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Numbers are one of the greatest achievements of humanity. They are the product of many 
thousands of years of effort by the best rnindt of hlstory---and prehistory. That effort continues, 
for our concept of numbers is, and will remain, unfinished. 

Numbers have always been central to computing, and hence to progrommlng languages. The 
"numbers" supported by a progr:lrnming language, however, often behave quite differently from 
the mathematical concepts on which they are modelled. Many of these differences are motivated 
by concern for efficient execution on affordable hardware, which is important for a programming 
language but meaningless for mathematics. The most obvious example is the "integer" arithmetic 
provided by most languages, which in practice usually turns out to be arithmetic modulo some 
power of two. 

Mother example is the rigid and artificial distinction between "integer" and "real" numbers in 
many languages. Historically, this distlnction seems to have arisen in programming languages 
through a process that we might scorn today as a violation of the principle of representation 
independence. At the time FORTRAN was introduced, however, it seemed natural to think that ff 
a language's implementation will use two different representations for numbers, then the language 
must use two different kinds of numbers. The mason that two different representations were 
required by the implementation is still valid today: One representation, floating point, was and" 
is the best representation known for convenient and efficient calculation with approximations to 
the real numbers over a wide range of values. The other representation, which varies depending 
on the hardware, was and is best for efficient and exact calculations with integers over the small 
range of values that can be represented within a machine word or register. It is hard to fault 
FORTRAN's decision that programmers, when declaring a variable that will be used to hold 
numeric values, must also declare the representation that will be most efficient for the intended 
use of that variable. For that matter, FORTRAN deserves respect rather than contempt for seeking 
to make this requirement less burdensome by allowing programmers to omit the declaration when 
they follow established mathematical practice in choosing the names of their variables. 

Of course, a good idea in FORTRAN's time isn't necessarily a good idea today. How should 
numbers be organized in a modern programming language? Should they be organized as a collec- 
tion of data ttypes, with well-defined coercions from the more specialized types such as integers 
into more general types such as reals, or should numbers be a single data type (leaving open the 
possibility of several distinct internal representations)? 

This question is a-Aiogous to a question that arises in the fourr~tions of mathematics. Consider, 
for example, how the field of complex numbers can be constructed from set theory. The first step 
is to define the nalxtrai numbers. Following John yon Neumann, we can take the empty set as 
zero and define the successor function succ by 

Hence one will be the set containing zero, two will be the set containing both zero and one, and so 
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on: each natural number is represented as the set consisting of all the previous natural numbers: 

o = { }  
1 = {0} = {{  } }  
2 = {0,1} = {{  } , { {  } } }  
3 = {o, 1 ,2}  = {{ },{{ }},{{ },{{ }}}} 
4 =  {0, 1 ,2 ,3}  = {{  } , { {  } } , { {  } , { {  } } } , { {  } , { {  } } , { {  ) , { {  ) } } } }  

We can then define the set of natm'al numbers recursively as the closure of {0} under the successor 
operation, and write it as ~ = {0, 1 , 2 , 3 , 4 , 5 , . . . } .  This representation, while arbitrary, has some 
nice properties. Among the most important for mathematics is that it generalizes nicely to infinite 
numbers--can you guess what w + 1 is? Equality of natural numbers coincides with equality o f  
numbers considered as sets, and the less-than relation < coincides with the subset relation. We 
can go on to define addition and mulliplication in the Usual recursive way. 

The next step is to define the integers. By ,~ki,g 0 as the plus sign and I as the minus sign, we 
can represent the integers as the set 

Z - ({0} x w) U ({1} x (., - {0})) 

and then define operations on integers in the usual way. Next come the rationals, which we can 
represent as Q = (Z x (Z - { ( 0 , 0 ) } ) ) / - ,  where - is the equivalence relation defined by 

(a, b) = (e, d) if and only if ad = be. 

After defi- i ,g the usual operations on the rationals, including the less-than relation <,  we can 
represent the reals as the set of Dedekind cuts. A Dedekind cut is a nonempty proper subset of 
the rationals that is closed under < and has no greatest element: 

a =  {,,tgQI3q  .a ^ 3q Qq¢.a 
A V a E A ( V q E Q q < a : ~ q E A  A 3 a ' f i A a < a ' ) }  

It is easy to define the usual operations on the reals. Finally we can represent the complex numbers 
in rectangular coordinates as C = R x R and go on to define operations on them. 

We have represented the complex numbers C using the real nnmbers P~ which are represented 
using the rational numbers Q, which are represented using the integers Z,  which are represented 
using the natural xmmbem w. These representations are satisfactory in most respects, but there's 
a problem. The problem is that we learned in school that the natural numbers are a subset of the 
integers, that the integers are a subset of the rationals, that the rationals are a subset of the reals, 
and that the reals are a subset of the complex numbers. None of that is true of the numbers we 
have built, There are two ways to fix our construction. One is to define a set of coercion functions 

~w,Z :w-'*Z 
az,Q : Z -- Q 

~a,c : R - -  C 
~w,Q = ~w,Z o ~Z,Q 

Gw,R = otw,Q o GQ,R 

~w,C = t~w,R o ~R,C 
~Z,R = c*Z,Q o ctq,l(  
~Z,C = ~Z,R o ~R,C 

o~Q, c = otQ, R o ~R,C 
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that map each natural number to the corresponding integer, and so on, and then to adopt the 
following ideology: 

Ideology 1. Henceforth, whenever we say that A is a subset of B, Where A and B are both 
among ~o, Z, Q, R, and C, what we really mean is that the image of A under the coercion 
function c~A,S is a subset of B. Whenever we say that b E B is a member of A, what we 
really mean is that b is the image of some a E A under c~A,a. 

