
Recursive hidden-line elimination

on an infinite surface

Philip Greenspun and James J. Little*
Massachusetts Institute of Technology

Artificial Intelligence Laboratory
545 Technology Square

Cambridge, Massachusetts 02139 USA

August 19, 1988

I n t r o d u c t i o n

Algorithms that display a piece of an arbi-
trary, infinite surface with a vector display
or pen plotter are well-known (Figure I). It-
erative algorithms can be time-consuming to
implement in Fortran or PL/i. We designed,
coded and debugged a substantially more per-
spicuous implementation in Common Lisp in
about two hours on a Symbolics 3670.

Shortly thereafter, Greenspun was teach-
ing a Lisp programming course to a group of
Fortran graphics programmers at a company
producing computer-aided drafting software.
Due to Greenspun's fine pedagogical skills,
after eight weeks many students maintained
that one could program any algorithm just as
easily in C or Fortran as in Lisp. This tom-
pany had spent over a year trying to debug a
multi-thousand line Fortran surface displayer.
We decided to ~,~ite-the following paper de-
scribing our 70-1ine Lisp implementation of
the same algorithm.

Greenspun was trying to convince these
Fortran users of the advantages of the philoso-
phies espoused in Structure and Interpretation
of Computer Programs by Abelson and Suss-.

"~ 1988 Philip Greenspun and James J. Little

man (McGraw Hill: New York 1985). Tradi-
tional programs, such as multi-pass compilers,
serially convert data from one format to an-
other until the desired final format is achieved,
The most important features of Lisp for our
algorithm are recursion and dynamic storage
allocation. Using these mechanisms, the pro-
gram can decompose the problem as it re-
curses, then incrementally construct the so-
lution as it returns. This technique is similar
to that employed by simple (and somewhat
inefficient) compilers that associate code with
each node in a parse tree and then collect that
code as the tree is collapsed.

R e s t r i c t i o n s on s u r f a c e s

Let us restrict ourselves to surfaces defined by
z(z, y) so that the surface has a unique eleva-
tion for a given point in the z-y plane. In sur-
face topography, for example, this restriction
would prevent us from modelling overhangs
and caves.

We shall assume that our surface has infi-
nite extent, even if our data represents only a
finite portion of the surface. This assumption
enables us to worry only about showing one
side of the surface. In computer cartography
this assumption reflects realRy. For example,

II-1.38

Figure 1: Perspective view of a site in New Hampshire

if the surface is a small oil field in Texas with a
5,000 meter deep hole in the ground, we can-
not see the exterior of the hole poking out
from underneath our surface if our view point
is above the surface. Even if the exterior bot-
tom of the hole does not project (in the di-
rection of the viewing plane normal) against
a part of the surface covered by our model, we
can assume that its projection reaches the un-
derside of the Earth before reaching the view-
ing plane.

General procedure

First, we intersect the surface with a series
of vertical planes orthogonal to the projection
of the viewing direction onto the z-y plane
(Figure 2). We then convert each intersec-
tion into a list of].me segments (if the surface
is not piecewise planar we must approximate
higher-order curves in a piecewise linear fash-
ion, something w-e-would have to do anyway
for most output devices) and call the list a
profile. We make a list of the profiles by step-
ping in fixed increments along the viewing di-
rection projection (if profile A is closer to the
view point than profile]3, then A precedes 13
in the list).

We accomplish hidden-line elimination by
two dimensional clipping against a horizon on
the view plane. We display only those line

segments (or portions of line segments) whose
projections are above a horizon established by
projecting and drawing previous profiles. Our
initial horizon is a "segment" from (-co, - oo)
to (+ o o , - o o) so that anything in the first
profile is guaranteed to be drawn. (The Sym-
bolics implementation of Common Lisp allows
the notat ion "le®" for positive infinity.)

The core function, c l i p , takes a profile and
existing horizon and returns that portion of
the profile that was visible and a new horizon.
Ouzer - loop starts off the recursion with all
the profiles and the initial horizon by calling
ou~er-loop-1. Ou~er-loop-1 checks to see if
there are any profiles left and, if so, calls clip
to clip the first remaining profile against the
horizon. 0uzer-loop-1 then draws whatever
visible segments clip returned and recurses
with the unprocessed elements of the profile
list (the cdr) and the new horizon returned
by the call to clip.

Recursive clipping

Cl ip takes two arguments. The first argu-
ment is a Ust of profile segments and the sec-
ond is a list of horizon segments. C l ip uses
the Common Lisp multiple value facility to
return two values, a list of segments to draw
(that part of the profile that was visible) and
a new horizon (also a list of segments).

