
Programming Environments
John Foderaro

The Franz Inc. ALLEGRO CL/GNU EMACS Interface
John Foderaro and D. Kevin layer

1. Introduction

The editor is an important part of a LISP lzrogranm~g environmenL In this paper we describe how we
have integrated the GNU EMACS ed/tor with ALt.EOaO CL (previously known as Extended COMMON
LISP). Pans of the interface between AT~ORO CL and GNU EMACS can be used with any version of
LISP, including Fa.~Z I.,Xsp. Other parts requ/re a sopkisdca~l multiprocessing facility, such as the
one found in ~t~-~nRO CL or on LzsP-machines. The interface can be obtained at no charge as
described at the end of ties paper.

2. Choosing the Editor

Our goal was to choose an appropriate editor for ALLEGRO ~ running ms general-purpose UNIX works-
tatious. Our choices were:

1. write an InterLxspostyle structune editor,

2. write an in-LisP ~ c s - s t y l e text editor,

3. or use an existing editor for general-purple workstadons.

We ruled out an r/HerLIsP-style structure editor because .~tW~GRO CL is not a l~sideot~ LISP in the
InterLzsP style. A smsctum editor would still be useful for examining and modifying objects and we
may write one in the future, but we do not see ourselves using one as the wimaty program editor.

We were ~en faced with choosing between writing an EMACS-Like edi~0f in LIsP and usiJnrg an existing
edkor. We chose GNU EMACS, curmndy the most widely used EMACS edia~ on general-purpme UNIX
workstations, for these reasons:

• Most people prefer m learn just one editor. Aside from not wanting to learn and remember the
conventiom of more than one editor, many people expend great effort customizing their edkor
environment.

• GNU FEMAcs is a comprehensive, well-dmigned editor. Duplication of all of its features would
be a difficult task and wasted effort.

• On a genmd-purpme machine, developers want a generAl-purpose editor since they will be using
that editor not only for editing Cotva~ON Lisp programs but for reacting and processing mail, writ-
ing papas using TeX or ~o~, and_editing programs in oth~ languages such as C or Fortnn.
Also, the editor should work on whatever termina/or bit-mapped display is available.

• The editor must be reliable. In the model where LIsP and PEMACS sbme the same address space
(i.e., EMACS iS implemented in LISP), chmges made m files or buHen can be lost ff LIsP dies. (It
is not noanai-for LISP to die, but b u u y foreign functions and unsafe usa-written programs can
cause any LtsP to fail unexpectedly.)

3. GNU EMACS

GNU EMACS is a portable and extensible text editor written by Richard Stallman, with conaibutions by
many others. It is written in C and FEMAcS LISP (Elisp) and runs on most machines running the UNIX
opera,rig system. Elisp, the extension language,, is similar in many ways to COMIVlON LISP, and
includes a LIsP-to-l~table-byte-code compiler and garbage collector.

Ato.a~o CL is • u'ade, mark c(FPranz Inc., Macimmh is • trademark licensed to Apple Compmmr, and UNIX is • Urademark
of AT&T.

II-l.50

EMACS is extemible at a very basic level: there is a table that maps every key on the keyboard (and
some key sequences) to • function. When you press • key, a function is executed which defines the
behavior of the key. For example, with the initial key bindings, when you press the 'a' key, a function
called self-insert-command is executed that inserts an 'a' into the buffer at the location of the cursor.
Another feature of EMACS is that it permits you to edit more than one file at • lime, each file being
stored in its own buffer. Each buffer has a local mapping of keys to functions, thus you can alter the
behavior of EMACS in each buffer. For example, in • mail-reading buffer pressing the 'a' key may
mean 'answer the mail', and the function executed would set up a buffer in which to write a reply to
the current letter.

