
THE SYMBOLIC PROGRAMMING ENVIRONMENT
(SPE TM)

A Common Lisp Development Environment For Sun Workstations

Aaron Endelman (endelman@sun.com)
Steve Gadol (sgadol@sun.com)

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View, CA 94043

Why have a Specialized Common Lisp Programming Environment?

The constructs provided in the Common Lisp language provide a very powerful and flexible
representation mechanism. The language alone, however, does not create an efficient
work environment. Without tools that explicitly attack the problems of program organiza-
tion, editing, and debugging, it remains a difficult task to exploit these advantages fully.
What is needed is a collection of tools which, with knowledge about the relationship of the
components in Lisp and a model of how Lisp programs are developed, encapsulates the
tasks that constitute the Lisp programming process. Building such a programming envi-
ronment in Lisp is a more tractable problem than in most conventional languages (such as
C, FORTRAN, and Pascal) because the flexibility of Lisp allows programs to be operated
on as data by other Lisp programs. This gives rise to the potential for a much tighter inte-
gration of tools than has typically been available.

A 5Fymbolic Programming Environment

Sun's Symbolic Programming Environment (SPE TM) is an example of just such an integra-
tion. Like the environments designed for dedicated hardware based implementations of
Lisp, it is designed to be a functionally complete set of mechanisms for building Lisp pro-
grams. Many of the editing, data inspecting, and debugging features supplied in SPE are
specializations of primitive capabilities implemented in the Sun Common Lisp product de-
veloped by Lucid, Inc. The windowing and object oriented programming mechanisms used
in the product are derived from the HyperClass system created by Schlumberger.

SPE can be separated logically (albeit somewhat artificially) into two sets of tools: one for
constructing and debugging procedures and data structures, and the other for building and
maintaining entire applications.

Tools for the Procedure and Data Level

The construction and debugging of individual procedures, known as "programming-in-the-
small", centers around the process of editing. In SPE the Editor is built in the style of
Emacs. Like other Emacs implementations, it is built up-from a set of character and buffer-
managing primitives. And like other Emacs implementations it retains the flexibility of a
dynamically changeable association between key strokes used to invoke commands and
the procedures that implement them. The main difference between the SPE Editor and
other UNIXrM Emacs implementations is that the Editor is written entirely in Common
Lisp. New features that a programmer might wish to add to the environment are written in
the same language and style as the applications the Editor is being used to develop. Fur-
ther,-it is straightforward to use features supplied by the Editor in application code that

11-2.5

runs under SPE. Combined with the services supplied by the Lisp Window Tool Kit, the
basic Editor modules were used to construct many of the tools contained in SPE.

To the SPE user the two most obvious uses of the Editor are the source fde editor tool
and Lisp Listener tool. The Listener acts like the UNIX TM shell in that it is the tool into
which the user types commands to the Lisp system. Using the Editor to implement the
Lisp Listener has several advantages over a simpler keyboard handler. The same set of
keyboard and mouse commands is used to select and modify text. And all of the Editor's
command extension facilities are available for use in defining new top level commands for
the system. One example is the use of the Editor's parsing capability to isolate symbols
in a Lisp form entered as a command. Coupled with Lisp's ability to retrieve properties of
function symbols, it was a simple matter to create a command that translated the act of
pointing at a partially completed command in the Lisp Listener into an operation that re-
tumed the sequence of expected parameters.

The SPE file editor tool utilizes the capability of the Editor modules as a full text editor,
with both a fundamental text mode and a special Lisp mode. In the Lisp mode, the Editor
has a variety of commands for operating on Lisp source code. The usual commands for in-
denting, balancing parentheses, and other functions are included, as are commands for
evaluating and compiling individual functions, buffers, and fries. A mouse sensitive com-
mand panel gives users quick access to several frequently executed commands.

Because the Editor is written in Lisp and running in the same address space as the rest of
the Lisp system, the SPE Lisp Editor can directly map the services provided by SPE's
Program Analyzer and Source Code Finder into a useful set of Lisp Mode commands that
make it much easier for programmers to navigate through a complex application.

