
The Why of Y

Richard P. Gabriel

Lucid, Inc. and Stanford University

Did you ever wonder how Y works and how anyone could ever have thought of it? Do

you feel like a Lisp weakling when some heavy-duty Scheme hacker kicks sand in your face

by admiring Y in public? In this note I'll t ry to explain to you not only how it works,

but how someone could have invented it. I 'll use Scheme notat ion because it is easier to

unders tand when functions passed as arguments are being applied. At the end, I'll show

you Common Lisp equivalents of some of the Scheme code.

The point of Y is to provide a mechanism to write self-referential programs without

a special built-in means of accomplishing it. In Scheme there are several mechanisms for

writ ing such programs, including global function definitions and l e t r e c . Here is one way

to write the factorial function in Scheme:

(d e f i n e f a c t
(lambda (n)

(i f (< n 2)
1
(* n (fact (- n 1))))))

This works because there is a global variable, f a c t , tha t has its value set to the value of

the | ambda expression. When the variable f a c t in the body of the function is evaluated

to determine which function to invoke, the value is found in the global variable. In some

sense using a global variable as a-function name is unpleasant because it relies on a global

and hence a vulnerable resource---the global variable space.

The Scheme self-reference form l e t r e c is usually implemented using a side effect. It

is easier to reason about programInlng languages and programs tha t have no side effects.

Therefore it is of theoretical interest to establish the ability to write recursive functions

wi thout the use of side effects.

The following is a program tha t uses l e t r e c :

(l e t r e c ((f

(f lo))

(lambda (n)
(if (< n 2)

I

(* n (f (- n 1)))))))

• 11-2.15

This program computes 10!. The reference to f inside the lambda expression is to the

binding of f established by the l e t r e c .

One could implement l e t r e c using l e t and s e t ! .

(letrec ((f (lambda ...))) ...)

This is equivalent to the following:

(l e t ((f <undefined>))
(s e t ! f (lambda . . .)) . . .)

All references to f in the body of the lambda expression will refer to the value of the

lambda expression.

Y is a function that takes a function that could be viewed as describing a recursive

or self-referential function, and returns another function that implements that recursive

function. Here is how Y is used to compute 10!.

(l e t ((f (y

(f 10))

(lambda (h)
(lambda (n)

(if (< n 2)
i
(*n(h (-n i)))))))))

Notice that the function passed to Y as an argument is one that takes a function as an

argument and returns a function that looks like the factorial function we want to define.

That is, the function passed to Y is (lambda (h) ...). The body of this function looks like

the factorial function, except that where we would expect a recursive call to the factorial

function, h is called instead. Y arranges for an appropriate value to be supplied as the

value of h.

People call Y the applicatlve-order ./~ze.d point operator for functlonals. Let's look at

what this means in our factorial example. Suppose Y" is the true mathematical factorial

function, possibly in Plato's heaven. Let F denote the following function:

F = (lambda (h)
(lambda (n)

(if (< n 2)
i
(* n (h (- n I))))))

11-2.16

Then ((F f) n) = (jr n). Tha t is, Y" is a fixed point of F: F maps (in some sense) ~r

onto Y'. Y satisfies the following property: ((F (Y F)) x) = ((Y F) x). This is a very

impor tant property of Y. The other important property is tha t the least defined fixed

point for functionals is unique, and therefore (Y F) and 9" are in some sense the same.

Applicative-order Y is not the same as classical Y, which is a combinator. In some

texts, what we call Y is called Z.

My plan is to first derive Y, which is a good way to unders tand it, and then to prove

it 's correct in the case of factorial. You can then imagine how the general proof would

go. I will also show tha t ((F (Y F)) x) = ((Y F) x). The uniqueness property is a little

too hard to do here. All of my proofs will be informal, leaving out details. Finally I will

examine some extensions to Y in both Scheme and Common Lisp.

To derive Y, I will s tar t with an example recursive function, factorial. In the deriva-

t ion I will make use of three techniques. The first is to pass an addit ional argument to

avoid using any self-reference primitives from Scheme. The second is to convert multiple-

parameter functions to nested single-parameter functions in order to separate manipulat ion

of the self-reference parameters from manipulat ion of ordinary parameters. The third is

to introduce functions through abstraction.

All code examples will use the variables n and m to refer to integers, the variable x to

refer to an unknown but undistinguished argument, and the variables f , g, h, q, and r to

refer to functions.

The basic form of the factorial function is the following:

(lambda (n)
(i~ (< n 2)

1

(* n (h (- n 1)))))

The variable h should refer to the function we wish to invoke when a recursive call is made,

which is the factorial function itself. Since we have no way to have h refer directly to the

correct function, let's pass it in as an argument:

(lambda (h n)
(if (< n 2)

I
(* n (h h (- n I)))))

In the recursive call to h, the first argument will also be h because we want to pass on the

correct function to use in the recursive situation to later invocations of the function.

II-2.17

Therefore, to compute I0! we would write the following:

(let ((g (lambda (h n)
(if (< n 2)

1
(* n (h h (- n i)))))))

(g g 10))

During the evaluation of the body of g, the value of h is the same as the value of g that the

let established; that is, during execution of g, h refers to the executing function. When

the function call (h h (- n I)) happens, this same value is passed along as an argument

to h: h passes itself to itself.

