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Closures 

This article introduces closures, a powerful feature of Common Lisp that allows 
you to write succinct code. 

A closure is a function together with the environment in which it was created. The 
principal idea behind closures is that in Common Lisp, functions axe '~first-class 
objects," that  is, you can write code that takes a function as an argument, and you 
cam write code that returns s function as one of its values. 

C l o s u r e s  a s  . A r g u m e n t s  t o  ~ ' u n c t i o n s  

Let's look at some simple examples. The first example defines a function that 
takes a. single axgument, which must be a function or a symbol with a function 
definition, and ca.Us that function with the single argument 2: 

• (deftm apply-to-two (flmc) 
(f~aca.ll  ~aac 2)) 

APPLY-T0-TW0 
• (apply-~o-~wo 'I+) 
3 
• ( app ly-~o-~8 'p .11mp)  
T 

The  function axgument does not need to be a named function. The following 
examples use a l a m b d a  expression for the function argument: 

> (apply-to-~vo 
#'(Immbaa (•)  (+ • 3)))  

8 

> (apply-~o--~wo 
#'( la~ixta C•) (+ 1 (* • • x ) ) ) )  

9 

The expression # ' (1Rbda  (x) (+ • 3)) is a function that  takes a single argument 
and ~,dds 3 to it. The expression #'(lambda (x) (+ 1 ~* • • x ) ) ) )  is a function 
that takes a single argument, cubes it, then adds I. 

A number of predefined Common Lisp func t ion  can take a function as one of their 
arguments.  Among the more useful ones axe m a p c a r ,  which applies a function to 
each element, r e m o v e - i f  and r e m o v e - l f - n o t ,  which remove elements from a list 
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or array, and  f i n d - i f  and f i n d - i f - n o t ,  which find the first i tem in an ar ray or list 
tha t  satisfies a condit ion.  

F u n c t i o n s  t h a t  R e t u r n  C l o s u r e s  

A more powerful use of closures is that functions can return other functions as their 
value. In the following example, the function mako-addsr takes as its argument a 
single value • and returns as its value a function. The returned function takes a 
single argument, which it calls y, and returns the value (+ • y). 

> (defun make-adder (x) 
(check-type • number) 
S'(Xambd~ (y) (+ • y))) 

MAKE-ADDER 
> ( s e t q  add2 (hake-adder 2) )  
#<Interpreted-Funct ion  (I.AHBD£ (T) (+ • ¥) )  949476> 
> (~unca l l  add2 8) 
7 
> (~unca.ll  (make-adder pi )  1) 
4.141592653589793 
> ( f u n c a l l  add2 1) 
3 

Notice t ha t  someth ing  very subtle is going on. When  we call (make-adder 2), it 
re turns  a funct ion.  T h a t  function references the local vvxiable z, which was bound 
to the in teger  2 when the  function was created.  The  function tha t  is re turned 
" remembers"  t h a t  • had  the value 2 when the funct ion was created. In Common 
Lisp terms,  the  local variable • has been c losed  ove r ,  tha t  is, its value is not  
saved in a global variable somewhere but  is intrinsically par t  of the function tha t  
is re turned.  The  result ing function is called a closure .  

An i m p o r t a n t  fea ture  of Common  Lisp is tha t  every function has access to the 
environment in which it was created. It can both access and modify the variables in 
that environment. For example, here is one possible, albeit inefficient, alternative 
implementation of cons, car, and cdr: 

> (de funmy,cons  (x y) 
#'(la~nbda (op t ion  &optional va lue)  

( case  opt ion  
( : ca r  z) 
( : cdx  y) 
( : s o t - c a x  (se r f  • va lue) )  
( : s e t - c d r  ( l e ~  y v a l u e ) ) ) ) )  

KY-CONS 
> (defm~my-cax (cons) (fu.nca.,U cons :cax))  
KY-CAR 
> (defunmy-cdz" (cons) ( funca l l  cons :cdz')) 

II-3/4.34 



IP/-CDR 
• (defun my-see-cot (cons va.lue) 

( f unca l l  cons :see-car value))  
K Y - S E T - C I R  

• (deCu~ ~y-sec-cdz Ccou value) 
(fXDllCall cone :sel;-ccLT Ts.,1.ue)) 

• (de fse t f  my-car my-set-car)  
r/-CaK 
• (de fse t f  my-cdr my-sel;-cdL¢) 
NY-CDR 

• (setq c e l l  (my-cons 'a 'b)) 
#<lnl;erpreCed-Function . . .  9 5 3 3 8 6 >  

• (my-car cell) 

• (my-cdr c e l l )  
S 

• (seer (my-car ce l l )  44) 
44 
> (my-car c e l l )  
44 

Every funct ion remembers  the  lexical environment  in which it was created.  In 
addi t ion to modify ing  and accessing local variables,  a funct ion can also, under 
certain condit ions,  r emember  the names of any b l o c k  form in which it was created, 
and the  names  of  any t a g b o d y  tags that  it can go to: 