Another more substantial example of using the Editor modules was motivated by a signifi-
cant change to the window tools used in SPE that occurred midway through the develop-
ment project. Faced with the task of converting a very large body of SPE and Hyperclass
system code and applications, the problem was solved by creating an interactive transfor-
mation program that read in and analyzed Lisp code using the window tools. Using a rule
base that encapsulated syntactic and semantic knowledge about both the old and new
forms of the window system, the transformation program formulated changes that were
then presented to the programmer via the text managing and display mechanism in the
SPE Editor. The use of the Editor simplified the task of manipulating the Lisp program
text in a way that enabled the programmer to interactively examine and modify the trans-

forms as needed.

SPE Program Analyzer

SPE's Program Analyzer is a Common Lisp program that builds a database about the
structural relationships it discovers as it processes Lisp source code. The database pro-
duced by the Program Analyzer contains entries for defining forms, as well as notations
that describe function calling and special variable-accessing pattems. This data can be
used to answer a variety of questions about the static structure of a Lisp application. It is
one of the mechanisms used by SPE to locate source code for a function given the symbol
that names the function. It can also answer questions about which procedures a given
named procedure calls. This information is used directly by an Editor command that lists
the results, and recursive expansion of the query is used to create function call graphs

11-2.6

(Figure 1). Interactive tools of this kind have proven to be very valuable to programmers
exploring the structure of a program they are not yet familiar with and in maintaining large
complex programs.

Operationally, the Program Analyzer is similar to the front end of the Lisp compiler. Like
the compiler, it walks through the source it is processing, using its knowledge about the
structure of the Common Lisp language. But rather than emitting machine code as the
compiler does, it generates the database.

SPE Source Code Finder

Another important tool of SPE is the Source Code Finder. This tool is used to locate the
defining source code for named objects, such as functions and structures. Given the sym-
bol naming a Lisp object, the Source Code Finder attempts to locate the file in which the
defining form is stored. It is not necessary that the source code be loaded into the Lisp
system. This is important because in most applications, only the binaries produced by the
Lisp compiler will be present once initial debugging on the application is completed. In ad-
dition to its usage in the Lisp Listener and Editor tools, this SPE component is used by
the SPE debugger, function call graph manager, and by several of the specialized data ob-
ject inspectors that have been created.

The Source Code Finder will use up to three different mechanisms to accomplish its task.
The primary mechanism is a source-code recording facility supplied by the underlying

Figure 1. An SPE Program Analyzer Call Graph. The Editor window underneath, containing the source
code for the Lisp function formula, appeared when the formula node was selected with the mouse.

~ I d R ~ l ~ [I | '

; ; ; The f o l l ow in9 func t i on par'se~ ~ n f i x expre~slOn~ ~nd b u i l d a
; ; ; c o n s t r a i n t network, lhe func t ions • - * / are supported, but
; ; ; there 15 a r e ~ t r I c t ~ o n that ~ v~r~able can be used on ly once.

(clefun formula (e)
(le t (0 - h s t)

(cond ((numberp ¢) (constant-value ¢5)
((atom e) (vat ¢))
((s~ tq 0 - 1 i ~ t (WeiGh ' ((* I) = (+ r)) C))

¢mak~-¢qual (formula (match-value i l a - l i ,~ t .))
(formula (match-value i r a - l i t : t))))

((~¢tc I e - l i - c t (match ' ((> v)) e))
(formula (match-value Iv a - l i s t)))

" " " i - f l i T ' F ' r ' " " 1 " i1711"- ' " ':'-":l'~Ji" "+ i i i i " "

/// ,PlUlI.L - V X,l. IJlE ~ / /

117//

#1 ' . /

" " W / k , , ' / ~ / , i , /

1 I / ~' ,, i,I ,.. ,4

I I l ~~Ix ill IN"/H."I4z 1
' / / / " - ~ , s , A , . v,,.u~ Li>'''~ " !

