is a "segment" from (-co, - oo) 
to ( + o o , - o o )  so that  anything in the first 
profile is guaranteed to be drawn. (The Sym- 
bolics implementation of Common Lisp allows 
the notat ion "le®" for positive infinity.) 

The core function, c l i p ,  takes a profile and 
existing horizon and returns that portion of 
the profile that was visible and a new horizon. 
Ouzer - loop  starts off the recursion with all 
the profiles and the initial horizon by calling 
ou~er-loop-1. Ou~er-loop-1 checks to see if 
there are any profiles left and, if so, calls clip 
to clip the first remaining profile against the 
horizon. 0uzer-loop-1 then draws whatever 
visible segments clip returned and recurses 
with the unprocessed elements of the profile 
list (the cdr) and the new horizon returned 
by the call to clip. 

Recursive clipping 

Cl ip  takes two arguments. The first argu- 
ment is a Ust of profile segments and the sec- 
ond is a list of horizon segments. C l ip  uses 
the Common Lisp multiple value facility to 
return two values, a list of segments to draw 
(that part of the profile that was visible) and 
a new horizon (also a list of segments). 
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Figure 2: An example surface intersected by two vertical planes 

Clip assumes that the segments within each 
list either do not overlap or overlap just at 

their endpoints. The segments are assumed 
to be arranged from left to right (in order of 

increasing z) and it is assumed that the hori- 
zon extends at least a-s far in both directions 
as the profile. 

As in any recursion, we first check for ter- 

mination conditions. I.f the llst of horizon seg- 
ments is empty, we signal an error (since the 

horizon should extend to +oc). If the list of 
profile segments is empty, we are done and 
return nil (the empty list) as our first value 
(the list of segments to draw) and the remain- 

ing horizon list as the new horizon. These val- 
ues will be added to by surrounding calls to 
clip. 

Another easy case is when the first profile 

segment is completely to the right of the first 
horizon segment (Figure 3). In this case we re- 
curse, passing down the complete profile seg- 
ments list, but stripping off the first horizon 

segment. The value returned by this call to 
clip cannot simply be the value of the recur- 
sive call, however, since that would result in 
the loss of part of the horizon. The segmenzs- 
to-dzffiw value is simply whatever the recur- 

sion returned, but the new horizon is a list 
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Figure 3: The first profile segment does not overlap the first horizon segment 

whose car is the horizon segment we stripped 
off and whose cdz contains the horizon seg- 
ments returned by the recursive call. 

Real work 

We've now dealt with the easy cases and must 
consider the case where there is some overlap 
between the first horizon segment and the first 
profile segment (Figure 4 illustrates two rep- 
resentative cases). The key idea here is to deal 
with as small a part of the problem as possible 
and let the recursion do the rest of the work. 
Clip calls clip-segments to compare the two 
segments until it hits the right edge of either. 
Clip-segments returns four values. The first 
is a segment to draw (at most one can result 
from the intersection of a single profile seg- 
ment and a single horizon segment). The sec- 
ond is a list of new horizon segments lying hor- 
izontally between the left edge of the original 
horizon segment and the leftmost right edge of 
either segment. This list will contain between 
one and three elements (one if the profile seg- 
ment was entirely below the horizon, two if 
the left edges of both segments were aligned 
and they intersected somewhere in the middle, 
and three if the profile segment's left edge was 
to the right of the horizon segment's and they 
intersected similarly). 

Clip-segmen~s returns as its third value 
that portion of the profile segment that ex- 
tended beyond the right edge of the horizon 
segment. The fourth value is that portion of 
the horizon segment that extended beyond the 
right edge of the profile segment. At most 
one of these will be non-nil (both will be nil 
if the segments' right edges are aligned, oth- 
erwise one segment must extend beyond the 
other). 

Recursive algorithms in Lisp generally com- 
pletely process one element of a list, strip that 
off and recurse with the rest of the list. Clip 
is unusual in that it sometimes doesn't com- 
pletely process the first element, so it has to 
recurse with the unhandied piece of the first 
element stuck (consed) onto the rest of the 
list. Clip is also unusual in that it is recurs- 
ing down two lists at once and returning two 
values. 

So clip calls itself recursively, with the first 
argument (profile segments) being the result 
of a conditional. If the profile segment pro- 
cessed on this call extended beyond the hori- 
zon segment processed, we strip off the en- 
tire first profile segment (using cdr), but stick 
on the piece of the first profile segment that 
we didn't handle (the remaining-profile- 
segment value returned by clip-segments). 
OtSerwise, we have completely finished with 
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Figure 4: The operation of ¢lip-segmenss 

a) AB is the input horizon segment, CD is the input profile segment, MN is the segmenz-zo-ctraw, 
ALl and MN are the new-horizon-segments, and ND is the remaining-profile-segment. The 
remaining-horizon-segmen~ is nil. 

b) XY is the input horizon segment, UV is the input profile segment, U 0 is the segment-so-draw, 
XP, UQ, and QR are the new-horizon-segmencs, and RY is the remaining-horizon-segment. 

the first profile segment and can recurse after 
stripping it off. The horizon segments argu- 
ment for the recu.rsion is similarly calculated. 

