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Did you ever wonder how Y works and how anyone could ever have thought  of it? Do 

you feel like a Lisp weakling when some heavy-duty Scheme hacker kicks sand in your face 

by admiring Y in public? In this note I'll t ry  to explain to you not only how it works, 

but  how someone could have invented it. I 'll use Scheme notat ion because it is easier to 

unders tand when functions passed as arguments are being applied. At the end, I'll show 

you Common Lisp equivalents of some of the Scheme code. 

The point of Y is to provide a mechanism to write self-referential programs without  

a special built-in means of accomplishing it. In Scheme there are several mechanisms for 

writ ing such programs, including global function definitions and l e t r e c .  Here is one way 

to write the factorial function in Scheme: 

( d e f i n e  f a c t  
(lambda (n) 

( i f  (< n 2) 
1 
(* n (fact (-  n 1 ) ) ) ) ) )  

This works because there is a global variable, f a c t ,  tha t  has its value set to the value of 

the | ambda  expression. When the variable f a c t  in the body of the function is evaluated 

to determine which function to invoke, the value is found in the global variable. In some 

sense using a global variable as a-function name is unpleasant  because it relies on a global 

and hence a vulnerable resource---the global variable space. 

The Scheme self-reference form l e t r e c  is usually implemented using a side effect. It 

is easier to reason about  programInlng languages and programs tha t  have no side effects. 

Therefore it is of theoretical interest to establish the ability to write recursive functions 

wi thout  the use of side effects. 

The following is a program tha t  uses l e t r e c :  

( l e t r e c  ( ( f  

(f  lo))  

(lambda (n) 
(if (< n 2) 

I 

(* n (f (- n 1 ) ) ) ) ) ) )  
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This program computes 10!. The reference to f inside the lambda expression is to the 

binding of f established by the l e t r e c .  

One could implement l e t r e c  using l e t  and s e t ! .  

(letrec ((f (lambda ...))) ...) 

This is equivalent to the following: 

( l e t  ( ( f  <undefined>)) 
( s e t !  f (lambda . . . ) )  . . . )  

All references to f in the body of the lambda expression will refer to the value of the 

lambda expression. 

Y is a function that takes a function that could be viewed as describing a recursive 

or self-referential function, and returns another function that implements that recursive 

function. Here is how Y is used to compute 10!. 

( l e t  ((f (y 

(f 10)) 

(lambda (h) 
(lambda (n) 

(if (< n 2) 
i 
(*n(h (-n i))))))))) 

Notice that the function passed to Y as an argument is one that takes a function as an 

argument and returns a function that looks like the factorial function we want to define. 

That is, the function passed to Y is (lambda (h) ...). The body of this function looks like 

the factorial function, except that where we would expect a recursive call to the factorial 

function, h is called instead. Y arranges for an appropriate value to be supplied as the 

value of h. 

People call Y the applicatlve-order ./~ze.d point operator for functlonals. Let's look at 

what this means in our factorial example. Suppose Y" is the true mathematical factorial 

function, possibly in Plato's heaven. Let F denote the following function: 

F = (lambda (h) 
(lambda (n) 

(if (< n 2) 
i 
(* n (h ( -  n I)))))) 
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Then ((F f )  n ) =  (jr n). Tha t  is, Y" is a fixed point of F: F maps (in some sense) ~r 

onto Y'. Y satisfies the following property: ((F (Y F)) x) = ((Y F) x). This is a very 

impor tant  property of Y. The other important  property is tha t  the least defined fixed 

point for functionals is unique, and therefore (Y F) and 9" are in some sense the same. 

Applicative-order Y is not the same as classical Y, which is a combinator.  In some 

texts, what  we call Y is called Z. 

My plan is to first derive Y, which is a good way to unders tand it, and then to prove 

it 's correct in the case of factorial. You can then imagine how the general proof would 

go. I will also show tha t  ((F (Y F)) x) = ((Y F) x). The uniqueness property is a little 

too hard  to do here. All of my proofs will be informal, leaving out details. Finally I will 

examine some extensions to Y in both Scheme and Common Lisp. 