II-1.39

Figure 2: An example surface intersected by two vertical planes

Clip assumes that the segments within each
list either do not overlap or overlap just at

their endpoints. The segments are assumed
to be arranged from left to right (in order of

increasing z) and it is assumed that the hori-
zon extends at least a-s far in both directions
as the profile.

As in any recursion, we first check for ter-

mination conditions. I.f the llst of horizon seg-
ments is empty, we signal an error (since the

horizon should extend to +oc). If the list of
profile segments is empty, we are done and
return nil (the empty list) as our first value
(the list of segments to draw) and the remain-

ing horizon list as the new horizon. These val-
ues will be added to by surrounding calls to
clip.

Another easy case is when the first profile

segment is completely to the right of the first
horizon segment (Figure 3). In this case we re-
curse, passing down the complete profile seg-
ments list, but stripping off the first horizon

segment. The value returned by this call to
clip cannot simply be the value of the recur-
sive call, however, since that would result in
the loss of part of the horizon. The segmenzs-
to-dzffiw value is simply whatever the recur-

sion returned, but the new horizon is a list

II-l.40

first
horizon
segment

first profile segment
current horizon

I

Figure 3: The first profile segment does not overlap the first horizon segment

whose car is the horizon segment we stripped
off and whose cdz contains the horizon seg-
ments returned by the recursive call.

Real work

We've now dealt with the easy cases and must
consider the case where there is some overlap
between the first horizon segment and the first
profile segment (Figure 4 illustrates two rep-
resentative cases). The key idea here is to deal
with as small a part of the problem as possible
and let the recursion do the rest of the work.
Clip calls clip-segments to compare the two
segments until it hits the right edge of either.
Clip-segments returns four values. The first
is a segment to draw (at most one can result
from the intersection of a single profile seg-
ment and a single horizon segment). The sec-
ond is a list of new horizon segments lying hor-
izontally between the left edge of the original
horizon segment and the leftmost right edge of
either segment. This list will contain between
one and three elements (one if the profile seg-
ment was entirely below the horizon, two if
the left edges of both segments were aligned
and they intersected somewhere in the middle,
and three if the profile segment's left edge was
to the right of the horizon segment's and they
intersected similarly).

Clip-segmen~s returns as its third value
that portion of the profile segment that ex-
tended beyond the right edge of the horizon
segment. The fourth value is that portion of
the horizon segment that extended beyond the
right edge of the profile segment. At most
one of these will be non-nil (both will be nil
if the segments' right edges are aligned, oth-
erwise one segment must extend beyond the
other).

Recursive algorithms in Lisp generally com-
pletely process one element of a list, strip that
off and recurse with the rest of the list. Clip
is unusual in that it sometimes doesn't com-
pletely process the first element, so it has to
recurse with the unhandied piece of the first
element stuck (consed) onto the rest of the
list. Clip is also unusual in that it is recurs-
ing down two lists at once and returning two
values.

So clip calls itself recursively, with the first
argument (profile segments) being the result
of a conditional. If the profile segment pro-
cessed on this call extended beyond the hori-
zon segment processed, we strip off the en-
tire first profile segment (using cdr), but stick
on the piece of the first profile segment that
we didn't handle (the remaining-profile-
segment value returned by clip-segments).
OtSerwise, we have completely finished with

II-l.41

~D

horizon
s e g m e n t ~ remaining

A p , - , " ' ~ / M profile

/ / p ro f i l e segment
/

C ~ segment

segment to draw

X horizon
segment segment "~ V

(a) (b)

Figure 4: The operation of ¢lip-segmenss

a) AB is the input horizon segment, CD is the input profile segment, MN is the segmenz-zo-ctraw,
ALl and MN are the new-horizon-segments, and ND is the remaining-profile-segment. The
remaining-horizon-segmen~ is nil.

b) XY is the input horizon segment, UV is the input profile segment, U 0 is the segment-so-draw,
XP, UQ, and QR are the new-horizon-segmencs, and RY is the remaining-horizon-segment.

the first profile segment and can recurse after
stripping it off. The horizon segments argu-
ment for the recu.rsion is similarly calculated.

