
On Listing List Prefixes 

Ofivler Danvy  
D I K U  - C o m p u t e r  S 6 e n c e  D e p a r t m e n t ,  Universi ty of ~ o p e n h a g e n  

Univers i te tspa.rken 1, DK-2100 Copenhagen  O, D e n m a r k  
danvy@diku .dk  

March 27, 1989 

A b s t r a c t  

The Lisp Puzzles featur t  in Lisp Pointers, Vol- 
ume 1, Number 6 proposed the following exer- 
cise: given a list, compute  the list of its pre- 
fixes. Surprisingly, the solutions proposed in 
later issues all used intermediary copies and /or  
traversed the original list repeated/)'. This note 
presents a higher-order solution that  does not 
use copies and that  traverses the original list 
only once. Further,  this solution can be simply 
expressed by abstracting control procedurally. 

K e y ' w o r d s  
First-class procedures and  continuations. 

I n t r o d u c t i o n  

Listing list suffixes is a simple exercise in Lisp 
because J{ can be done by traversing the source 
list once: ~ 

(maplis~ (lambda (x) x) '(a b c d)) 

(Ca b c d)  (b  c d)  (c  d) Ca)) 

I Given the functional map l i s~  of [5!: 

(def ine  mnplis: 
;; [List(A) -> B] * List(A) -> List(B) 
(lambda (f I) 

(if (null? i) 
'() 
(con, (f i) (maplist f (ceLt I)))))) 

On the other hand, listing list prefixes: 

(xpl Ca b c d)) 
(Ca) Ca b) (a b c) Ca b ¢ d)) 

is an interesting exercise because Lisp lists are 
singly-linked. This means that  the beginnings 
of the source list cannot be shared, and thus 
successive prefixes must be physically copied. 

Using mapZis~ requires reversing the list to 
have it in the standard order, reversing all of its 
prefixes and reversing the result. It seems that  
x p l  was made to be programmed in Scheme: 

Cdefine xpl 
;; Lisa(A) -> Lis~(Lis~CA)) 

(lambda (I) 
(reverse 

Cmaplis~ reverse 

(reverse i))))) 

This solution is a bit luxurious since it wastes 
2 × length(1) cons-cells for reversing the argu- 
ment  and the result. 

Since the tails of the prefixes cannot be 
shared, it is logical to wonder whether their con- 
struction could be shared. This note shows t h a t  
such sharing is indeed possible. 

1 H o w  to  s o l v e  it w i t h  
f i r s t - c lass  p r o c e d u r e s  

The possibility of sharing the construction of 
prefixes appears in the definitions of list copying 

II-3/4.42 



(define direc%-copy ; Lis%(A) -> Lis%CA) 
( l ambda  ( i )  

(if (null? i) 
.() 

(cons (car I) (direc%-copy (cdr I)))))) 

(define o~her-copy 
(le~zec ((cps-copy 

( l ambda  (i c) 
(if (null? I) 

(c ' ( ) )  
( c p s - c o p y  (cdx i) 

; Lis$(;) -> Lis%(A) 
; Lis%(A) * [Lis$(A) -> Lis~(A)] -> Lis$(A) 

(lambda (I) 
(cps-copy i (lambda (r) r))))) 

(lambda (r) 
(c (cons (car I) r)))))))) 

Figure  1: Two implementa t ions  of list copying 

shown in Figure I. The first is in direct style 
and the second in continuation-passing style. 

The continuation of each recursive call ab- 
stracts the copy of the list up to this program 
point, i.e., the successive continuations abstract 
the construction of the succes~ve prefixes. Con- 
sidering the list (a b c d), the continuations at 
each recursive call are extensionally equal to the 
following procedures: 

P0 = (lambda (r) r) 

P1 = (lambda (r) (Po (cons 'a r)) 

P2 = (la.mbda (r) (PI (cons 'b r))) 

Ps = (lambda (r) (P~ (cons 'c r))) 

P4 = (lambda (r) (Pa (cons 'd r))) 

This  observat ion leads fairly na tura l ly  to the 
definit ion of xp l  given in Figure  2. The  proce- 
dure  xpl-aux is defined locally in xp l .  Superfi- 
cially, it resembles the definition of cps-copy in 
o~her-copy. The second a rgumen t  of  rpl-aux 
performs the const ruct ion of the successive pre- 
ftxes of the list; it is applied at  each recursive 
call. In the base case, it is not  applied; instead,  
the  empty  list is re turned.  The  prefixes are col- 
lected in a list, in direct style. 

Following the benchmarks in Lisp Puzzles, let 
us count the calls to car, cdr, cons, and null?, 
and the number of closures built with two (im- 
mutable) free variables. For a list of 100 ele- 
ments, the results are: 

• I00 calls each to car and cdr because there 
are I00 elements in the list; 

• 5150 calls to cons  because summing the 
length of the prefixes yields 

I + 2 + . . . +  100 = (lOOx 101)/2 

= 5050 

and the result is the  list of the 100 prefixes; 

• 101 calls to null? because the  list is tested 
from its beginning to its end,  and  

s 100 closures because there are 100 prefixes 
and each cJosure builds a prefix (by calling 
an its predecessors).  

