
Manipulating Sets in Common Lisp* 

Christop :~ R. Eliot 
Computer and Information Science Department 
University of Massachusetts, Amherst, MA 01003 

May 4, 1989 

A b s t r a c t  

Sets are fundamental theoretical elements and yet Common Lisp 
does not provide any comprehensive representation for them. Several 
representations for sets are available, but they have serious problems. 
This paper defines a small family of primitive operations and uses them 
to evaluate existing Common Lisp set representations. This analysis 
characterizes how well sets are supported and suggests how the current 
situation could be improved. 

1 I n t r o d u c t i o n  

Sets are a basic mat.hema~tical and al~orithrn~c concept. Several Common 
Lisp data types can 'be used to represent sets However, all of these represen- 
tations have serous drawbacks tha t  could be eliminated. 

Sets can arise in many practical applications which dictate different rep- 
resentations. For example, a M A K E  facility is likely to manipulate  sets of 
files represented as sorted lists of pathn~mes.  An assumption based t ru th  
maintenance system (ATMS) I2] is implemented using sets of assumptions 
represented with bitvectors. An expert system may represent a set of rules 
using an unsorted list of the names of the rules. 

"This work is supported by the Air Force Syst-m- Command, Rome Air Development 
Center, Gri/~ss Air Force Base, New Y~'k 13441-5700, the Air Force O~ce of Scientific 
Research, Boiling An" Force Base, Dist~ct of Columbia 20332, under contract F30602-85-C,- 
0008, and by a contract with Ing. C. Ol/vetti & C. 
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These examples i l lustrate several points. Sets typically have considerable 
s tructure in addit ion to their  set theoretic properties. This s t ructure may 
be as important  as the set s t ruc ture .  Hence we believe tha t  a separate 
da ta  type for sets will be less useful than  properly supporting the existing 
representations. 

Applications vary in the degree to "hich data are manipulated as sets. 
At one extreme the sets are left imp;, .  ~ ; as the set elements are the only 
interesting datum. Structures or frames or objects are often manipula ted  on 
a purely local basis wi thout  ever explicitly constructing the set of objects. At 
the other extreme some systems (such as an ATMS) are pr imari ly concerned 

• with the sets per se, and care very little about  the identity of the elements. 
In between are programs tha t  examine the internal structure of set elements, 
and also require simple set manipula t ion  operations, such as mapping and 
searching. 

These three usage pat terns  correspond to three typical representations. 
Structures are used when the elements are primary. The set is represented 
implicitly by the pa t t e rn  of linka between structures, but  cannot  be manip- 
ulated directly. Bitvectors are often appropriate when the set s tructure is 
primary. When usable this representat ion makes set operations very fast, 
but  accessing addit ional  information about  set elements is more difficult. 
Intermediate usage pa t te rn  generally are implemented using lists as a set 
representation. However, close examinat ion of the latter two representations 
reveals some serious difficulties. 

2 Represent ing  Sets  in C o m m o n  Lisp 

There are many ways to represent sets in Common Lisp each having different 
computat ional  properties.  Some representations can manipulate  arbi t rary  
da ta  structures as set members. Other  representations tradeoff simplicity 
and t ransparency for computa t iona l  advantages. The choice depends upon 
the algorithm and expected use of the program. 

Lists are ideal representat ions for many purposes because they require 
no auxiliary data s tructures nor  extra preparations. When set operations 
axe used intensively it may be worthwhile to consider more efficient repre- 
sentations. A finite universe of elements can be efficiently represented using 
a bitvector. Set operat ions can be several orders of magnitude faster when 
bitvector representations are used since the representation allows sets to be 
manipula ted  in chunks as ]ar~e as the  ari thmetic registers. 
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Some finer distinctions can be made among these two broad categories of 
representation. Lists are often canonicalized by removing duplicate elements. 
If the list is also sorted then set equality corresponds to the Common Lisp 
EQUAL predicate and unions become simple merge operations 1. 