A different solution is to regard the complex numbers C (or perhaps some other number system 
such as the reals) as the all-encompassing set of true numbers, and to regard the sets w, Z, Q, 
and R as mere scaffolding used in the construction of G. This requires us to adopt the following 
ideology: 

" Ideology 2. Henceforth, whenever we speak of A, where A is w, Z, O, or R, what we 
really mean is the image of A under o~A,C. 

The second ideology seems to be the one most often adopted in mathematics, and its analogue 
for programming languages is the ideology adopted by Scheme: There is an all-encompassing 
set of numbers, and all the various number systems are true subsets of it. Most programming 
languages adopt an analogue of the first ideology: The various munber systems define disjoint 
sets of numbers, but these sets are related by coercion functions. 

Common Lisp, for example, requires at least three disjoint numeric types: r ag iona l ,  f loal: ,  and 
complex° (Oddly, the type i.nteger is a subtype of r a t i ona l . )  No r az iona l  is ever a f l o a t  
or a complex, and no f loa¢ is ever a complex. The coercion procedures are rationa.1, f l o a t ,  
and complex. 

Scheme, by contrast, requires that every rational be both a real and a complex, and that every 
real be a complex. Likewise every integer must also be a rational, a real, and a complex number. 
Coercion procedures are unnecessary, since they would be identity functions. 

In its use of a single numeric type, Scheme follows the lead of programmin S lan~ages such as 
APL. Scheme's contribution is its division of that type into the subtypes of exact and inexact 
numbers. These subtypes are disjoint, but unlike the disjoint numeric subtypes of other program- 
ming languages they do not correspond to any of the number systems constructed above. They 
are motivated by pragmatics rather than by mathematics. 

The pragmatic motivation is based on an interesting property of the representations for numbers 
that have been found to be most useful in programming languages. These representations are 
known as )fxnums, which can represent small integers; b/gnum.% which can represent integers of 
any size; ratnums, which correspond to pairs of bignums or fixnums and can represent rationals 
of any size; flonums, which are floating point approximations to real numbers within a large 
but fixed ranse 5 and complexnums, which correspond to pairs of flonums and can approximate 
complex numbers whose rectangular components are within the range that can be represented by 
flonums. These and other representations fall neatly into two classes according to their behavior 
with respect to the common arithmetic operations such as addition, subtraction, multiplication, and 
division. One class consists of representations such as flonums tIiat are inherently approximate 
in the sense that the flonum result of adding two flonums is unlikely to represent the exact result 
of adding the numbers represented by those flonums. The other class consists of representations 
such as fixnums and bignums that are exact in the sense that the fixnum or bignum obtained by 
adding two fixnums does indeed represent the exact result of adding the numbers represented by 
those fixnums. Scheme's distinction between exact and inexact numbers is an abstract recognition 
of this important distinction between these two classes of representations. While it complicates 
the language, the distinction yields four pragmatic benefits: efficiency, predictability, reliability, 
and flexibility of implementation. 
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Inexactness is a contagious property. Adding an exact number and an inexact number yields an 
inexact number. This improves efficiency because arithmetic operations on the representations 
used for inexact numbers (flonums and complexnums) are faster than on r'otrnlm~ or pairs of 
ramums, which are the representations for exact numbers that would probably have to be used if 
the result were not represented as a flomun or complemmm. 

Of course, this efficiency could be obtained without making the distinction between exactness 
and inexactness explicit in the programming language. By making the distinction explicit and 
stating the conditions under which inexact results can be obtained, Scheme helps programmers 
to understand and anticipate the behavior of their programs. The distinction between exact and 
inexact numbers thus helps to make programs more predictable. This predictability is greatly 
weakened, however, by the flexibility that Scheme gives to implementations as discussed below. 

The concept of exacmess also helps to catch bugs. For example, it seems unlikely that a pro- 
grammer would deliberately use an inexact integer as a vector index. By defining this to be an 
error, Scheme allows implementations to detect and report it. Requiring exact integers as indexes 
also makes vector and string manipulation more efficient in Scheme than in most other languages 
that use a single numeric type, because procedures such as v e c t o r - t e l  and s1:r ing-ref  do not 
have to be prepared to convert flonum representations of inexact integers into the representation 
required by the addressing hardware. 

Finally, the abstractness of the distinction between exact and inexact numbers offers considerable 
flexibility to implementors of Scheme. A typical implementation of Scheme might represent 
exact numbers as fixnums, bigmuns, and ramum,, and represent inexact numbers as flonums or 
complexnums. An implementation could, however, represent all exact numbers as ratnums and 
all inexact numbers as complexnum~ At the other extreme, an implementation could represent 
all exact numbers as fixnums and all inexact numbers as flommm, since Scheme currently does 
not require that complex numbers be supported, does not require that non-integers be supported 
as exact numbers, and does not even require that integers be supported as exact numbers outside 
any limits imposed by the implementation on the sizes of vectors, strings, and proper lists. While 
this flexibility is bad for predictability and portability, it is valuable for research, experimentation, 
and applications such as embedded systems. 
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