After receiving the values returned by the
recursive call, we must add to them the per-
tinent information from the section this call
handled. If clip-segmensss found a visible
segment, it is ¢onsed onto the list of segments
to draw returned by the recursive call; other-
wise, clip just returns the result of the re-
cursion. Because every call to clip is guar-
anteed to make some progress to the right,
some horizon is generated for each call. Clip
calculates the new horizon value by append-
ing the new-horizon-segments returned by
clip-segments and tChe new horizon returned
by the recursive call.

One valid objection to this algorithm is that
it tends to produce fragmented horizons. This
is easily dealt with by making each subseg-
ment point to the segment from which it was
created. $ubsegments that were created from
the same segment are guaranteed to be col-
inear and hence can be collapsed by ou¢er-

loop-1. In one example, when displaying a
triangulated digital terrain model surface, the
horizon following the clipping and display of
60 profiles was a list of 750 segments. CoLlaps-
ing segments after each profile was displayed
reduced this to 60 and dramatically reduced
run time.

A nice feature of this algorithm is its abil-
ity to deal with diiTerent segment representa-
tions. Only the functions make-segmenz and
clip-segments need to know how the data
are structured and both are straightforward.
This algorithm can be generalized to finite
surfaces by maintaining both top and bottom
"horizons."

II-1.42

(defun outer-loop (profile-lis~)

(when profile-list
(let. ((initial-horizon-segment (make-segment (make-point -lem -le®)

(make-point +lem -leo)))
(initial-horizon (list initial-horizon-segment)))

(outer-loop-1 profile-list
initial-horizon))))

(defun outer-loop-1 (profile-lis~ horizon)

(when profile-list ; This will termina%e when we
; run out of profiles.

(multiple-value-bind (segments-to-draw new-horizon)

;; CLIP takes ~he next profile on ~he lis~ and ~he existing
;; horizon and returns SEGMENTS-TO-DRAW and the new horizon.

........ (clip (car profile-list)
horizon)

(drav-seEmen~s segments-~o-draw)

(outer-loop-1 (cdr profile-list)
new-horizon))))

; Display the segments on some
; output device.

; S~rip off the profile we've just
; handled

(defun clip (profile-segments horizon-sesmen~s)
(declare (values segmen~s-~o-draw nev-horizon-segmen~s))

(c o n d ((null horizon-seEments)
(error "Ran ou~ of horizon"))

((null profile-segments)
;; We have run out of profile segments, so we return a NIL to

;; CONS onto as SEGMENTS-TO-DRAW and return the remaining
;; horizon.

(values nil horizon-segments))
((not (overlap? (car profile-segments) (car horizon-segments)))

;; The first profile segment is completely to ~he right of the

; ; first horizon segment
(multiple-value-bind (rest-segments-to-draw

res~-new-horizon-sesments)
(clip profile-segments ; We haven't processed any,

; so we pass through.

(cdr horizon-segments)) ; Strip off the first one.
(values res~-segments-~o-draw ; We have noshing new to draw,

(cons (car horizon-segments) ; but must return the
; new horizon piece _

rest-new-horizon-segments))))

II-1.43

(:else
;; The left endpoin~ of ~he first profile segmen~ falls within
; ; ~he first horizon segment.
(le~ ((profile-segment (cox profile-segments))

(horizon-segment (car horizon-segments)))
(mul~iple-value-bind (segmen~-~o-draw

ne.-horizon-segmen~s
remaining-profile-segment
remaining-horizon-segment)

(clip-segments profile-segment horizon~segmen~)
;; We now have all ~he information we need for ~he recursive
;; call.
(multiple-value-bind (res~-segmen~s-~o-dra.

rest-new-horizon-segments)
(clip

;; Calculate ~he PROFILE-SEGMENTS ~o send down.
(if remaining-profile-segment ; If some of ~he profile

; segment wasn't handled
(cons remaining-profile-segmenz

(cdr profile-segments))
(cdr profile-segments))

;; Calculase she HORIZON-SEGMENTS ~o send down
(if remaining-horizon-seEmen$; If some of ~he horizon

; segment wasn't handled
(cons remaining-horizon-segmenz

(c d r horizon-seEmen~s))
(cdr horizon-seEmen~s)))

(values
;; Calculate ~he SEGMENTS-T0-DRAW ~o return.
(if seEmen$-~o-draw

(c o n s segmen~-~o-draw ; Our contribution.
res~-se~men~s-~o-draw) ; Resul~ of recursion.

rest-segments-Go-draw) ; This call contributes
; no~hing.

(append new-horizon-segments ; We always contribute
; something ~o ~he
; ~o ~he horizon.

res%-new-horizon-se~men~s))))))))

II-1.44

F~ure 2

II-l. 45