' . , ~ - ~'~CONSTIIiNT MAr, Z ~ O U ~ ~' ,K ; 'Y . / ; ;< " " /P /

f.

' 11-2.7

Common Lisp. Here, the compiler and loader maintain a correspondence between Lisp ob-
jects and source fdes, so it is possible to determine the f'de containing source for any ob-
ject entered into the Lisp system by the Lisp loader. As functions are recompiled and re-
loaded into the system, this mechanism automatically keeps the correspondence up to
date. The second mechanism uses the database generated by the SPE Program Analyzer.
Because this makes it possible to locate source code for objects not currently loaded into
the system, it is quite useful when working on programs (including new versions of Lisp
or SPE system code) that are not in a sufficiently consistent state to load them and work
on them directly. The third makes it possible to use a tag file of the type produced by oth-
er UNIX TM Emacs implementations.

Dynamic Debugging Tools

The tools described thus far center on the mechanisms for entering and modifying source.
As such they are most concemed with the static or structural aspects of a Lisp applica-
tion. Equally important to the productivity of the application developer is the ability to ex-
plore and manipulate the program's dynamic or runtime state. The SPE Data Inspector
and SPE Debugger provide this basic capability.

These tools have their foundations in the Common Lisp system underlying SPE. The Lisp
system is delivered with both an interactive inspector and a debugger, but the utility of
these components is limited by the text oriented display and command mechanisms they
use. SPE presents its data inspecting and debugging mechanisms to the programmer as
tools fully integrated into the Lisp window system. Information needed to manipulate the
dyftamic program state is displayed in a tabular format which is refreshed as changes are
made. Further, entries in the tables are mouse sensitive so the user can select items di-
rectly from the screen.

SPE Debugger and Data Inspector

The SPE Debugger is based on an abstraction in which the user's computation is viewed
as a sequence of procedure calls, a history of which is kept on a push-down stack. The in-
tent is to make it unnecessary for the programmer to deal with the structure of the Lisp
implementation in order to debug application code. The user is able to view both the stack
and the details of the procedure call frames it contains. Certain frames that correspond to
activity within the underlying Lisp system can be optionally hidden from view both to con-
dense the display and to reduce the complexity of the information presented.

The SPE Debugger tool comprises several subwindows, called panes. From left to right,
top to bottom, the first pane is the backtrace pane, which presents a selectable, scrollable
backtrace of all function frames up to the top level. To the right is the short selected frame
function pane, which contains the name of the current function. Selecting that name with
the mouse uses the Source Code Finder to bring up an Editor window containing the func-
tion's source code. Below this pane, the selected frame parameter pane shows the names
and values of any arguments to the function, along with a label indicating their associated
lambda-list keywords, e.g., REQtrn~.a3, Or'r1OSAL. In addition, the values of the arguments
displayed here can be changed or inspected in further detail with the mouse. The next
pane shows the current error message.

11-2.8

Finally, the bottommost pane contains eight command buttons. The most commonly used
are ABORT, which stops the current computation and exits the Debugger; RETURN, which
resumes the current computation by returning a user-supplied value from the current
frame; RESTART, which tries to complete the computation by reinvoking the current frame;
and CONTINUE, which resumes computation for continuable errors.

Clicking the mouse on a Debugger parameter value invokes the SPE Data Inspector. Data
Inspectors display any arbitrary Lisp object (Figure 2). They are often invoked through
the Debugger but may also be called programmatically through the Lisp inspect function.
When the object being inspected is a structure, the individual slot names and values are
shown. (For lists, arrays, and other unlabeled sequences, the slot values are enumerated
instead.) Slot values may be both inspected or altered by selecting them with the mouse.
Since this recursive nature of the Inspector can easily lead to the propagation of many In-
spector windows, a menu (invoked with a click of the fight mouse button) is supplied that
allows all of the children and/or parents of a given Inspector window to be destroyed all at
once.