The set of key to function bindings in a buffer is called the mode. In our interface we define several
modes. One is CoMMoN LIsp mode which makes it easier to write COMMON LISP programs. Pot
example, in COMMON LISP mode thae is • function, or key sequence, that displays the argument list for
a given symbol by querying the LISP envkomnent. There is also • mode for interacting with a LISP
process, and mother for having nudtiple LISP listeners connect to the same LISP.

4. Features of the Interface

The parts of the interface include:

• A mode for editing LIsP programs. Expressions are automatically indented as they are typed.
Matching parentheses are highlighted with the cursor. This mode is an enhancement to the stan-
dard LISP mode provided by GNU EMACS, and provides features not available in the standard
LIsP mode.

A mode for interacting with a LISP process. The LISP process can be running on any machine on
the network. Expressions are indented when they are typed and matching parenthesis highlighting
is clone as in LISP editing mode. Previous typed input can be edited and re-executed. Previous
lines of input can be recalled based on a search pattern.

A mode that combines the first two. While editing • file you can request an argument list or
description of a symbol or functim (recta shift a), the result of a macroexpamion (meta shift m),
or to see the source associated with a f u . ~ o ~ defsuect, or variable (recta dot). The EMACS pan
of the interface accomplishes this by sending information to and receiving information from Lisp
via • back door (explained below). When the response is _received from LisP, EMACS displays the
information requested by the user.

A mode that simulates a residential or InterLisp-like environment Instead of having to recompile
and load entire files, this interface allows single functions or • group of functions to be compiled
and loaded into the LISP envimnmenL This merging of the EMACS and LISP wodds regains what
is lost in the file-based approach to LISP development, and makes the EMACS and LISP seem like
they inhabit the same world (like an in-Lisp EMACS would).

Other features, such as an improved Shell mode (for issuing commands to the operating system)
and • function for creating multiple separate LISP listeners onto the same LISP, using the mul-"
tiprocessing featnn~ of A J . ~ R o CL.

S. Implementatign~

The modes for editing LISP programs and talking with a LISP process are written in entirely in Elisp
(EMACS LISP). They are important parts of the interface but there is nothing worth noting here.

For the rest of the interface, which deals with the interaction between a running LISP and EMACS, the
global view is that there is a LIsP process running in a separate UNIX process under the control of
EMACS. In other words, the characters that LISP writes to *terminai.io* are sent to EMACS and what
EMACS sends to LIsP appears as input in *terminal.io*. LIsP runs in a named EMACS buffer, called,
for example, *conunon-lbp*. The user types to EMACS in the *common-lisp* buffer, which then
becomes input to the LISP process. When LIsP produces output, it is read by EMACS and put in the
common-lisp buffer.

Consider now the case of a user running EMACS with a connection to LISP. Say, for example, the user
wants to describe (in the COMMON LISP sense) the COMMON LISP function make-package. The key

II-l.51

sequence "M-D make-package REF" (recta sMJ~ d, followed by make-pcgkage, followed by a carriage
return), in a COMMON LISP moded buffer (as opposed to, say, a marl moded buffer), is the way to
request that this information be displayed by EMACS. If the user were just talking with COMMON LISP,
the form to evaluate to get this information would be:

(describe 'mates.package)

EMACS could just send the above sequence of characters to the COMMON LISP process, but there would
be no guarantee that the COMMON LISP process was in a state where a reply would be possible (the user
may be running an application). For tiffs reason, there needs to be a dedicated communication link
between EMACS and COMMON LisP. In otg interface, this ~ is referred to as the back-door LISP
listener. It is called back door because the us& never actually sees it or types to it. L/sP l/stener is the
conventional name for a read-eval-print loop to which a user of LISP types. Using this terminology, the
LISP. p r o c e s s connected to a buffer (the one to which the user types) could be called the from-door l~$P
listener, or justifront-door.

