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A b s t r a c t  

Para l ld  symbolic  computat ion has a t t rac ted  considerable interest in 
;ecent yeaJrs. Research ~xoaps bu/Id./ng multiprocessors for such applica- 
tions have been frustrated by the lack of da t a  on how symbolic programs 
run on a parallel machine. This report  describes the behavior of Mul- 
tilisp programs running on a shared memory multiprocessor. Data  was 
collected for a set of application programs on the frequency of different 
instructions,  the type of objects accessed, and where the objects were lo- 
cated in the memory of the multiprocessor. The locality of da ta  references 
for different mu]tiprocessor organizations was measured.  Finally, the ef- 
fect of different task scheduling s t ra tegies  on the locality of a c c e s s e s  w a s  

studied. This  da t a  is summarized here, and compared to other studies of 
LISP performance on uniprocessors. 

1 I n t r o d u c t i o n  

Several research groups are now trying to build parallel architectures for sym- 

bolic computing [23, 22, 9, 1]. Traditionally, computer architects simulate how 

existing languages and algorithms would run on proposed new designs. But 

there is little known about how symbofic programs might run on parallel pro- 

cessors. This paper addresses this lack of data by analyzing the behavior of 

symbolic programs on an experimental multiprocessor. 

Several published reports .profile an implementation of the LISP language 

on a particular processor [21, 20, 24, 8, 6]. However, the behavior of LISP on 
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2 EXPERIMENTAL METHOD 

a multipmtessor has not yet been studied. The work summa. ::. I here pro- 

files the execution of real parallel LISP programs on an existing shared memory 

multiproceasor. It was not simply a simulation of code running on a multipro- 

cessor. Nor was it a prediction of program performance based on the expected 

frequency of instructions. 

In many cases, execution on a multiprocessor is both more convenient and 

more convincing than simulations. With sequential simulations, it is difficult to 

accurately predict the effect of contention for resources on the speed of global 

communication. It is equally difficult to see the effect of different task scheduhng 

algorithms. Our own experience with LISP on a multiprocessor has shown that 

intuition is frequently wrong in such cases [13]. 

Some data described here could have been generated on a uniprocessor. For 

instance, we show profiles of instructions executed and types of data objects 

accessed by several LISP programs. Other results only apply to parallel exe- 

cution of the code. An example is the degree of parallelism.in a program and 

the amount of interaction between tasks. Another result discussed here is the 

distribution of data objects in memory, the locality of reference to those objects, 

and how both are affected by task scheduling decisions. 

2 Exper imenta l  Method  

The language used in these experiments was Multilisp [12], a lexically scoped 

dialect of LISP, similar to Scheme [7]. Multilisp programs were compiled into 

pseudo-machine instructions [15], which were then interpreted by the Nusim [18] 

simulator which counts instructions, data accesses, and other low-level behavior 

during the execution of a benchmark. 

Multilisp allows the programmer to spawn parallel tasks by using the future 

construct [12]. The expression: 

(let ((x (~utuze (~n azg)))) 

. ° .  

spawns a parallel task to evaluate ~n applied to avg. The variable x is ini- 

tiaUy undetermined. When the spawned task finishes evaluating the expression 
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3 RESULTS 

(~n arg), x is bound to the result. The tasks created by the ~tu~ .... ~tement 

can be executed by any processor in the system. Idle processors compete for 

tasks to run. 

The experiments were run on Concert [2, 14], a shared memory multipro- 

cessor system. Concert consists of up to 32 Motorola MC68000 processors, I 

each with 500 kilobytes of local memory. The processors share an additional 8 

megabytes of global heap memory. A copy of Nusim ran in the local memory of 

each processor. The global heap memory was dynamically partitioned among 

all the processors in the system. 

The five Multilisp application programs studied in this research effort were 

chosen to be representative of of LISP appfications. The programs were: 

Compiler The compiler for Multilisp, which is itself written in Multilisp [11]. 

Conshn A parallel digital logic simulator [4]. 

Fboyer A parallel version of the Boyer-Moore theorem prover [10]. 

Multilog A query language interpreter using parallel unification [19]. 

Pqsort A parallel version of the Quicksort program. 