After receiving the values returned by the 
recursive call, we must add to them the per- 
tinent information from the section this call 
handled. If clip-segmensss found a visible 
segment, it is ¢onsed onto the list of segments 
to draw returned by the recursive call; other- 
wise, clip just returns the result of the re- 
cursion. Because every call to clip is guar- 
anteed to make some progress to the right, 
some horizon is generated for each call. Clip 
calculates the new horizon value by append- 
ing the new-horizon-segments returned by 
clip-segments and tChe new horizon returned 
by the recursive call. 

One valid objection to this algorithm is that 
it tends to produce fragmented horizons. This 
is easily dealt with by making each subseg- 
ment point to the segment from which it was 
created. $ubsegments that were created from 
the same segment are guaranteed to be col- 
inear and hence can be collapsed by ou¢er- 

loop-1. In one example, when displaying a 
triangulated digital terrain model surface, the 
horizon following the clipping and display of 
60 profiles was a list of 750 segments. CoLlaps- 
ing segments after each profile was displayed 
reduced this to 60 and dramatically reduced 
run time. 

A nice feature of this algorithm is its abil- 
ity to deal with diiTerent segment representa- 
tions. Only the functions make-segmenz and 
clip-segments need to know how the data 
are structured and both are straightforward. 
This algorithm can be generalized to finite 
surfaces by maintaining both top and bottom 
"horizons." 
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(defun outer-loop (profile-lis~) 

(when profile-list 
(let. ((initial-horizon-segment (make-segment (make-point -lem -le®) 

(make-point +lem -leo))) 
(initial-horizon (list initial-horizon-segment))) 

(outer-loop-1 profile-list 
initial-horizon)))) 

(defun outer-loop-1 (profile-lis~ horizon) 

(when profile-list ; This will termina%e when we 
; run out of profiles. 

(multiple-value-bind (segments-to-draw new-horizon) 

;; CLIP takes ~he next profile on ~he lis~ and ~he existing 
;; horizon and returns SEGMENTS-TO-DRAW and the new horizon. 

........ (clip (car profile-list) 
horizon) 

(drav-seEmen~s segments-~o-draw) 

(outer-loop-1 (cdr profile-list) 
new-horizon)))) 

; Display the segments on some 
; output device. 

; S~rip off the profile we've just 
; handled 

(defun clip (profile-segments horizon-sesmen~s) 
(declare (values segmen~s-~o-draw nev-horizon-segmen~s)) 

( c o n d  ((null horizon-seEments) 
(error "Ran ou~ of horizon")) 

((null profile-segments) 
;; We have run out of profile segments, so we return a NIL to 

;; CONS onto as SEGMENTS-TO-DRAW and return the remaining 
;; horizon. 

(values nil horizon-segments)) 
((not (overlap? (car profile-segments) (car horizon-segments))) 

;; The first profile segment is completely to ~he right of the 

; ;  first horizon segment 
(multiple-value-bind (rest-segments-to-draw 

res~-new-horizon-sesments) 
(clip profile-segments ; We haven't processed any, 

; so we pass through. 

(cdr horizon-segments)) ; Strip off the first one. 
(values res~-segments-~o-draw ; We have noshing new to draw, 

(cons (car horizon-segments) ; but must return the 
; new horizon piece _ 

rest-new-horizon-segments)))) 
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(:else 
;; The left endpoin~ of ~he first profile segmen~ falls within 
; ;  ~he first horizon segment. 
(le~ ((profile-segment (cox profile-segments)) 

(horizon-segment (car horizon-segments))) 
(mul~iple-value-bind (segmen~-~o-draw 

ne.-horizon-segmen~s 
remaining-profile-segment 
remaining-horizon-segment) 

(clip-segments profile-segment horizon~segmen~) 
;; We now have all ~he information we need for ~he recursive 
;; call. 
(multiple-value-bind (res~-segmen~s-~o-dra. 

rest-new-horizon-segments) 
(clip 

;; Calculate ~he PROFILE-SEGMENTS ~o send down. 
(if remaining-profile-segment ; If some of ~he profile 

; segment wasn't handled 
(cons remaining-profile-segmenz 

(cdr profile-segments)) 
(cdr profile-segments)) 

;; Calculase she HORIZON-SEGMENTS ~o send down 
(if remaining-horizon-seEmen$ ; If some of ~he horizon 

; segment wasn't handled 
(cons remaining-horizon-segmenz 

( c d r  horizon-seEmen~s)) 
(cdr horizon-seEmen~s))) 

(values 
;; Calculate ~he SEGMENTS-T0-DRAW ~o return. 
(if seEmen$-~o-draw 

( c o n s  segmen~-~o-draw ; Our  contribution. 
res~-se~men~s-~o-draw) ; Resul~ of recursion. 

rest-segments-Go-draw) ; This call contributes 
; no~hing. 

(append new-horizon-segments ; We always contribute 
; something ~o ~he 
; ~o ~he horizon. 

res%-new-horizon-se~men~s)))))))) 
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F~ure 2 
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