Considering tha t  all these closures are down- 
ward funargs and thus are stack-al locatable,  
this solution compares  well wi th  the  bench- 
marks given in Volume 2, N u m b e r  1 of Lisp 

II-3/4.43 



( d e f i n e  xpl  ; L i s t (A)  -> Lis$(Lis%(A)) 
( l e t r e c  ( ( x p l - a u x  ; Lisa(A)  * [Lis%(A) -> Lisa(A)] -> Lis$(Lis%(A)) 

(lambda (I c) 
(if (null? I) 

,() 

(le~ ((a (caz I))) 
(let ((k (lambda (r) (c (cons a r))))) 

(cons (k ' ( ) )  (xpl -aux (cdr i) k)))))))) 
(lambda (I) 

(xpl-aux i (lambda (r) r))))) 

Figure 2: A continuation-composing implementation of xpl 

Pointers. Each of those solutions makes at least 
5150 calls to car ,  5250 caJJs to cdr,  5250 calls to 
cons, and 5352 calls to consp (Common Lisp's 

p a i r ? ,  used instead of nu l l? ) .  
It is possible but beyond the scope of this note 

to relate the present solution to the solution in 
the introduction by program transformation. 

Noting that this solution is almost in contin- 

uation-passing style, ~ we may wonder whether 
there exists a solution in direct style given first- 

class access to the continuation. The following 
section investigates such a solution. 

2 H o w  to  s o l v e  it w i t h  
f i r s t - c la s s  c o n t i n u a t i o n s  

Actually, we cannot, by accessing the contin- 
uation of each recursive call and applying it; 
express the above solution in direct style. The 
reason is that we never return from applying 
a first-class continuation, since applying it dis- 
cards the current continuation. The following 
Scheme example illustrates this point: 

(addl 

(call-~i~h-curren~-con~inua~ion 
(lambda (k) (+ 39 (k 2))))) 

evaluates to 3, not to 42, as it would if k only 
abstracted the function computed by addl. 

2"Almost" because continuations are not applied tail- 
rectusively but are composed instead. 

The point is that a continuation abstracts an 
the rest of the computation. To limit the ex- 
tent of this abstraction, Matthias Felleisen in- 
troduced prompts  [3]. 

The idea of a prompt is to define a new con- 

text of computation and to make a continua- 
tion abstract this context and this context only. 

A continuation is accessed with the operator 
conzrol, that has the same syntax as John 

Reynolds' oscape operator. For example, 

(prompz 
(add1 

(control k (+ 39 (k 2))))) 

actually evaluates to 39 + (I + 2) = 42, and so 
does 

(prompt 

(add1 
(control k 

(+ 19 (k (+ 19 (k 2))))))) 

since k abstracts the function computed by 
addl in the context delimited by the prompt. 

Note that the context abstracted by con'~rol 
is also erased; that is, in contrast to Scheme's 

call-wi~h-curren~-con~inua~ion~ that con- 
text must be invoked explicitly. This explains 
why these examples evaluate to 42 and not 43. 

Using prompt and conzrol, we can express 

the solution of Section I in direct style, as shown 
in Figure 3. This code can be implemented with 
the same performance. 

II-3/4.44 



(define xpl 
(letrec ((xpl-aux 

; Lis~(l) -> List(List(A)) 
; List(A) -> List(List(A)) 

(lambda (i) 
(if (null? i) 

( c o n t r o l  c ' ( ) )  
(I,~ ((a (car i))) 

(cons a 

( c o n t r o l  c 

(cone (c '()) 
(prompt (c  (xpl-aux (cdr  I)))))))))))) 

(lambda (i) 
(prompt (xp l -aux  1 ) ) ) ) )  

Figure 3: A direct implementation of xpl, using prompt and control 

The procedure xpl-aux is defined Jocally in 
xpl and applied in a new context. It is in di- 
rect style and accesses the current continuation. 
In the base case, the continuation is captured 
and not used (as in the solution of Section 1). 
The construction of a new prefix is captured, 
performed, and the computation continues in a 
new context. 

It is possible but beyond the scope of this note 
to convert this procedure into continuation- 
composing style. The result would be exactly 
the procedure of Section I. 

4 C o n c l u s i o n s  a n d  i s s u e s  

Listing successive prefixes of a list can be solved 
by sharing their construction. This exercise 
turns out to be a nice example where abstract- 
ing control needs to be done with true proce- 
dures that can be applied and be expected to 
return a result. Abstracting control with pro- 
cedures is not possible in traditional program- 
rning languages: non-local exits in Lisp, first- 
class continuations in Scheme, and exceptions 
in ML all behave as imperative "black holes". 

The new issues offered by abstracting control 
procedurally remain to be explored. 