To derive Y, I will s tar t  with an example recursive function, factorial. In the deriva- 

t ion I will make use of three techniques. The first is to pass an addit ional  argument to 

avoid using any self-reference primitives from Scheme. The second is to convert multiple- 

parameter  functions to nested single-parameter functions in order to separate manipulat ion 

of the self-reference parameters from manipulat ion of ordinary parameters.  The third is 

to introduce functions through abstraction. 

All code examples will use the variables n and m to refer to integers, the variable x to 

refer to an unknown but  undistinguished argument, and the variables f ,  g, h, q, and r to 

refer to functions. 

The basic form of the factorial function is the following: 

(lambda (n) 
(i~ (< n 2) 

1 

(* n (h (- n 1))))) 

The variable h should refer to the function we wish to invoke when a recursive call is made, 

which is the factorial function itself. Since we have no way to have h refer directly to the 

correct function, let's pass it in as an argument: 

(lambda (h n) 
(if (< n 2) 

I 
(* n (h h (- n I))))) 

In the recursive call to h, the first argument will also be h because we want to pass on the 

correct function to use in the recursive situation to later invocations of the function. 
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Therefore, to compute I0! we would write the following: 

(let ((g (lambda (h n) 
(if (< n 2) 

1 
(* n (h h (- n i))))))) 

(g g 10)) 

During the evaluation of the body of g, the value of h is the same as the value of g that the 

let established; that is, during execution of g, h refers to the executing function. When 

the function call (h h (- n I) ) happens, this same value is passed along as an argument 

to h: h passes itself to itself. 

What we want to do, though, is to pull apart the management of the self-reference to 

the function from the management of other arguments. In this case we want to separate 

the management of h from the management of n. The usual way to handle this is with a 
f 

technique called currying. Before we curry this example, let's look at another example of 
currying. Here is a program that also computes 10!, but in a slightly more clever way. 

(letrec ((f 

(f 10 i)) 

(lambda (n m) 
(if (< n 2) 

m 
(f (-n I) (* m n)))))) 

Here the trick is to use an accumulator, m, to compute the result. This function is iterative 

in Scheme, but that's not important. Let's curry the definition of f: 

(letrec ((f (lambda (n) 
(lambda (m) 

(if (< n 2) 
m 
((f (- n I)) 

((f io) I)) 
(* m n))))))) 

The idea of currying is that every function has one argument, and passing multiple 

arguments is accomplished with nested function application: the first application returns 

a function that will take the second argument and complete the computation of the value. 

In the above piece of code, the recursive call ( ( f  (-  n 1)) (* m n))  has two steps: the 

proper function to apply is computed, and then it is applied to the right argument. 

We can use this idea to curry the other factorial program: 
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(let ((g (lambda (h) 
(lambda (n) 

Cif (< n 2) 
1 
( * .  n ((h h) 

((g g) lO)) 
(- n I)))))))) 

In this piece of code, the recursive call also has two steps, and the first is to compute the 

proper function to apply. But that  proper function is computed by applying a function to 

itself. 

Applying a function to itself is how we get the basic functionality of a self-reference. 

The self-application (g g) in the last line of the program calls g with g itself as an ar- 

gument. This returns a closure in which the variable h is bound to the outside g. This 

closure will take a number and do the basic factorial computation. If that computation 

needs to perform a recursive call, it invokes the closed-over h with the closed-over h as an 

argument, but all these h's are bound to the function g defined by the let. 

We can summarize this trick. Suppose we have a self-referential function that uses 

letrec as in the following code skeleton: 

(letrec ((f (lambda (x) . . .  f ...))) 
. . .  f ...) 

Then this can be turned into a self-referential function that  uses l e t  as follows: 

( l e t  ( ( f  (lambda ( r )  
(lambda (x) 

(f f) ...)) 
. . .  (r r) ...)))) 

where r is a fresh identifier. 

