
A Study of LISP on a Multiprocessor
Preliminary Version

Peter Nuth" Robert Halstead, Jr.

October 12, 1988

A b s t r a c t

Para l ld symbolic computat ion has a t t rac ted considerable interest in
;ecent yeaJrs. Research ~xoaps bu/Id./ng multiprocessors for such applica-
tions have been frustrated by the lack of da t a on how symbolic programs
run on a parallel machine. This report describes the behavior of Mul-
tilisp programs running on a shared memory multiprocessor. Data was
collected for a set of application programs on the frequency of different
instructions, the type of objects accessed, and where the objects were lo-
cated in the memory of the multiprocessor. The locality of da ta references
for different mu]tiprocessor organizations was measured. Finally, the ef-
fect of different task scheduling s t ra tegies on the locality of a c c e s s e s w a s

studied. This da t a is summarized here, and compared to other studies of
LISP performance on uniprocessors.

1 I n t r o d u c t i o n

Several research groups are now trying to build parallel architectures for sym-

bolic computing [23, 22, 9, 1]. Traditionally, computer architects simulate how

existing languages and algorithms would run on proposed new designs. But

there is little known about how symbofic programs might run on parallel pro-

cessors. This paper addresses this lack of data by analyzing the behavior of

symbolic programs on an experimental multiprocessor.

Several published reports .profile an implementation of the LISP language

on a particular processor [21, 20, 24, 8, 6]. However, the behavior of LISP on

*Author's ,Ddd.t~: ~ ~ / ' o r Computer Science, 545 Technology Sq., Room NE43-415,
Ca.mb~dge, MA 02139. Teh 617-253-60.48. Arp~net: nut.h~zern~ttlcs.m'dt.edu

II-3/4.15

2 EXPERIMENTAL METHOD

a multipmtessor has not yet been studied. The work summa. ::. I here pro-

files the execution of real parallel LISP programs on an existing shared memory

multiproceasor. It was not simply a simulation of code running on a multipro-

cessor. Nor was it a prediction of program performance based on the expected

frequency of instructions.

In many cases, execution on a multiprocessor is both more convenient and

more convincing than simulations. With sequential simulations, it is difficult to

accurately predict the effect of contention for resources on the speed of global

communication. It is equally difficult to see the effect of different task scheduhng

algorithms. Our own experience with LISP on a multiprocessor has shown that

intuition is frequently wrong in such cases [13].

Some data described here could have been generated on a uniprocessor. For

instance, we show profiles of instructions executed and types of data objects

accessed by several LISP programs. Other results only apply to parallel exe-

cution of the code. An example is the degree of parallelism.in a program and

the amount of interaction between tasks. Another result discussed here is the

distribution of data objects in memory, the locality of reference to those objects,

and how both are affected by task scheduling decisions.

2 Exper imenta l Method

The language used in these experiments was Multilisp [12], a lexically scoped

dialect of LISP, similar to Scheme [7]. Multilisp programs were compiled into

pseudo-machine instructions [15], which were then interpreted by the Nusim [18]

simulator which counts instructions, data accesses, and other low-level behavior

during the execution of a benchmark.

Multilisp allows the programmer to spawn parallel tasks by using the future

construct [12]. The expression:

(let ((x (~utuze (~n azg))))

. ° .

spawns a parallel task to evaluate ~n applied to avg. The variable x is ini-

tiaUy undetermined. When the spawned task finishes evaluating the expression

II-3/4.16

3 RESULTS

(~n arg), x is bound to the result. The tasks created by the ~tu~ ~tement

can be executed by any processor in the system. Idle processors compete for

tasks to run.

The experiments were run on Concert [2, 14], a shared memory multipro-

cessor system. Concert consists of up to 32 Motorola MC68000 processors, I

each with 500 kilobytes of local memory. The processors share an additional 8

megabytes of global heap memory. A copy of Nusim ran in the local memory of

each processor. The global heap memory was dynamically partitioned among

all the processors in the system.

The five Multilisp application programs studied in this research effort were

chosen to be representative of of LISP appfications. The programs were:

Compiler The compiler for Multilisp, which is itself written in Multilisp [11].