3 R e s u l t s  

3 .1  I n s t r u c t i o n  P r o f i l e s  

The pseudo-machine language interpreted by Nusim contains approximately 115 

instructions. The machine language can be grouped into several general classes 

of instructions as follows: 

• Arithmetic and logical operations, and stack manipulation. 

• Load and Store instructions. 

• Conditional and unconditional branch instructions. 

• Call and return instructions. 

IThe benchmark programs were only run on 277 of the 32 processors in the system, 
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3 RESULTS 

• Instructions to create and manipulate futures. 

Figure 1 shows t~ distribution of instructmns for the five benchmarks tested 

in this study. 
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Figure 1: Distribution of instructions. (% per instruction class.) 

The distribution of instructions summarized in Figure 1 differs from that 

reported in other recent studies of LISP, both on RISC processors [21, 23] and 

on conventiona| hardware [24, 8]. The major differences are the high proportion 

of load instructions, and the low proportion of ALU instructions for Multilisp 

programs. Also Mtdtil/sp programs use futures for exp|icit task synchronization. 

The fallowing sections examine each of these results in turn. 
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3 .2  L o a d  I n s t r u c t i o n s  

Figure 1 shows that an average of 42% of instructions load data from the heap 

onto the stack. Steenkiste [21] reported that only 28% of LISP instructions 

running on a MIPS-X processor were loads. For LISP running on the SPUR 

processor [23], only 17% of instructions were loads. The difference shows how 

difficult it is to apply the results of one low level LISP study to another imple- 

mentation. 
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Figure 2: Load instructions by type: % of all instructions that read data from 
the environment, LISP structures or global symbols. 

Figure 2 shows the classes of load instructions in Nusim. Environment 

fetches copy data out of the lexically scoped environment of the current LISP 

procedure. Structure loads fetch an element of a LISP data structure, such as 
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3 RESULTS 

the car or cdr of a cons-cell. The other load instructions fetch the value c 

global ~rmbol. Note that these load frequencies are shown as a percentage of all 

instructions executed, meaning that one quarter of all instructions in a Multilisp 

program explicitly fetch a value out of the current environment. 

There are two factors which account for the high number of fetches from 

the environment in Multilisp. First, when a parallel task is spawned using 

the ~ture  construct, that task inherits the environment of its parent. Since a 

spawned task may migrate to another processor in the system, environments are 

always allocated in the heap. A procedure's arguments and local variables are 

allocated in this environment, never in processor registers or on the stack. This 

means that a fetch from the heap is used to get the value of a local variable in 

Multilisp, whereas in other LISP implementations it may only require a register 

move [17, 5 t. Second, the lack of common sub-expression elimination or other 

optimizations in the Multilisp compiler tends to increase the frequency of data 

fetches. 

3 .3  A L U  I n s t r u c t i o n s  

Figure 3 shows a similar breakdown of ALU instructions. These instructions 

include arithmetic operations, logical operations and instructions to compare 

two values. These operations pop their operands off the evaluation stack and 

push the result. Instructions that  push, pop, or copy a datum on the stack are 

included here as well. Note that all ALU instructions account for only about 

26% of all instructions in our application programs. The proportion for MIPS-X 

and SPUR was 36% and 44% respectively. 

The Nusim implementation of Multilisp executes few ALU instructions rel- 

ative to other LISP implementations. There are several reasons for this. Most 

Nusim instructions perform high level functions, equivalent to LISP primitives. 

Nusim do,~ not use any explicit shhrt and mask instructions to extract the type 

tag of operands. Instead, all instructions check the types of their operands im- 

plicitly. A typical pseudo-code instruction, such as add, can handle fixnums, 

bignums, floating-point numbers, or trap to an error routine depending on the 

types of its operands. 

Nusim also does not use add and subtract instructions to generate effective 
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Figure 3: ALU instruction frequencies: % of all instructions that manipuJate 
the stack, test a value, or do arithmetic. 

II-3/4.21 
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addresses. Instructions which fetch an dement  of a data structure first calculate 

the address of  that  element.  Cdr is a single instruction, not an add followed 

by a /oad. The  pseudo-code also contains relatively complex call and return 

instructions, to build a call frame and an environment for the called procedure. 

In other LISP implementations, several add and subtract instructions are needed 

to adjust the stack pointer on procedure call and return [21]. 