Tools for the System Level

The tools discussed thus far, with the possible exception of the Program Analyzer, have
been oriented around the kind of facilities a si~sle programmer needs to create and debug
modest size applications. Applications of AI technology, however, have tended to be
large programs developed by several programmers working as a team. Thus it is also ira-

Figure 2. SPE Data Inspectors.

IJlJil 1 [6] q | I, I I II

I A BUFFER ~,<Slructure BUFFER gS824B>

POINT ~-~Structure EDITOR:MP, RK 95881B~
WRITABLE T

MODIFIED-TICK 14 150

A EDIBLE-STREAM ¢<Stleam EDIBLE-STREAM F4OA?B> L EDITOR:WINDOW D S D 4 O B > e<Sttucture EDn
r
ledol T 4 FvF[/43-~ DIRECTION 'E Ir,~pe(to

A MODE-OBJECT #<S1fu(tule MODE-OBJECT 95zBD3>

NAME "Top-Level"

:10
GIVEN-NAME NIL
FILE-DESCRIPTOR NIL
READ-CHAR EDITOI
UNREAD-CHaR EDITOI
READ-BYTE NIL
LISTEN EDITOI
REP, D- CHAR-NO-HANG EDITOI
PEEK-CHAR EDITOI
READ-LINE EDITOI
WRITE-CHAR EDITOI
WRITE-STRING EDITOi

TERPRI EDtTOI
WRITE-BYTE NIL
SPECIAL-BYTE-SIZE-P NIL
GIVEr4-ELE ME NT-T','PE
ELEMENT-TYPE
ELEMENT-WIDTH
IMDE M-TYPE
UNREAD-ITEMS
SKIP-WHITESPACE
SCAN-UNTIL
CLEAR-INPIJT
C AL CUL ATE-OUTPUT-COL UMIq

SETUP-FUIqCTION
CLEANUP-FUNCTION
BINDINGS
TRANSPARENT-P
HOOK-NAME
MAJOR-P
PRECEDENCE

• <Compiled-Funclion E DITOR.:SETUP-TOP- LE VE[
• <Compile~Funchon IDENTITY 333737>
#<Slmple-VectorT 16 952D 1B>
NIL
EDITOR :TOP-LEVEL-MODE-HOOK
NIL
10

VARIABLES
VAR-VALUES

STRING-CHAR
STRING-CHAR

NIL L
NIL A L i s t

NIL ~ I

REGION B> I ~ i ~ A REGION ~<S1tu(lure 9582B3>

START e < S t r u c l u r e E D I T O R : M A R K 9 5 8 3 5 B >
• < -

MARK ¢<Slruclure MARK 9583?3>

~ LII '4E e<Stluclure EDITOR :LINE 1283~5,B>
CHARPOS 2
%KIr'4D LEFT-INSERTING

i q
EDITOR 0 ¢<~,truclure EDITO~: :MODE-OB, . I i i i = i ,~ i ,
EDITOR ! IB<Struclure EDITOR::MODE-OBJECT 952BD3>

EDITOR :INPUT-EDITING-(: L E A R-INPUT- ME 11
#-<C ompiled-F unchon E DITOR::INPUT- EDITINJ

11-2.9

portant that the environment deal with productivity issues resulting from the complexity
this dimension introduces.

The concept is known as "programming-in-the-large" and is concemed with the mainte-
nance of collections of tens or hundreds of related files. At issue is the sequence of com-
mands that must be executed to recompile, load and analyze pieces of an application when
changes are made so that the application is brought back to a consistent state. Clearly, it
is undesirable to be forced to recompile the entire application when small changes are
made. The SPE Application Manager is designed to address this requirement.

In order to describe dependencies between application components, the Application Man-
ager defines a linguistic extension to the Common Lisp notions of module and require.
Modules are thought of as the collections of files that implement a specific capability. Be-
cause the underlying Lisp system has the capability to execute code written in other lan-
guages like C and FORTRAN, the Application Manager provides a mechanism that al-
lows users to declare module types with specialized compilation and loading mecha-
nisms. UNIX TM file name type extensions are used to key module types.