Let's concentrate on how to further separate the management  of h in our factorial 

function from the management  of n. Recall that  the factorial program looks like this: 

(let ((g (lambda (h) 
(lambda (n) 

(if (< n 2) 
1 
( *  n C ( h  h) 

((g g) 1o)) 
(- n I ) ) ) ) ) ) ) )  

Our plan of attack is to abstract the i f  expression over (h h) and n. This will accomplish 
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two things: the resulting function will be independent of its surrounding bindings, and the 

management of the control argument will be separated from the numeric argument. The 

following is the result of the abstraction: 

( l e t  ((g (lambda (h) 
(lambda (n) 

(let ((~ 

(f (h h) 
((g g) 10)) 

(lambda (q n) 
(if (< n 2) 

I 
(* n (q (- n 1))))))) 

n)))))) 

We can curry the definition of f ,  which will also change the call to it. 

(let ((g (lambda (h) 
(lambda (n) 

(let ((f 

((~ 
((g g) 10)) 

(lambda (q) 
(lambda (n) 

Cif (< n 2) 
1 
(* n (q 

(h h)) n)))))) 
(- n I)))))))) 

Notice that  the definition of the function f does not need to be deeply embedded in 

the function g. Therefore, we can extract the main part of the function--the part that 

computes factorial--from the rest of the code. 

(let ((f (lambda (q) 
(lambda (n) 

Cif (< n 2) 
i 
(* n (q 

( le t  ((g (lambda (h) 
(lambda (n) 

((f Ch h)) 
( Cg g) 10))) 

(- n 1)))))))) 

n))))) 

Notice two things: first, the form of f is once again the par~meterized form of factorial; 

second, we can abstract this expression over f ,  which produces Y as follows: 
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(define Y (lambda ( f )  
( l e t  ( (g  (lambda (h) 

(lambda (x) 
((f (h h)) 

(g  g ) ) ) )  
x))))) 

This is one way to derive Y. 

Recall tha t  Y is the applicative-order fixed point operator for functionals, which can 

be s ta ted as follows: 

((Y f) x) = ((f (Y f)) x) 

Let's use this property to prove tha t  the following function computes factorial: 

(Y (lambda (f) 
(lambda (n) 

(if (< n 2) 
i 
(* n (f (- n 1))))))) 

We will prove it using induction. Let F be as follows: 

F = (lambda (f) 
(lambda (n) 

(if (< n 2) 
1 
(* n (f (- n 1) ) ) ) ) )  

We will show tha t  Vn, n > O, ((Y F) rt) = n!. Using the key property, the first step is to 

notice the following: 

((Y F) x) ffi ((F (Y F)) x) 

L e t G b e  (Y F). ((Y F) 1) = ((F (Y F)) 

F, we see the following: 

((F G) 1) ffi ( i f  (< n 2) 
1 
(* n (G ( -  n 1 ) ) ) )  

1) = ( (F  G) 1). Looking at the definition of 

where n is bound to 1. Since 1 < 2, the value of the i f  expression is 1, which is 1!. That  
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is the base step. 

Now the induction step. Assume tha t  ((Y F) i) = i !  for 1 < i _~ m. 

( (¥ F) m + 1). As before we can reduce this to the following: 

Consider 

((Y F) re+l) = ((F G) re+l) = (if (< n 2) i (* n (G (- n i)))) 

where n is bound to m + 1. Since m is at least 1, m + 1 is at least 2, so the value of this 

expression is the following: 

(* n (G (-  n 1 ) ) )  

Since G is (Y F), this reduces to the following: 

(,  n (CY F) (-  n 1 ) ) )  

which by the induction hypothesis is just  (m + 1)m! = (m + 1)!. Tha t  completes this 

informal proof tha t  (Y F) is the factorial function. 

_~ Now let's prove tha t  Y is the applicative-order fixed point operator for functionals. 

Namely, let's prove tha t  V z the following holds: 

((Y F) x) = ((F (Y F)) x) 

Recall ~the definition of Y: 

(define Y (lambda (f) 
(let ((g (lambda (h) 

(lambda (x) 
((f (h h)) 

(g g ) ) ) )  
x))))) 

Looking at the definition of Y, we see the following: 

(Y F) = (g g)  = ( lambda (x) 
( ( f  (h h ) )  x) )  

where g is the inner function in the definition of Y, f is bound to F, and h is bound to g. 