Conshn A parallel digital logic simulator [4].

Fboyer A parallel version of the Boyer-Moore theorem prover [10].

Multilog A query language interpreter using parallel unification [19].

Pqsort A parallel version of the Quicksort program.

3 R e s u l t s

3 .1 I n s t r u c t i o n P r o f i l e s

The pseudo-machine language interpreted by Nusim contains approximately 115

instructions. The machine language can be grouped into several general classes

of instructions as follows:

• Arithmetic and logical operations, and stack manipulation.

• Load and Store instructions.

• Conditional and unconditional branch instructions.

• Call and return instructions.

IThe benchmark programs were only run on 277 of the 32 processors in the system,

II-3/4.17

3 RESULTS

• Instructions to create and manipulate futures.

Figure 1 shows t~ distribution of instructmns for the five benchmarks tested

in this study.

120

1 0 0

A

v ,

8O
u

o

D" 6O ID

c
o 40
u

= 20
m

[]

[]
[]
[]
[]

Other
Future
Store
Call
Branch
Alu
Load

0
Compi~r Consim Fboyer Multilog Pqsort

Program

Figure 1: Distribution of instructions. (% per instruction class.)

The distribution of instructions summarized in Figure 1 differs from that

reported in other recent studies of LISP, both on RISC processors [21, 23] and

on conventiona| hardware [24, 8]. The major differences are the high proportion

of load instructions, and the low proportion of ALU instructions for Multilisp

programs. Also Mtdtil/sp programs use futures for exp|icit task synchronization.

The fallowing sections examine each of these results in turn.

I I - 3 / 4 . 1 8

3 RESULTS

5Q

3 .2 L o a d I n s t r u c t i o n s

Figure 1 shows that an average of 42% of instructions load data from the heap

onto the stack. Steenkiste [21] reported that only 28% of LISP instructions

running on a MIPS-X processor were loads. For LISP running on the SPUR

processor [23], only 17% of instructions were loads. The difference shows how

difficult it is to apply the results of one low level LISP study to another imple-

mentation.

-.-. 40

U
C

o" 3O

C
O

m

- - 20 U

I k=

t~
C

i

10
B

Symbol
Structure
Environment

0

Compiler Consim F b o y e r Mul t i log Pqsort

Progmm

Figure 2: Load instructions by type: % of all instructions that read data from
the environment, LISP structures or global symbols.

Figure 2 shows the classes of load instructions in Nusim. Environment

fetches copy data out of the lexically scoped environment of the current LISP

procedure. Structure loads fetch an element of a LISP data structure, such as

II-3/4.19

3 RESULTS

the car or cdr of a cons-cell. The other load instructions fetch the value c

global ~rmbol. Note that these load frequencies are shown as a percentage of all

instructions executed, meaning that one quarter of all instructions in a Multilisp

program explicitly fetch a value out of the current environment.

There are two factors which account for the high number of fetches from

the environment in Multilisp. First, when a parallel task is spawned using

the ~ture construct, that task inherits the environment of its parent. Since a

spawned task may migrate to another processor in the system, environments are

always allocated in the heap. A procedure's arguments and local variables are

allocated in this environment, never in processor registers or on the stack. This

means that a fetch from the heap is used to get the value of a local variable in

Multilisp, whereas in other LISP implementations it may only require a register

move [17, 5 t. Second, the lack of common sub-expression elimination or other

optimizations in the Multilisp compiler tends to increase the frequency of data

fetches.

3 .3 A L U I n s t r u c t i o n s

Figure 3 shows a similar breakdown of ALU instructions. These instructions

include arithmetic operations, logical operations and instructions to compare

two values. These operations pop their operands off the evaluation stack and

push the result. Instructions that push, pop, or copy a datum on the stack are

included here as well. Note that all ALU instructions account for only about

26% of all instructions in our application programs. The proportion for MIPS-X

and SPUR was 36% and 44% respectively.

The Nusim implementation of Multilisp executes few ALU instructions rel-

ative to other LISP implementations. There are several reasons for this. Most

Nusim instructions perform high level functions, equivalent to LISP primitives.