3 Related work 

FeUeisen et al. have addressed how to abstract 
control procedurally [3,4}. This work has been 
pursued in two general directions: Dybvig and 
Hieb investigated how to abstract control over 
embedding contexts instead of merely up to the 
last prompt [2]; Danvy and Filinski have pro- 
posed a framework where first-class continua- 
tions can be given a static scope and accordingly 
can be typed statically, and have described how 
to convert expressions from direct style to con- 
tinuation-composing style [1]. 

Acknowledgements 

To Andrzej Filinski and Karoline Malm.kjmr for 
~heir interaction. 

References 

[1] Olivier Danvy, Andrzej Filinski: A Func- 
tional Abstraction of Typed Contezts, DIKU 
Report No 89/5, Computer Science Depart- 
ment, University of Copenhagen, Copen- 
hagen, Denmark (1989) 

12] R. Kent Dybvig, Robert Hieb: Continu- 
ations and Concurrency, Technical Report 

II-3/4.45 



No 256, Computer Science Department ,  
Indiana University, Bloomington,  Indiana 
(July 1988) 

[3] Matthias Felleisen: The Theory and Prac- 
tice o/ First-Class Prompts, Proceedings 
of the Fifteenth Annual ACM SIGACT- 
SIGPLAN Symposium on Principles of Pro- 
grammhag Languages pp. 180-190, San 
Diego, California (3a.m,ary 1988) 

[4] Matthias Felleisen, Mitchell Wand, Daniel 
P. Friedman, Bruce F. Duba: Abstract 
Continuations: a Mathematical Semantics 
for Handling Full Functional Jumps, Pro- 
ceedings of the 1988 ACM Conference on 
Lisp and Functional Programming,  Snow- 
bird, Utah (July 1988) 

[5] John McCarthy: Recursive Functions of 
Symbolic Ezpressions and their Computa- 
tion by Machine, Part I, CACM Vol. 3, No 
3 pp. 184-195 (1960) 

solved with the following sequence of instruc- 
tions, where the result is buJ.h in the register AO 
and A1 is used as an auxiliary: 

label-O: AO := cons(7, l ,  AO) 

Ai := nil 

re l~tL~1 

xpi-1234 AO := nil 

A1 := nil 

call label-4 

call label-3 

call label-2 

jump label- 1 

which reflects precisely the computation of xpl  
with control abstractions. The functions com- 
puted by the calls to l a b e l - t ,  etc., are exten- 
sionally equal to the continuations at each con- 
struction point of copying the list (1 2 3 4). 

A p p e n d i x  - H o w  to so lve  it in 
a s s e m b l y  l anguage  

We can expect control abstractions to be effi- 
cient on a conventional architecture, since xp l  
can be coded in a very compact way, in assem- 
bly language. Consider the JabelJed sequence 
of four instructions constructing the list (1 2 3 
4) in the register At, initialized with n i l :  3 

label-k: 

label-S: 

label-2: 

label-i: 

label-O: 

A1 := c o n s ( 4 ,  A1) 
A1 := c o n s ( 3 ,  £ 1 )  
£1 := c o n s ( 2 ,  £ 1 )  
A1 := c o n e ( l ,  A1) 

Any call to one of the labels l a b e l - l ,  . . . ,  
l a b e l - 4  "~'ith the empty list in the register 
A1 will return a prefix of the list (1 2 3 4). 
Building the sequence of prefixes of this list is 

3This idiom works as well with a stack-based expres- 
sion mad'fi.ne. 

II-3/4.46 



S o m e  n o t e s  on S c h e m e  for C o m m o n  Lisp p r o g r a m m e r s  

The code discussed in this issue's column is written in Scheme, but should be readable 
by most Common Lisp programmers. There are a few features of the Scheme language 
that deserve explanation, though. 

The Scheme form 

(define (name arg . . . )  
body . . .  ) 

is analogous to the Common Lisp form 

( d e f u a  name  ( arg . . . )  

b o d y  . . .  ) 

Several functions exist in both Scheme and Common Lisp, but with different nazrres. Of 
particular interest for this issue is the Scheme function n u l l ? ,  which corresponds closely 
to the Common Lisp functions n u l l  

Scheme does not treat the names of functions differently from normal variables. It 
thus does not  need a facility akin to the :~uncl;ion special form in Common Lisp. Where 
a Common Lisp program might say 

(mapcar #'( lambda ( f )  (.flmca.H. :f 2 3)) 
(lis~ #'+ #'* #'-)) 

the equivalent Scheme program is 

(map (lambda (f) (f 2 3)) 

(lis~ ÷ * -)) 

Both programs yield the list (5 6 -1) .  

FORTUNES FROM THE MARCH X3JI3 COMMON LISP LUNCH 

Luck w~. vis~ you on the next new 
moon. 

Mzl.:; scria:s gccisi;ns in the :zst 
few days of the month. 

When things are hectic, it is best 
to accentuate safety. 

II-3/4.47 