The back-door communication between EMACS and ALL.gO CL is at the heart of the interface. While
the user is interacting with ALLEGRO CL through the front door, EMACS has a communication channel
open to ALLEGRO CL through the back-don. This back-door is just another listener which EMACS uses
to query the Lisp envi~oru'nent for information pertaining to, for example, argument lists, macro
definitions, documentation strings of functions, etc. It uses the networking wimitives available on
Berkeley UNIX, which allow communication over UNIX or Internet domain sockets. This use of two
listeners to the same IASP is possible because of ~,J~oRO Cid's nmltiprocessing and stack group facili-
ties. (LISP machines have used stack groups and multiprocessing for some time as the basis for their"
multi-tasking operating systems. These fe~,,~es have been available in some vegsious of .t,,~:¢3Ro CL
for almost two yeats.)

6. Problems in the interface

One problem we faced was selecting the appropriate network address for LIsP to monitor for messages
from EMACS. If we chose an Internet domain port then only one user on a machine could use the inter-
face unless each user chose a unique port number for LISP-EMACS conununicat/on. We support both
styles of network addressing, but decided to use, by default, a UNIX domain port (with the address
being a file in the user's home directory, thus providing.a unique address for each user). One problem
with using a UNIX domain address is that EMACCS and LISP must be running on the same machine.
Another problem with using UNIX domain addresses is that the standard GNU EMACS we started with
(version 18..50) did not have support for UNIX domain ~ckets. It was a mralght-forward task to extend
open.network-strenm in GNU EMACS to allow the creation of UNIX domain sockets and this
modification has been sent m the maintainers of GNU EMACS and made part of the int~face release.

7. Future work

Currently EMACS drives the interface and LISP acts as a slave. We will expand the interface to permit
LISP programs to request services from EMACS (e.g. edit files or expressions, pop up buffets, etc). We
will also generalize the interface and define in EMACS an 'eval in LISP' function and define in LIsP an
'eval in EMACS' function, thus permitting users to extend the interface.

8. Conclusion

General-perpose machines are popular because they ran a variety of applications, often written in many
different languages. But, ff each application provides its own editor i t will be unpleasant for the user.
The Apple Macintosh is currently the best example of a system that provid~ a uniform interface across
applications, and it is second to none in ease of use.

On UNIX machines we see EMACS as the best solution to providing a uniform application environment.
GNU EMACS, in particular, is much morn powerful and extensible than the Macintosh 'point and click'
interface and the subprocess control facilities of GNU EMACS already provide a uniform interface
between editing files and interacting with the UNIX command parser (the shell). With our LISP-EMACS
interface we add LIsP to the set of programs tightly coupled to EMACS.

II-1.52

9. How to obtain GNU EMACS and the EMACS/LIsP interface

You can obtain GNU EMACS by copying the latest distribution version of EMACS from the file
/u2/emacs/edist.tav on host prep.ai.mit.edu (or the file/u2/emacs/edist.tar.Z which has been run through
compress after tar). These files are about 7 and 3 megabytes long, respectively. After you unpack the
distribution, be sure to look at the files README and INSTALL.

To obtain the current release of the EMACs/LIsP interface, either:

I) if you have Internet access, copy it from ucbarpa.berkeley.edu or ucbvax.berkeley.edu via FI'P
(login ftp, password your login name) from the directory pub/fi/gnudist-l.2-tar.Z, or

2) send a check (sorry, no PO's accepted) in the amount of $50 for a US address or $75 for a
foreign address to Franz Inc. to the following address:

Franz Inc.
Attn: I./SP/EMACS Intel~ace Request
Suite 275
1995 University Ave
Berkeley, CA 94704

Please specify the media (tar format only) which is one of:

• I/2", 1600 bpi 9-track
• 1/4", cartridge tape--specify the machine type (e.g., Tektronix 4300)

There is a mailing list for the discussion of issues related to this interface, called 'lisp-emacs-
forum@Berkeley.EDU'. If you would like to be on it, send mail to 'lisp-emacs-forum-
request@Berkeley~'~U'.

II-1.53