• (defun ou te r - f unc t i on  () 
(block en ter -b lock  

( 4 . .  er-~funcl;ion 
# '  (lambda (x) ( r e tu rn - f rom o u t e r - b l o c k  x ) ) )  

( e r r o r  "This piece of  code 
vilZL neve r  be execu t ed" ) ) )  

0UT~-FUaCTZON 
• (defun 4 ~ e r - f u n c t i o n  (arg)  

(funca.'l,.l arg 23) ) 
IIF£R-FUICTIOI 
• (out  e r - f u n c ¢ i o n )  
23 

However,  the  foUowing code would cause an error: 

• (defun b a d - c l o s u r e  () 
(b lock  outar , -b ,  l o c k  

# '  ( lambda (x) ( r e t u rn - f rom o u t e r - b l o c k  x ) ) ) )  
BAD-CLOSUEE 
• ( b a d - c l o s u r e )  
# < l n t e r p r e t  ed-Funct  ion 
(LAMBDA (X) (PJ~TURN-FROM 0UTER-BLOCK X)) C8C40E> 
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> ( f u n c a l l  • 23) 
>>Error :  £ RETUR31-FROM b lock  OUTER-BLOCK occurred 

from within an out of scope closure 

Once you've exited from a block or a tagbody, any closures created inside the block 
or tagbody that explicitly use the block name or tagbody tags can no longer be 
used. 

Other Uses of Closures 

Closures can be used for many different purposes in Common Lisp. For example, 
you can use closures to get information from a child process: 

( l e t  ( ( r e a d y  n i l ) )  
(make-procesn : f u n c t i o n  ' c h i l d - f u n c t i o n  

:name " c h i l d "  
: axgs (list 

#'(lambda (x) (,etq ready z)))) 
(p rocess -Fa i l ;  "Nait for child" 

#'(lambda () (eq • :ready))) 
. . .  o t h e r  c o d e  . . . )  

;;; The c h i l d  p rocess  can be d e f i n e d  as f o l l ows :  

(defun child-process (closure) 
. . .  d o  s o m e  w o r k  . . .  

( f u n c a l l  c l o s u r e  : r e a d y )  ; t e l l  my p a r e n t  I~m ready 
. . .  d o  s o m e  ~ o r k  

( f u n c a l l  c l o s u r e  : e v e n - r e a d i e r )  
) 

The child process can use the closure to communicate directly back to the parent. 
This method has several advantages over having the child set a global variable to 
indicate its state. 

i, 

2. 

The child doesn't need to know how it is sending information to its parent. 

Several different parent processes can communicate with several different child 
processes. Since each parent communicates by using its own copy of a local 
variable, there is never any interference between processes. 

.Another interesting use for cJosures is delayed evaluation. Delayed evaluation can 
be used to give the illusion of infinitely ]axge objects~ even though Lisp only creates 
as much of the object as the user wants to look at. 
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Imagine an implementation of streams (an infinite list of items). The positive 
integers are the stream I,  2, S, 4, 5 . . . .  and the prime numbers are the stream 
2, 3,  6, 7, 11, 13, .... 

Obvious]y, we can't  compute all the elements of a stream ahead of time. So, we'll 
define a stream to b~ a list of  two elements. The first element is the first item 
in the stream. The second element is an expression whose value we've delayed 
evalusting. We evaluate that  expression to get the stream consisting of all the 
elements except the first. 

Closures make it easy to implement delayed evaluation. You can delay the 
evaluation of the expression by typing #'(tambala () ezpression). The returned 
value will be a closure. If you call that  closure with funcal l ,  you get the value of 
the original expression. 

; ; ; First, let's create some stream functions: 
> (defun first-stream (stream) 

( : f iz l~ stream) ) 
FIRST-STR~a/I 
> (defun rest-el;ream (stream) 

( funca l l  (second stream))) 

; ; ; And then,  l e t*s  make some funct ions  
; ; ; to  look at  1;he streams gears  c rea ted:  
> (defun nth-stream (n stream) 

"return the nth element of a stream" 
( i f  (zerop n) 

(first-stream stream) 
(nth-stream (I- n) (rest-stream stream)))) 

ITH-STRE4J¢ 
> (defun firsts-stream (n el;ream) 

'*return a list of the first n elaents in a stream" 
(if (zerop n) 

() 
(cons (first-stream stream) 

(firsts-stream ( I -  n) 
(rest-stream stream) ) ) ) ) 

ITH-STREAM 

; ;; F i n a l l y ,  l e t ' s  c rea te  some streams: 
> (setq zero-stream (list 0 #'(lambda () zero-stream))) 
(0 #<Xn1; erpr et ed-Fnnc~io= 
(LAXBDA IIL ZER0-STREAM) CE888E>) 
> (firsts-stream 10 zero-e~ream) 
(0 0 0 0 0 0 0 0 0 O) 