Nusim do,~ not use any explicit shhrt and mask instructions to extract the type

tag of operands. Instead, all instructions check the types of their operands im-

plicitly. A typical pseudo-code instruction, such as add, can handle fixnums,

bignums, floating-point numbers, or trap to an error routine depending on the

types of its operands.

Nusim also does not use add and subtract instructions to generate effective

II-3/4.20

3 RESULTS

O"
¢D

C
0

m

0

9 ~

m

40

30

2O

10

t

Compiler Co.sim Fboyer Mu l t i l og Pqsort .

• Math
!~ Test
• Stack

Program

Figure 3: ALU instruction frequencies: % of all instructions that manipuJate
the stack, test a value, or do arithmetic.

II-3/4.21

3 RESULTS

addresses. Instructions which fetch an dement of a data structure first calculate

the address of that element. Cdr is a single instruction, not an add followed

by a /oad. The pseudo-code also contains relatively complex call and return

instructions, to build a call frame and an environment for the called procedure.

In other LISP implementations, several add and subtract instructions are needed

to adjust the stack pointer on procedure call and return [21].

3 . 4 A c c e s s T y p e s

The pseudo-machine emulated by Nusim has explicit load and store instructions

as discussed in Section 3.2. However, other instructions may also implicitly

access da ta from memory. : We can classify explicit and implicit accesses by

the t y p e of da ta that they fetch or store. A useful characterization emphasizes

that some da ta must be shared among all processors in the system, while other

data could be allocated in memory local to a processor. Here are five such

classes of data:

C o n s t a n t data includes Lisp instructions and constants that are kept

with the code stream. This immutable data could be copied to the local

memory of each processor, although Nusirn does not currently allocate it

there.

The s t a c k holds procedure linkage information and temporary values that

are local to a single ~ask. Nusim maintains a stack cache for each processor

to hold the top of the stack. Only loads and stores to fill or flush the stack

cactm are counted here.

• E n v i r o n m e n t frames may be shared between tasks that have common

lexical parents, and must be allocated in the heap.

• G l o b a l accesses count fetches of Lisp global symbols mad any structured

data allocated in the heap.

• Accesses to f u t u r e objects are counted separately from other structured

data, because of their role in synchronizing parallel tasks.

2An example is the call instruction, which builds a new environment frame in the heap.

II-3/4.22

3 RESULTS

¢n

m

0

.D

m
Q
¢h

0
0
Q

0

O

3

& .

In

Figure 4 shows the percentage of explicit and implicit fetches from each

class of data. The distribution of access types varies tot the benchmarks tested.

The measurement show that keeping constant data in the local memory of

a processor could reduce global memory accesses by one third. Currently, all

environment frames are also allocated in the heap. If the frames were only

copied out into the heap when necessary to share data between tasks, global

memory traffic could be reduced by as much as 20%.

100

80

60

4o

20

Compiler C o n s i m F b o y e r Mul t i log Pqsort

[] Stack
[] Future
I Global
[] Constant
• Environment

Pmgmm

F i g u r e 4 : C l a s s o f d a t a ~ t ~ e d b y p r o g r a m s .

3.5 P a r a l l e l i s m

The fugure construct is a mechanism for spawning parallel tasks, and is intended

to be as common as procedure calls. Proposed processor architectures for Mul-

II-3/4.23

3 RESULTS

o

u

tD
1=

m

o
o

o

o

o .o
E

Z

3O

20

10

0

tilisp {16] have devoted considerable resources to handling futures efficiently.

This study sho, ns how often they occur in practice.

• Futures Created
I~ Touch Determined
[] Touch Undetermined

Compile Cons im Fboyer Multilog Pqsort

Program

Figure 5: Future object creation and accesses as a percentage of instructions.