3 . 4  A c c e s s  T y p e s  

The  pseudo-machine emulated by Nusim has explicit load and store instructions 

as discussed in Section 3.2. However, other instructions may also implicitly 

access da ta  from memory. : We can classify explicit and implicit accesses by 

the t y p e  of da ta  that  they fetch or store. A useful characterization emphasizes 

that  some da ta  must  be shared among all processors in the system, while other 

data  could be allocated in memory local to a processor. Here are five such 

classes of data: 

C o n s t a n t  data  includes Lisp instructions and constants that  are kept 

with the code stream. This immutable data could be copied to the local 

memory of  each processor, although Nusirn does not currently allocate it 

there. 

The s t a c k  holds procedure linkage information and temporary  values that  

are local to a single ~ask. Nusim maintains a stack cache for each processor 

to hold the top of the stack. Only loads and stores to fill or flush the stack 

cactm are counted here. 

• E n v i r o n m e n t  frames may be shared between tasks that  have common 

lexical parents, and must be allocated in the heap. 

• G l o b a l  accesses count fetches of Lisp global symbols mad any structured 

data  allocated in the heap. 

• Accesses to  f u t u r e  objects are counted separately from other structured 

data,  because of their role in synchronizing parallel tasks. 

2An example is the call instruction, which builds a new environment frame in the heap. 
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Figure 4 shows the percentage of explicit and implicit fetches from each 

class of data. The distribution of access types varies tot the benchmarks tested. 

The measurement  show that keeping constant data in the local memory of 

a processor could reduce global memory accesses by one third. Currently, all 

environment frames are also allocated in the heap. If the frames were only 

copied out into the heap when necessary to share data between tasks, global 

memory traffic could be reduced by as much as 20%. 
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3.5  P a r a l l e l i s m  

The fugure construct is a mechanism for spawning parallel tasks, and is intended 

to be as common as procedure calls. Proposed processor architectures for Mul- 
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tilisp {16] have devoted considerable resources to handling futures efficiently. 

This study sho, ns how often they occur in practice. 
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Figure 5: Future object creation and accesses as a percentage of instructions. 

The benchmarks shown differ widely in their use of futures. The Compiler, 

Multilog, and Boyer-Moore have approximately 100 instructions per future cre- 

ated, while Pqsort tasks are only 13 instructions long. Each future object created 

is typically read several times by tasks that depend on its value. Most of the 

accesses touch d e t e r m i n e d  futures, after their value has been computed. Oc- 

casionally, a task will touch an u n d e t e r m i n e d  future, forcing the task to queue 

up and wait for the vaJue to be determined. Only Consim and" Pqsort touch a 

significant number of undetermined futures. 

This data shows the danger of making assumptions about the frequency of 
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operations from the behavior of  a particular implementation. Aside from the 

small PqsorZ program, none of the benchmarks studied created many future 

objects. They  are certainly not as frequent as function calls or branches. Yet 

this may reflect the cost of future creation and access in Nusim. Programmers 

could afford to spawn more parallelism if it was less expensive in time and 

memory. See [18] for a more thorough discussion of parallelism and use of 

futures for these programs. 

3.6 Locality of Reference 

While Nusim runs on a zeal multiprocessor, it can simulate other  multiprocessor 

topologies. We can describe such a topology as a set of connected nodes, each of 

which contains a processor and some memory that  is shared with the rest of the 

system. Nusim can pretend that  physical processors and memory are located 

at the nodes of the simulated topology. It also simulates part i t ioning the global 

heap among all node memories. The 'distance' of a memory reference is then 

the simulated number of hops between two nodes. By tracking the distance 

of all accesses made during the execution of a program, we can compute the 

locality of reference for that  program on a particular topology. 

For these experiments,  we simulated three different topologies using Nusim. 

See Figure 6. The  Ring topology assumed that  the nodes were distributed along 

the circumference of a circle, each connected to its nearest neighbor. The Grid 

assumes tha t  nodes are connected in a two-dimensional rectangular grid, so that 

each node has four nearest neighbors. (The grid wraps around at the edges). 

Finally, a Segmented topology assumes that  nodes are split into a number of 

groups, each with a private bus. The local buses are then tied together by a 

global bus. All three topologies were simulated with 27 nodes, since that  was 

the number of real Concerl processors available at the time. 