Module definitions may also contain declared dependencies. These dependencies are oth-
er modules which the system must guarantee are up to date and loaded before any opera-
tions are performed. The Application Manager uses the transitive closure of these depen-
dency declarations to build a plan for carrying out requests to load, compile or analyze. As
the programmers make necessary changes to source files, they generally do not have to
recompile the entire application or worry about sequence dependencies. In this sense the
Application Manager serves a similar function to make in UNIX TM

Besides the basic linguistic and plan-generating mechanisms, the Application Manager
contains a set of graphical tools to show the relationships between the components of the
application and their status. This module graph display has proven particularly useful in
that it acts as an interactive structural map of the application and supports a direct inter-
face between the Application Manager and the SPE Editor.

Simplicity and Power

A strong adherence to a "keep-it-simple" philosophy is reflected throughout the SPE us-
er-interface. The most frequently used SPE operations require the least work by program-
mers. A single mouse click is all that is required to compile a changed procedure definition.
One mouse click, followed by a name, can load a file; a few more mouse clicks is all it
takes to compile and load an entire application.

Using SPE, programmers can move easily from one tool to another within a particular dy-
namic context. For example, a programmer can invoke the Inspector on a data structure
visible in the Debugger. Or the programmer can navigate from the Debugger to the source
code of the errant procedure, fix the code in the Editor, and incrementally compile the
changed definition. A programmer can display a call graph for a given top-level function,
and then click on the name of any lower-level function shown to go to an Editor window
containing its source code. SPE minimizes the steps and time taken through the edit-
compile-debug cycle, thus maximizing the programmer's efficiency.

One important productivity lever for the long term growth of any programming environment
comes from the idea that the environment can be turned back on itself and enhanced. By

11-2. i0

design the architecture of SPE encourages this kind of incremental development. The next
section of this article describes how SPE is used to add a new utility to the SPE system.

Using SPE: an Example

Consider the following sample application which extends SPE. The application constructs
a visual directory graph by using the predef'med SPE browser/grapher facilities. This is
the code necessary to define the structure of the application:

(DEFMODULES
(:DIR "/usr/shif~-~n/cl"
;; Within this default directory...

(:MODULE "SPE-DEMO"
;; . . . we define the "SPE-DEMO" module...

(: REQUIRE "browsers "}
;; ...which requires the "browsers" module...

"s~.~Dle-code-
"s=mnle-graph"

"macroexpand"
"direct ory-graph"
;; ...and these four Lisp files to be loaded.

)))

These few lines are all the code the Application Manager needs. A more complex applica-
tion might use multiple modules, contain non-Lisp code, or reside in multiple directories.

Figure 3. The SPE Application Manager module~file graph and Plan Editor.

-Tart,

//~afl~ .,~e-co, de' '

t

load Compile Pmallyze Freeze Gr~h Status Edit File E~! Oefn Show Fdes

|Step Rctlor, F11¢ Name • (Module 5p~cles)
I FRSLORD /usr/$hlffman/c%/ssmple-code. lbln (SPE-DEMO :LISP)
2 LORD-SOURCE /us r / sh l f fman /c l / samp le -g reph . l l sp (SPE-DEMO :LISP)
3 LORD-SOURCE /usr/shiffman/cl/macroexpand. llsp (SPE-OEMO :LISP)
4 LOAD-SOURCE /usr/shiffman/cl,/dlrectory-grapr, l l sp (SPE-OEMO :LISP)
5 PROVIDE 5PE-DERO

OK Cance~ SeN

II-2. ii

In those cases, the specifications needed are simple extensions to the basic syntax
shown above. /

Selecting the Lisp Listener's LOAD option instructs SPE to read in the file containing the
module definition above. Now SPE understands the application's structure. Selecting the
REQUIRES option lets you give SPE the name of the module you wish to load ("SPE-
DEMO"). SPE now activates the Application Manager, and a visual graph appears
(Figure 3), showing the application's module structure as you have defined it. Selecting
the Application Manager's COMPILE option causes a plan to be built. This plan contains
an ordered list of application files, noting which ones are out-of-date and need to be com-
piled, a n d which are up-to-date and can just have their binaries loaded. The Application
Maiaager also notes whether each file is already loaded. If it was and the source fde
hasn't been modified, it will not attempt to reload or recompile the file.