The benchmarks shown differ widely in their use of futures. The Compiler,

Multilog, and Boyer-Moore have approximately 100 instructions per future cre-

ated, while Pqsort tasks are only 13 instructions long. Each future object created

is typically read several times by tasks that depend on its value. Most of the

accesses touch d e t e r m i n e d futures, after their value has been computed. Oc-

casionally, a task will touch an u n d e t e r m i n e d future, forcing the task to queue

up and wait for the vaJue to be determined. Only Consim and" Pqsort touch a

significant number of undetermined futures.

This data shows the danger of making assumptions about the frequency of

II-3/4.24

3 RESULTS

operations from the behavior of a particular implementation. Aside from the

small PqsorZ program, none of the benchmarks studied created many future

objects. They are certainly not as frequent as function calls or branches. Yet

this may reflect the cost of future creation and access in Nusim. Programmers

could afford to spawn more parallelism if it was less expensive in time and

memory. See [18] for a more thorough discussion of parallelism and use of

futures for these programs.

3.6 Locality of Reference

While Nusim runs on a zeal multiprocessor, it can simulate other multiprocessor

topologies. We can describe such a topology as a set of connected nodes, each of

which contains a processor and some memory that is shared with the rest of the

system. Nusim can pretend that physical processors and memory are located

at the nodes of the simulated topology. It also simulates part i t ioning the global

heap among all node memories. The 'distance' of a memory reference is then

the simulated number of hops between two nodes. By tracking the distance

of all accesses made during the execution of a program, we can compute the

locality of reference for that program on a particular topology.

For these experiments, we simulated three different topologies using Nusim.

See Figure 6. The Ring topology assumed that the nodes were distributed along

the circumference of a circle, each connected to its nearest neighbor. The Grid

assumes tha t nodes are connected in a two-dimensional rectangular grid, so that

each node has four nearest neighbors. (The grid wraps around at the edges).

Finally, a Segmented topology assumes that nodes are split into a number of

groups, each with a private bus. The local buses are then tied together by a

global bus. All three topologies were simulated with 27 nodes, since that was

the number of real Concerl processors available at the time.

Figure 7 shows the locality of data references made by our benchmarks on

the three simulated topologies. The distance of each access is averaged over all

accesses ~o produce the mean distance of acee~ for each benchmark. Programs

wiZh greater locality have a lower mean distance of access on a particular topol-

ogy. The da ta labeled 'Random' indicates what the locality would have been if

the accesses had been uniformly distributed among the nodes of the system.

II-3/4.25

3 RESULTS

W big Topology

i I I I I I I I

Segmented Topology

dl& dlL • b
I F 511r • F

IJ &" '~'~t I IF

. B I L J L B L J

- - ~ l , , , , ~ l m p m

Grid Topology

w ~

Figure 6: Multiprocessor topologies simulated by Nusim.

II-3/4.26

3 RESULTS

m

u
¢J
m

b

0

U
C

m

qD

C
m
0
=S

1° t
8

4

2

[]
[]
B

Ring
Grid
Segment

0
Compiler Consim Fboyer Multilog Pqsort RANDOM

Program

Figure 7: Basic locality of reference: Mean distance of accesses for different
simulated topologies. Column "random" shows the locality for purely random
accesses.

II-3/4.27

3 RESULTS

The da ta shows tha t benchmarks have a greater locality of reference than

purely random accesses. Accesses to memory that is close to a processor occur

more freqmmtly than distant references. La the Nusirn implementation, each

processor allocates data. in its part i t ion of the global heap. Typically, 30% to

40% of the references made by processors are to the local partition. All other

references are uniforrrfly distributed through the rest of memory. This data

allocation protocol therefore improves the locality of reference of programs in

Nusim. The mean distance of access for the Compiler, for instance, is only half

of the random access distance.

3 . 7 E f f e c t o f T a s k S c h e d u l i n g o n L o c a l i t y

In an a t t empt to further increase the locality of reference of programs, we varied

the way that tasks are scheduled in Nusim. When a task is spawned by a

processor, it is added to a queue of tasks in tha t processor's node. Idle processors

then search the task queues of other nodes for work to do.

An improved strategy was to make the searching process aware of the topol-

ogy of the system. Thus, in searching for tasks to run, a processor might first

check local nodes. The effect of this strategy is shown in Figure 8.