What we want to do, though, is to pull apart the management of the self-reference to

the function from the management of other arguments. In this case we want to separate

the management of h from the management of n. The usual way to handle this is with a
f

technique called currying. Before we curry this example, let's look at another example of
currying. Here is a program that also computes 10!, but in a slightly more clever way.

(letrec ((f

(f 10 i))

(lambda (n m)
(if (< n 2)

m
(f (-n I) (* m n))))))

Here the trick is to use an accumulator, m, to compute the result. This function is iterative

in Scheme, but that's not important. Let's curry the definition of f:

(letrec ((f (lambda (n)
(lambda (m)

(if (< n 2)
m
((f (- n I))

((f io) I))
(* m n)))))))

The idea of currying is that every function has one argument, and passing multiple

arguments is accomplished with nested function application: the first application returns

a function that will take the second argument and complete the computation of the value.

In the above piece of code, the recursive call ((f (- n 1)) (* m n)) has two steps: the

proper function to apply is computed, and then it is applied to the right argument.

We can use this idea to curry the other factorial program:

11-2.18

(let ((g (lambda (h)
(lambda (n)

Cif (< n 2)
1
(* . n ((h h)

((g g) lO))
(- n I))))))))

In this piece of code, the recursive call also has two steps, and the first is to compute the

proper function to apply. But that proper function is computed by applying a function to

itself.

Applying a function to itself is how we get the basic functionality of a self-reference.

The self-application (g g) in the last line of the program calls g with g itself as an ar-

gument. This returns a closure in which the variable h is bound to the outside g. This

closure will take a number and do the basic factorial computation. If that computation

needs to perform a recursive call, it invokes the closed-over h with the closed-over h as an

argument, but all these h's are bound to the function g defined by the let.

We can summarize this trick. Suppose we have a self-referential function that uses

letrec as in the following code skeleton:

(letrec ((f (lambda (x) . . . f ...)))
. . . f ...)

Then this can be turned into a self-referential function that uses l e t as follows:

(l e t ((f (lambda (r)
(lambda (x)

(f f) ...))
. . . (r r) ...))))

where r is a fresh identifier.

Let's concentrate on how to further separate the management of h in our factorial

function from the management of n. Recall that the factorial program looks like this:

(let ((g (lambda (h)
(lambda (n)

(if (< n 2)
1
(* n C (h h)

((g g) 1o))
(- n I))))))))

Our plan of attack is to abstract the i f expression over (h h) and n. This will accomplish

11-2.19

two things: the resulting function will be independent of its surrounding bindings, and the

management of the control argument will be separated from the numeric argument. The

following is the result of the abstraction:

(l e t ((g (lambda (h)
(lambda (n)

(let ((~

(f (h h)
((g g) 10))

(lambda (q n)
(if (< n 2)

I
(* n (q (- n 1)))))))

n))))))

We can curry the definition of f , which will also change the call to it.

(let ((g (lambda (h)
(lambda (n)

(let ((f

((~
((g g) 10))

(lambda (q)
(lambda (n)

Cif (< n 2)
1
(* n (q

(h h)) n))))))
(- n I))))))))

Notice that the definition of the function f does not need to be deeply embedded in

the function g. Therefore, we can extract the main part of the function--the part that

computes factorial--from the rest of the code.

(let ((f (lambda (q)
(lambda (n)

Cif (< n 2)
i
(* n (q

(le t ((g (lambda (h)
(lambda (n)

((f Ch h))
(Cg g) 10)))

(- n 1))))))))

n)))))

Notice two things: first, the form of f is once again the par~meterized form of factorial;

second, we can abstract this expression over f , which produces Y as follows:

11-2.20

(define Y (lambda (f)
(l e t ((g (lambda (h)

(lambda (x)
((f (h h))

(g g))))
x)))))

This is one way to derive Y.

Recall tha t Y is the applicative-order fixed point operator for functionals, which can

be s ta ted as follows:

((Y f) x) = ((f (Y f)) x)

Let's use this property to prove tha t the following function computes factorial:

(Y (lambda (f)
(lambda (n)

(if (< n 2)
i
(* n (f (- n 1)))))))

We will prove it using induction. Let F be as follows:

F = (lambda (f)
(lambda (n)

(if (< n 2)
1
(* n (f (- n 1))))))

We will show tha t Vn, n > O, ((Y F) rt) = n!. Using the key property, the first step is to

notice the following:

((Y F) x) ffi ((F (Y F)) x)

L e t G b e (Y F). ((Y F) 1) = ((F (Y F))

F, we see the following:

((F G) 1) ffi (i f (< n 2)
1
(* n (G (- n 1))))

1) = ((F G) 1). Looking at the definition of

where n is bound to 1. Since 1 < 2, the value of the i f expression is 1, which is 1!. That

11-2.21

is the base step.

Now the induction step. Assume tha t ((Y F) i) = i ! for 1 < i _~ m.