The plan now appears in an Application Manager Plan Editor, which is just an SPE Editor
which has been specialized for this task. Within the Plan Editor, you have the option of
bypassing selected files if you so desire. Selecting OK in the Plan Editor runs the plan,
compiling and loading files as necessary in the proper order.

The application implements a new Editor command called Show Directory Graph. It is a
simple matter to invoke this command by typing a couple of keys followed by the name of
the command itself. The Show Directory Graph command prompts for a directory which
can then be entered.

Unfortunately, there's a bug! Figure 4 shows the path taken to fix the bug, which will be
described here in detail.

Upon encountering the bug, Lisp signals an error, and a menu appears. One of the menu
options is to select the SPE Debugger. Using the Debugger to examine the broken func-
tion frame, note that the error's immediate cause was a failed attempt to evaluate the
symbol GRAHP, which is probably just a typo of the word GRAPH somewhere in the
source code. The function frame immediately prior to this one is that of the broken user-
defined function. When this frame is selected, the function's name, DIRECTORY-GRAPH,
is shown in the selected frame function pane. The name is mouse-sensitive, and select-
ing it starts up an Editor. The Source Code Finder locates the source file and the Editor
reads it in, using information provided by the Finder to locate the function and scroll the
buffer to its starting location. ExarMning the function visually reveals the typo, which is
fixed by a few keystrokes. Selecting the Editor's COMPILE option recompiles the source
directly into the Lisp environment. Now the Debugger's RESTART option is selected, and
the function call is reinvoked, this time using the debugged function. Execution now pro-
ceeds without error, and a directory graph appears on the screen, as desired.

Future Directions

SPE is currently available as a programming environment for Sun Common Lisp. Refine-
ments and additions to it continue, and it is being used at Sun as a development environ-
ment. Future versions of SPE will include specialized tools for the Common Lisp Object
System (CLOS), the recently adopted extension to Common Lisp for object-oriented pro-
gramming. Sun also plans a utility for visually stepping through source code while it is ex-
ecuting so that programmers can better follow the flow of control within a piece of assem-

11-2.12

Figeure 4. Interactive run-time debugging in SPE.

F~:'~h error occurs ~'~li'~"-- i
] Lisp Listener window. [

Contlnuable Error: 6F:RHP has rig global velu(
I f contlnued: Try ev~luat~ng 6RRHP again

Edit Compile ~ y z e ~ Calls

Rel

%
R t

D e b
I

~rt

L

selected.

(CERROR "Tr 9 evaluatlng ~S a 9,
(SYMBOL-VRLUE GRRHP)
i(DIRECTORY-GR~PH #P"/usr /sh i f
(SHOW-DIRECTORY-6RRPH-COMMRND
(:UNNRMED)
(SYSCRLL)
(SYSCRLL)
(LUCID:~SLEEP)
(SLEEP 1 E ~)
(SLEEP tOOOgO0)
(: ~ R M E D)
(RERD #<Stream SYN~YM-~STRERi
tED NIL)
(REINITIRLIZE-SPE)
(:UNNRMED)

/

fin I n t e r p r e t e d function frame: DIRECTOF:Y-6RRPH

PflTHNRME REQUIRED 11P"lusr/shlffman/cl"

:ontlnueble Error [%3: 6RRHP has no global value
[f cont~r, uea: Try evaluating ~RRHP ega~n