With an intelligent task search algorithm, programs made an average of

10% more accesses to loca| node memory than before. However, the locality

of reference improved by 5% to 50% over the prirrfitive task scheduler. All

programs showed the most improvement on the ring topology, in which the

diameter was greatest.

The locality of some data accesses improved more than others in response

to the new task scheduling algorithm. Accesses to future objects, the main

points of synchronization between parallel tasks, improved the most. The effect

was greatest for the Pqsorl program, which uses futures more extensively than

any other . This indica.t,es tha t good task scheduling strategies can reduce the

amount of global communication required in a shared memory multiprocessor.

3 . 8 O t h e r w o r k

Most of the data in this report was taken from [18]. which discusses in more

detail the types of accesses made by Multilisp programs and the locality of

II-3/4.28

3 RESULTS

M

U
U
m

0

0
U
C
m

"o

c
m

,o]
8

4

[]
[]

Ring
Grid
Segment

0
Compiler Consim Fboyer Multilog Pqsort RANDOM

Progrxm

Figure 8: Locality of reference for different simulated topologies, using an im-
proved task scheduling algorithm.

II-3/4.29

4 IMPLICATIONS FOR ARCHITECTURE

each type of reference. It also discusses the effect of limiting the parallelism of

Multilisp progran~s, ~nd the ttade-offs between parallelism and locality.

A later study used Nusim to investigate Lhe effect of caching in a symbolic

multiprocessor [3]. The simulator was used to tag data wor& to show what data

is shared between different processors in the system, and what data is private

to a processor. This was used to predict the best case performance of very large

data caches on each processor.

4 Impl icat ions for Architecture

The instruction profiles presented here differ from what has been reported for

other studies of LISP on tmiprocessors. The implementation of a language has

a great effect on the mix of instructions that will be executed for typical LISP

programs. This shows how difficult it is to make assumptions about the behavior

of LISP programs when evaluating architectures.

Multilisp programs use future objects to spawn and synchronize between

tasks less frequently than was expected. The relative cost of operations seems

to have an effect on the style of parallel programs written for an architecture.

Therefore it is difficult to evaluate hardware mechanisms to support parallelism

in future LISP architectures white using code that was written to run on existing

implementations.

The types of load instructions used by the benchmarks show that many

explicit memory fetches could be eliminated in a different implementation of

Multilisp. A more sophisticated compiler could initially allocate lexical envi-

ronments on the stack or in machine registers [17]. Constant data could be

ropied into the' local mcmory of each processor.

Multilisp programs had more locality of reference than purely random ac-

cesses. Two mechanisms were shown to increase the locality of reference. The

first simply allocated all data created by a processor in the processor's local

memory. The second used a more sophisticated task scheduling algorithm to

grab tasks from nearby processors whenever possible. The implication is that

simple techniques can reduce the communication bandwidth required by parallel

symbolic programs.

II-3/4.30

REFERENCES

References

[1]

[3]

[4]

ANDERSON, J., COATES, W., DAVIS, A., HON, R., ROBINSON, I., Ro-
BISON, S., AND STEVENS, K. The architecture of the FAIM-1. IEEE
Computer ~0, 1 (Jan. 1987), 55--65.

ANDERSON, T. The design of a multiprocessor development system. Tech.
Rep. TR-279, Laboratory for Computer Science, M.I.T., Cambridge, Mass.,
September 1982.

BERGSTEIN, S. H. Best-case caching in a symbolic multiprocessor. Bach-
elor's thesis, Febru~y 1988.

BRADLEY, E. Logic simulation on a multiprocessor. Tech. Rep. TR-380,
M.I.T. Laboratory for Computer Science, Cambridge, Mass., November
1986.

[s]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

BROOKS, R. A., POSNER, D. B., MCDONALD, J. L., WHITE, J. L.,
BENSON, E., AND GABRIEL, R. P. Design of an optimizing, dynami-
cally retargetable compiler for Common Lisp. In Proceedings of 1986 ACM
LISP and Functional Programming Conference (Boston, Aug. 1986), ACM,
pp. 67-85.