((¥ F) m + 1). As before we can reduce this to the following:

Consider

((Y F) re+l) = ((F G) re+l) = (if (< n 2) i (* n (G (- n i))))

where n is bound to m + 1. Since m is at least 1, m + 1 is at least 2, so the value of this

expression is the following:

(* n (G (- n 1)))

Since G is (Y F), this reduces to the following:

(, n (CY F) (- n 1)))

which by the induction hypothesis is just (m + 1)m! = (m + 1)!. Tha t completes this

informal proof tha t (Y F) is the factorial function.

_~ Now let's prove tha t Y is the applicative-order fixed point operator for functionals.

Namely, let's prove tha t V z the following holds:

((Y F) x) = ((F (Y F)) x)

Recall ~the definition of Y:

(define Y (lambda (f)
(let ((g (lambda (h)

(lambda (x)
((f (h h))

(g g))))
x)))))

Looking at the definition of Y, we see the following:

(Y F) = (g g) = (lambda (x)
((f (h h)) x))

where g is the inner function in the definition of Y, f is bound to F, and h is bound to g.

If we supply an argument to the result of (Y F) the following is true:

((Y F) x) = ((f (h h)) x)

11-2.22

where h is bound to the inner function g in the definition of Y. By subst i tut ing g for h we

could rewrite this equality as follows:

((Y F) x) = ((f (g g)) x)

where g is the inner function in the definition of Y. But remembering tha t f is bound to F

and tha t (Y F) = (g g) , this jus t reduces to the following:

((Y F) x) = ((F (Y F)) x)

This is what we wanted to show. Now, we played a little free and easy with talking

about the domain over which x can range, but this is jus t an overview, not a formal proof.

When this property is coupled with the uniqueness property, we can see tha t Y is exactly

the function we need to implement self-reference.

Wha t does Y look like in Common Lisp? Like this:

(defun y (f)
(let ((g #'(lambda (g)

#'(lambda (x)
(funcall

(funcall g g)))
(funcall f (funcall g g)) x)))))

Y only works for functions of one argument. However, Common Lisp has a mechanism

for handling a variable number of arguments, so this isn't a big problem.

(defun super-y (f)
(let ((g #'(lambda (g)

#'(lambda (&rest x)
(apply (funcall f

(funcall g g)))
(funcall g g)) x)))))

We can pass in functions of any number of arguments into super-y. Here's an example:

(defun fact (n)
(funcall

(super-y
#'(lambda (f)

#'(lambda

n I))

(n m)
(if (< n 2)

m

(funcall f (-nO (* m n))))))

11-2.23

Now tha t we have learned about Y, I want to extend it to handle two mutual ly

recursive functions. Let 's recall the definition of Y:

(define Y (lambda (f)
(let ((g (lambda (h)

(lambda (x)
: ((f Ch h)) x)))))

(g g))))

Notice tha t in the body of Y the call to f is built in. There is no real problem with this,

but the extension requires tha t f be passed as an argument to the analog of g. Here is

what Y would look like with this simple change:

(define Y (lambda (f)
Clet C(g Clambda (h r)

(lambda (x)
CCr Ch h f)) x)))))

Cg g f))))

This function has the same effect as the previous one, but g has an extra parameter , which

means tha t it is possible to use g to handle more than one function at a time, though Y

would have to be a little different.

Y2 will be the function tha t is analogous to Y but Which will handle a pair of mutual ly

recurslve functions. The descriptions of these mutual ly recursive functions will be lambda

expressions with two parameters, one for each of the pair of functions. Here is a simple

example of how one would use Y2:

CCY2 Clambda Cf g) (lambda (n) (if (< n I) 'even (g (- n i)))))
(lambda Cf g) (lambda (n) Cif C< n i) 'odd Cf (- n I))))))

n)

In the bodies of these two functions, f refers to the first of the pair of functions, and g to

the second. The above expression is intended to be equivalent to the following:

(letrec ((f (lambda (n) (if (< n I) 'even (g (- n I)))))
(g Clambda (n) (if C< n I) 'odd Cf C- n I))))))

(f n))

Y2 will be easier to unders tand if we rename some parameters in the definition of Y2,

so let 's do the renaming now:

11-2,24.

(de f ine y (lambda (f)
(l e t ((h (lambda (h r)

(lambda (x)
((r (h h f))

(h h f))))
x)))))

Looking at the this definition of Y we can see what has to change. First , Y2 will need to

have two parameters , which will be called f and g. Second, the call to r in h will need

to pass two arguments, one to represent f and the other to represent g. Here is the final

result:

(de f ine y2 (lambda (f g)
(l e t ((h (lambda (h r)

(lambda (n)
((r (h h f)

(h h f))))
(h,h g)) n)))))

Finally, let 's look at a version of super-Y tha t handles any positive number of func-

tjons:

(defun super-yn (f &rest g)
(let ((h #'(lambda (h r)

#'(lambda (&rest x)
(apply

(apply
r
(funcall h h f)
(mapcar
#'(lambda (f)

(funcall h h f))
x)))))

(funcall h h f)))

g))

11-2.25