Abstract bitvectors correspond with two Common Lisp data  types. Inte- 
gers can be manipulated as bitvectors ut : , ; ,  the logical operations on num- 
bers. A one dimensional array of bits can ~ be used 2. Integers have some 
disadvantages as a set representation. In most applications small integers are 
far more common than large ones and most implementations are optimized 
accordingly. However, in representing sets this is not true and so non-optimal 

performance can be expected. More seriously, there is no control over mem- 
ory allocation for numbers so there is no way to prevent allocation of memory 
for intermediate results. 

In contrast, bJtarrays do not have these problems. Arrays can be modi- 
fied in place, if desired, and so a carefully written program need not allocate 
memory for intermediate results. Bitarrays have their own problem~, how- 
ever. The most fundamental problem arises from the restriction of bitarray 
functions to arrays of matching rank and dimenension.9 [6, P.294]. Conse- 
quently adding an element to the universe requires extending every previ- 
ously created set. In effect, bitarrays can only represent sets when the size 
of the universe of elements is bounded ahead of time. 

3 Functionality 

Representational ability may be evaluated systematically using an abstract 
f~mily of prlm~tive operations. Each representation is measured in terms of 
how many primitive operations are supported and how efficiently. Figures 1 
and 2 list definitions of the operations and predicates used for this analysis. 
Seven operators and seven predicates comprise the f~mily of primitive oper- 
ations. These operations are commonly used in set theory [7], mathematics, 
computation theory [I], [5] and practical programming. 

The cartesian-product may not seem to be a primitive operation. How- 
ever, it arises naturally in Lisp applications. Suppose three variables, a, b 

ZThk correspondence between EQUAL and Set Equality depends upon assumptions 
about the interpretation of Equality between set eleraent.s. However, when these assumptions 
are violated Set Equality can still be implemented nmg a construct involving the Every 
sequence function. 

2We ~ use the term =bitarray ~ to distinguish these from abstract bitvectors. 
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Unlon(A,  B) 
I n t e r s ec t i on (A ,  B) 
Difference(A,  B) 
A d d ( y ,  S) 
De le te (y ,  S)  
C a r d i n a l i t y ( S )  
C a r t e s i a n - P r o d u c t ( A ,  

Figure 

B) 

------ {zlz E A or z E B} 
- {zlz E A and z G B} 
- { z l z  e A and z ¢ B} 
-= {~}  u s 

--- {~1~ e s and z # ~} 
_= m~mher c • 'ements in S 
- :  { (~ ,y> l~  ~ -~, ~ e B} 

1: The Primitive Operations. 

M e m b e r ( z ,  S)  -= z E S 
Subse t (A ,  B) --= A _C/3 
P r o p e r - S u b s e t ( A ,  B)  --~ A C B 
In t e r s ec t s (A ,  B) ~ A N B ~ ¢ 
Dis jo in t (A,  B) -= A N B = ¢ 
E q u a l ( A ,  B) -- A = B 
Empty(S) ~ S = ¢ 

Figure 2: The primitive predicates. 

and ¢ have values known to be in the sets A, B, and C respectively. Then 
the values of the triple, (a, b, c) E A x B x C. Any system which searches 
for consistent sets of bindings is likely to use this operation at some point. 
Embedded rule based systems, logic programming languages and planners 
all search for consistent sets of bindings. The QSIM system [4] uses the 
cartesian product in the simulation algorithm to combine the possible tran- 
sitions for individual quantities into consistent global predictions of the next 
qualitatively distinct state. The ATMS label propagation algorithm [2] con- 
ceptually uses a cartesian product,  but due to the highly optimized data 
structures the operation cannot be isolated in the code. This suggests that 
some form of generalized cartesian product operator might be possible. 