CLARK, D. Measurement of dynamic list structure use in Lisp. IEEE
Trans. So.ftw. Eng. 5, I (.Jan. 1979), 51-59.

CLINGER, W., ET AL. The revised revised report on scheme, or an uncom-
mon Lisp. Memo 848, M.I.T. Artificial Intelligence Laboratory, Cambridge,
Massachusetts, August 1985.

FOOt,tARO, J., AND FATEMAN, R. Characterization of VAX Macsyma. In
Proceedings of 1981 ACM Symposium on Symbolic and Algebraic Compu-
tation (Aug. 1981), ACM, pp. 14-19.

GABRIEL, R., AND MCCARTHY, J. Queue-based multi-processing Lisp.
ACM Symposium on LISP and Functional Programming (August 1984).

GABRIEL, R. P. Performance and Evaluation of Lisp Systems. MIT Press
Series in Computer Science. M.I.T. Press, Cambridge, MA, 1985.

HALSTEAD, JR., R.. H. Implementation of Multilisp: Lisp on a multipro-
cessor. In ACM Symposium on Lisp and Functional Programming (Austin,
Texas, August 1984).

HALSTEAD, JR., ~. H. Multi~sp: A language for concurrent symbolic
computation. A CM Transactions on Programming Languages and Systems
7, 4 (October 1985), 501-538.

II-3/4.31

REFERENCES

[13]

[14]

[as]

[16]

[17]

[18]

[19]

[20]

HALSTEAD, JR., R. H. An assessment of Multilisp: Lessons from experi-
ence. International Journal of Parallel Programming 16, 6 (Dec. 1986).

HALSTEAD, JL., R. IJA., ANDERSON, T., OSBORNE, R., AND STERLING,
T. Concert: Design of a multiprocessor development system. In 13th
Annual Symposium on Computer Architecture (Tokyo, ,June 1986), pp. 40-
48.

HALSTEAD, JR., R. H., LOAIZA, J. R., AND MA, M. H. The Multilisp
manual. PPG Group Working Paper, September 1986.

JR., R. H. H., AND FUJITA, T. MASA: a multithreaded processor ar-
chitecture for parallel symbolic computing. In 15th Annual Symposium on
Computer Architecture (May 1988), IEEE Computer Society, pp. 443-451.

KRANZ, D., KELSEY, R., REES, ,J., HUDAK, P., PHILBIN, J., AND
ADAMS, N. ORBIT: An optimizing compiler for Scheme. In Proceedings
of the SIGPLAN '86 Symposram on Compiler Construction (June i986),
ACM SIGPLAN, pp. 219-233.

NUTH, P. R. Communication patterns in a symbolic multiprocessor. Tech.
Rep. MIT/LCS/TR-395, M.I.T. Lab for Computer Science, ,June 1987.

SOLOMON, S. A query language on a parallel machine. MIT EECS Bach-
elor's Thesis, June 1985.

STEENKISTE, P. LISP on a reduced-instruction-set processor: Characteri-
zation and optimization. Tech. Rep. CSL-TR-87-324, Stanford University,
Mar. 1997.

[21] STEENKISTE, P., AND HENNESSY, J. LISP on a reduced-instruction-set-
processor. In Proceedings of 1986 A CM LISP and Functional Programming
Conference (Boston, Aug. 1986), ACM, pp. 192-201.

[22] SUGIMOTO, S., AGUSA, K., TABATA, K., AND OHNO, Y. A multi-
microprocessor system for concurrent LISP. In Proceedings of International
Conference on Parallel Processing (June 1983).

[23] TAYLOR, G. S., HmFINGER, P. N., LARUS, J. R., PATTERSON, D. A.,
AI'~D ZORn, B. G. Evaluation of the SPUR lisp architecture. In Thirteenth
International Symposium On Computer Architecture (June 1986).

[24] URMI, J. A machine independent Lisp compiler and its implications for
ideal hardware. Linkoping Studies in Science and Technology Disserta-
tions 22, Linkoping University, Linkoping, Sweden, 1978.

II-3/4.32