If we supply an argument to the result of (Y F) the following is true: 

((Y F) x) = ((f (h h)) x) 
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where h is bound to the inner function g in the definition of Y. By subst i tut ing g for h we 

could rewrite this equality as follows: 

((Y F) x) = ((f (g g)) x) 

where g is the inner function in the definition of Y. But  remembering tha t  f is bound to F 

and tha t  (Y F) = (g g) ,  this jus t  reduces to the following: 

((Y F) x) = ((F (Y F)) x) 

This is what  we wanted to show. Now, we played a little free and easy with talking 

about  the domain over which x can range, but  this is jus t  an overview, not a formal proof. 

When this property is coupled with the uniqueness property, we can see tha t  Y is exactly 

the function we need to implement self-reference. 

Wha t  does Y look like in Common Lisp? Like this: 

(defun y (f) 
(let ((g #'(lambda (g) 

#'(lambda (x) 
(funcall 

(funcall g g))) 
(funcall f (funcall g g)) x))))) 

Y only works for functions of one argument. However, Common Lisp has a mechanism 

for handling a variable number of arguments, so this isn't a big problem. 

(defun super-y (f) 
(let ((g #'(lambda (g) 

#'(lambda (&rest x) 
(apply (funcall f 

(funcall g g))) 
(funcall g g)) x))))) 

We can pass in functions of any number of arguments into super-y. Here's an example: 

(defun fact (n) 
(funcall 

(super-y 
#'(lambda (f) 

#'(lambda 

n I)) 

(n m) 
(if (< n 2) 

m 

(funcall f (-nO ( *  m n ) ) ) ) ) )  
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Now tha t  we have learned about Y, I want to extend it to handle two mutual ly 

recursive functions. Let 's recall the definition of Y: 

(define Y (lambda (f) 
(let ((g (lambda (h) 

(lambda (x) 
: ((f Ch h)) x))))) 

(g g)))) 

Notice tha t  in the body of Y the call to f is built  in. There is no real problem with this, 

but  the extension requires tha t  f be passed as an argument to the analog of g. Here is 

what  Y would look like with this simple change: 

(define Y (lambda ( f )  
Clet  C(g Clambda (h r )  

(lambda (x) 
CCr Ch h f)) x))))) 

Cg g f)))) 

This function has the same effect as the previous one, but  g has an extra parameter ,  which 

means tha t  it is possible to use g to handle more than  one function at a time, though Y 

would have to be a little different. 

Y2 will be the function tha t  is analogous to Y but  Which will handle a pair of mutual ly 

recurslve functions. The descriptions of these mutual ly  recursive functions will be lambda 

expressions with two parameters,  one for each of the pair of functions. Here is a simple 

example of how one would use Y2: 

CCY2 Clambda Cf g) (lambda (n) (if (< n I) 'even (g (- n i))))) 
(lambda Cf g) (lambda (n) Cif C< n i) 'odd Cf (- n I)))))) 

n) 

In the bodies of these two functions, f refers to the first of the pair of functions, and g to 

the second. The above expression is intended to be equivalent to the following: 

(letrec ((f (lambda (n) (if (< n I) 'even (g (- n I))))) 
(g Clambda (n) (if C< n I) 'odd Cf C- n I)))))) 

(f n)) 

Y2 will be easier to unders tand if we rename some parameters in the definition of Y2, 

so let 's do the renaming now: 
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(de f ine  y (lambda ( f )  
( l e t  ( (h  (lambda (h r )  

(lambda (x) 
((r (h h f)) 

(h h f)))) 
x))))) 

Looking at the this definition of Y we can see what  has to change. First ,  Y2 will need to 

have two parameters ,  which will be called f and g. Second, the call to r in h will need 

to pass two arguments, one to represent f and the other to represent g. Here is the final 

result: 

(de f ine  y2 (lambda (f  g) 
( l e t  ( (h  (lambda (h r )  

(lambda (n) 
((r (h h f) 

(h h f)))) 
(h,h g)) n))))) 

Finally, let 's look at a version of super-Y tha t  handles any positive number of func- 

tjons: 

(defun super-yn (f &rest g) 
(let ((h #'(lambda (h r) 

#'(lambda (&rest x) 
(apply 

(apply 
r 
(funcall h h f) 
(mapcar 
#'(lambda (f) 

(funcall h h f)) 
x)) ) ) )  

(funcall h h f))) 

g)) 
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