Display Error Abort Pop R e t u m T s t a r t Cont

[function
[is restart- [
led. . . I
L _J

~ph of/~311shdfma.hR

[T,E.7•-M-] the appli- [
~--] cation J

I runs: -I
I J

JaY,Il l :fl:winl-f end kbm

I~i!;?;/ :'~,,"Re=~,P

• 0,', \ '

~9-~ j ~- -~ i~ ') e ~o-~"~e'-~-is - - I
I automatically retrieved]
I and displayed in an J
] Editor window. [

I
ThlS 1$ the top leve l func t ion , 6 lye i t a s t r l n g l l ke =~~ and le t
i t r i p , W&rn~ng: i f you g lve I t a pathnal¢ which has a l o t of
f l l es~ be prepared to Walt e whl le fo r I t to f~nl=h.

Jefun d i r e c t o r y - g r a p h (pa thna le)
(l e t * ((t o p - l e v e l - n o d e (i a k e - d l r e c t o r y - t r e e pa thna ie))

(n o d ~ - h s t (l a k e - d i r e c t o r y - n o d e - l i s t t o p - l e v e l - n o d e))
(graph (and t op - l eve l - node , ~ r ~ ~ r r Q r

(s l b - c l : : layoutgraoh I | J] 4 F~_ _ _
__ n o d e - h i t (1 1 $ t t o p - l e v e l - n o e l is located and ;

(when grahp If. , ~ I
(slb-cl::~.o.graph !]
graph (s t r ing -append "Graph of " (namestr lng corrected.

(s e t - u p - a c t i v e - r e g i o n s
noae-11st (make-hash-table) I l s k e - e a l t o r - l n v o k e r : l o u s e - l e f t - u p
#~(la Ibda (path) (not (dlrectoryo path))))

g r a p h)))

ed::aefcommend "Shoe D i r ec to r 9 firaph" (O)
=Display a graphlc t ree of the selected d i r e c t o r y "
"Oaspley e graphic t ree of the se lected d i r e c t o r y =
P
(l e t ((pa th (e a : : p r o l p t - f o r - f l l e :prompt "D l r ec to r~ to show: ")))

(when (s t r i n g - (f l l e - n a m e s t r l n g path) " ')
(s e r f path (d i r e c t o r y - u p - l e v e l path ;set-name t)))

(unless (d~rectorg-graph p&th)
(e a : : e d l t o r - e r r o r " F i l e ~a does not e x l s t " p a t h))))

Ouit Help Save Edit Search Compile Eva4 Info
, d

r-,~..7, h ~ ~ J--..-,

11-2.13

bled Lisp code. Other utilities are planned that will make SPE more productive for Lisp
and object-oriented programming.

Within Sun, SPE serves as a host for continued exploration of programming environments
and better productivity tools for advanced application development.

Acknowledgements

This article is condensed from another which appeared in the Winter 1989 issue of Sun
Technology. The authors would like to thank Sun Technology for permission to reprint por-
tions of that article here.

References

D. R. Barstow, H. E. Shrobe, E. Sandewall. ~" " Interactive Programming Environments. New
York: McGraw-Hill, 1984.

S. Gadol. "SPE -- A Common Lisp Environment on Workstations." Proceedings of the
Fourth Annual Artificial Intelligence & Advanced Computer Technology Conference. Glen
Ellyn, IL: Tower Conference Management Company, 1988, pp. 167-176.

R. G. Smith, R. Dinitz, P. Barth. "Impulse-86: A Substrate for Object-Oriented Interface
Design." OOPSLA '86 Conference Proceedings. New York: Association for Computing
Machinery, 1986, pp. 399-404.

SPE User's Guide. Mountain View, CA: Sun Microsystems, Inc., 1987.

G. Steele Jr. Common LISP: The Language. Burlington, Mass.: Digital Press, 1984.

Sur~ Common Lisp User's Guide. Mountain View, CA: Sun Microsystems, Inc., 1986.

11-2.14