N o t e  the  use of  delayed evaluation.  We define the stream zero - s tream in terms of  
itself! Similarly, we can define the integers as follows: 
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> (dofun integers-from (n) 
(list n #'(lam~la () (integers-from (l+ n))))) 

IETEGERS-FROM 
> (firstn-Jtream 20 (integers-from 0)) 
( 0  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)  

Even though the function # ' i~ tegers - fron  looks ~ke it should recurse forever, 
it doesn' t .  T h a t ' s  because  the  evaluation of the recursive par t  is delayed until 
something else~ in this case, the  evaluation of f i r s t n - s t r e a m ,  explicit ly asks us to 
recurse.  

Here are some other  funct ions  we can write: 

> (defun map-stream (function stream) 
(list (funcall function (first-stream stream)) 

t '  (lmnlxla ( )  
(map-s t ream f u n c t i o n  ( r e s t - s t r e a m  s t r e a m ) ) )  ) )  

MAP-STI~AM 
> (defun r e m o v e - i f - s t r e a m  ( f u n c t i o n  stream) 

(let ((first-elemut (fir, t-stream streaz))) 
(if (not (fnncall function first-element)) 

(list first-element 
#' (latoNa () 

(remove-if-stream 
function (rest-stream stream) ) )) 

(remove-if-stream function 
( r e s t - s t r e a m  stream) ) ) ) ) 

REMOVE-IF-STREAF. 

; ; Get t h e  first 20 e l emen ts  o f  t he  squares 
; ; o f  t he  numbers Shat  a re  n o t  even.  
> ( ~ i r s : n - s : r e a m  20 

(map.-s~ream # ' ( l a t o N a  (x) ( *  • x))  
( r e m o v e - i l - s ~ r ~ a m  # '  evenp 

(integers-from O) ) ) ) 
(I 9 25 49 81 121 169 225 289 361 4-41 629 

6255 729 841 961 1089 1225 1369 1821) 
> (defu.~ prine-sieve (s~rean) 

• ( l e t  ( ( f i r s $ - e l e m e n t  ( f i r s t - s t r e a m  s t r e a m ) ) )  
( cons - s t r eam 

fireS-element 
(prime-sieve 

(remove-i:f-si :ream 
• '[.lambda (7) (z~e.roP (rood 7 fi:s~-elomen~))) 
(re.t-stream etream)) ) ) ) ) 

PRI~E-SIEVE 
> (setq primes (priaae-sieve (integers-from 2))) 
(2 # < I n t e r p r e t e d - F u n c t i o n  . . .  CFTB46>) 
> (firstn-stream 28 primes) 
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(2  3 6 7 11 13 17 19 23 29 31 37 41 43 
47 63 69 61 67 71 73 79 83 89 97) 

Used properly, closures are an important programming paradigm that can be 
applied to a variety of problems. 

Second Puzzle 

The second puzzle looks like very simple since we know the value of each term of the application. But 
now the current continuations are these of the evaluator while evaluating the functional and parametric 
part of the application. Let us suppose that, as in Lisp, terms are evaluated from left to right. The 
original form is ko (kl (call/ccl call/cc2) (can/ccs call/cc4)) where kl is A¢.ko (¢k2 (call/ccs 
call/cc4)) and k2 is Ac-la, (k! e). The original form becomes to(k, k2) that is to say t,,(k2 k S (call/cc3 
ca11/cc4)) where k S is Ae "k,, (k2 c}. The new evaluation of the argument leads to t,,(ks k~) which in 
turn will lead to t0(k~ k~) ... i.e. a tai1 recursive endless loop. 

One may ponder wether the evaluation order has may influence on this computation. If terms are 
evaluated now from right to left, the computation would now be ku((ca111cc, ca11/cc2) k2 (call/cce 
call/cc4)) where ks is Ae.~ (ka(calllccl call/ccs) e) and where kl is A¢ "to (¢ k2). The com- 
putation is therefore ~,,(kl k2) i.e. k,,(k2 k2) i.e. ko(k~ (call/eel call/ccs) ks) i.e. ko(k~ k2) which 
also loops endless. The only difference is that here only one continuation is built by cycle instead of 
two if the previous evaluation order was followed. This order thus lessens garbage collection. 

This result is due to the fact that t(call/cc call/cc) gives the current continuation k to this 
same continuation k and therefore creates a cycle (k k). This fact can be exploited for recursiol, 

without letrec. Consider for instance 

(let ((fact nil) 
(rl)) 

(let ((n (call/cc call/cc))) 
(if fact 

(if (= n O) r 
(begin (set! r (* n r)) 

(fact (I- n)) ) ) 
(begin (set! fact n) 

(fact I0) ) ) ) ) 
; ; ; R e t u r n s  10! 
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