Figure 7 shows the locality of data  references made by our benchmarks on 

the three simulated topologies. The distance of each access is averaged over all 

accesses ~o produce the mean distance of acee~ for each benchmark.  Programs 

wiZh greater locality have a lower mean distance of access on a particular topol- 

ogy. The  da ta  labeled 'Random'  indicates what the locality would have been if 

the accesses had been uniformly distributed among the nodes of the system. 
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simulated topologies. Column "random" shows the locality for purely random 
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The da ta  shows tha t  benchmarks have a greater locality of reference than 

purely random accesses. Accesses to memory that is close to a processor occur 

more freqmmtly than  distant  references. La the Nusirn implementation, each 

processor allocates data. in its part i t ion of the global heap. Typically, 30% to 

40% of the references made by processors are to the local partition. All other 

references are uniforrrfly distributed through the rest of memory. This data  

allocation protocol therefore improves the locality of reference of  programs in 

Nusim. The mean distance of access for the Compiler, for instance, is only half 

of the random access distance. 

3 . 7  E f f e c t  o f  T a s k  S c h e d u l i n g  o n  L o c a l i t y  

In an a t t empt  to further increase the locality of reference of programs, we varied 

the way that  tasks are scheduled in Nusim. When a task is spawned by a 

processor, it is added to a queue of tasks in tha t  processor's node. Idle processors 

then search the task queues of other nodes for work to do. 

An improved strategy was to make the searching process aware of the topol- 

ogy of the system. Thus,  in searching for tasks to run, a processor might first 

check local nodes. The  effect of this strategy is shown in Figure 8. 

With an intelligent task search algorithm, programs made an average of 

10% more accesses to loca| node memory than before. However, the locality 

of reference improved by 5% to 50% over the prirrfitive task scheduler. All 

programs showed the most improvement on the ring topology, in which the 

diameter was greatest. 

The locality of some data  accesses improved more than others in response 

to the new task scheduling algorithm. Accesses to future objects, the main 

points of synchronization between parallel tasks, improved the most. The effect 

was greatest for the Pqsorl program, which uses futures more extensively than 

any other .  This indica.t,es tha t  good task scheduling strategies can reduce the 

amount  of global communication required in a shared memory multiprocessor. 

3 . 8  O t h e r  w o r k  

Most of the data  in this report  was taken from [18]. which discusses in more 

detail the types of accesses made by Multilisp programs and the locality of 
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Figure 8: Locality of reference for different simulated topologies, using an im- 
proved task scheduling algorithm. 

II-3/4.29 



4 IMPLICATIONS FOR ARCHITECTURE 

each type of reference. It also discusses the effect of limiting the parallelism of 

Multilisp progran~s, ~nd the ttade-offs between parallelism and locality. 

A later study used Nusim to investigate Lhe effect of caching in a symbolic 

multiprocessor [3]. The simulator was used to tag data wor& to show what data 

is shared between different processors in the system, and what data is private 

to a processor. This was used to predict the best case performance of very large 

data caches on each processor. 

4 Impl icat ions  for Architecture 

The instruction profiles presented here differ from what has been reported for 

other studies of LISP on tmiprocessors. The implementation of a language has 

a great effect on the mix of instructions that will be executed for typical LISP 

programs. This shows how difficult it is to make assumptions about the behavior 

of LISP programs when evaluating architectures. 

Multilisp programs use future objects to spawn and synchronize between 

tasks less frequently than was expected. The relative cost of operations seems 

to have an effect on the style of parallel programs written for an architecture. 

Therefore it is difficult to evaluate hardware mechanisms to support parallelism 

in future LISP architectures white using code that was written to run on existing 

implementations. 

The types of load instructions used by the benchmarks show that many 

explicit memory fetches could be eliminated in a different implementation of 

Multilisp. A more sophisticated compiler could initially allocate lexical envi- 

ronments on the stack or in machine registers [17]. Constant data could be 

ropied into the' local mcmory of each processor. 

Multilisp programs had more locality of reference than purely random ac- 

cesses. Two mechanisms were shown to increase the locality of reference. The 

first simply allocated all data created by a processor in the processor's local 

memory. The second used a more sophisticated task scheduling algorithm to 

grab tasks from nearby processors whenever possible. The implication is that 

simple techniques can reduce the communication bandwidth required by parallel 

symbolic programs. 
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