Figure 3 shows which of these primitive operations correspond to Com- 
mon Lisp functions. No representation supports all operations, even ommit- 
ing the cartesian product and proper subset. Surprisingly, there are more set 
primitives defined for numbers than for lists. In general the set operations 
are well supported, but the predicates are not. 

Some of the missing functions can be implemented on top of Common 
Lisp. For example, the euperset is just  subset with the arguments reversed. 
However~ some operations require either a complex implementation or waste- 
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Operation CLISt SCLISt NCList BA NUM 
u n i o n  

intersection 
difference 

add 

delete 

size 

member 

subset 

proper-subset 

intersects 

equal 

null 

+ + + + + 
+ - + + + 

+ - + + + 

+ - + + + 

+ + + + + 
+ + - _ + 

+ + + + + 
+ + + - _ 

- + - + + 

+ + + - + 

C L i s t  

S C L i s t  

N C L i s t  

B.A. 

I N T  

Unsorted Canonical List 

Sorted Canonical List. 

Non Canonical List. 

Bitarrays 

Integers, used as bitvectors. 

Figure 3: Common Lisp set primitives 

fully constructing intermediate results. For example, performing a subset 

test using integer set representations requires construction of the set differ- 

ence, which may be a bignllm, only to test whether it is empty. Finally, some 

opertlons are essentially impossible to implement portably. For example, de- 

termining that a bitarray represents the null set requires inspecting every 
bit. A portable implpmentation must test each bit separately, but an im- 

plementation specific implementation can test groups of bits as large as the 

word size of the machine. Hence an implementation specific implementation 
can be orders of magnitude faster. 

4 O b s e r v a t i o n  

Common Lisp should be extended to provide better representational support 
for sets. Both list and bitvector representations are desirable since they have 
different computational properties. The restriction of Bitarray operations to 
vectors of equal length seriously diminishes the utility of these operations for 
set representation and so should be removed. Finally facilities for converting 
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sets among the representations should be available. These additions would 
dramatically improve Common Lisp's set representation capabilities. Com- 
mercial systems that  require high performance would be better supported 
by bitvector representations. Academic users could more easilly show the 
correspondence between their theories and implementations. And all users 
could more easilly exploit published theoretical "qcriptions of algorithms. 

5 Proposal  for Common Lisp 

Factors quite removed from theoretical considerations must be considered in 
a language specification. Compatibility and simplicity are very important. 
Compatibility involves both functional compatibility with existing programs, 
and philosophical consistency within the language. This proposal attempts 
to strike a proper balance in this regard. It is separated into a core section 
containing a minimal set of functions required to obtain full support of sets as 
defined earlier and a cosmetic section mostly containing alternate names to 
make code more readable. All of the new functions have been implemented 
in Common Lisp s. 

5 . 1  C o r e  P r o p o s a l  

Ten new functions, and some modifications of existing functions form the 
core proposal. The only functional incompatibilities introduced b y  these 
changes are naming conflicts. 

5.1.1 Lis t  R e p r e s e n t a t i o n s  

The changes needed to support list representations are addition of set predi- 
cates for intersection and equality, and extensions to the intersection, differ- 
ence and adjoin operators to handle sorted canonical lists. Specifically these 
functions are extended to handle a new keyword argument :sorted-by, which 
specifies a sorting predicate. This argument deanlts to NIL and must be ei- 
ther NIL or a valid second argument to the SORT function. When a non-NIL 
:sorted-by argument is supplied these functions guarantee that  the resulting 
list will be sorted in the implied order, provided the list argument(s) were 
initially properly sorted. .An actual implementation rnay simply perform the 

SNot nece~ri//y very e~ci-n~] F however. 
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basic operation and sort the result, or it may perform an appropriate merge 
operation. 

intersectsp (]istl list2 &key :test :test-not :key) 
set.equal (list1 list2 &key :test :test.not :key) 

These two predicates operate uniformly on all list representations of sets, 
and implement the corresponding set predicate. TI'~ .~rgnments axe defined 
as for subsetp. 

5.1.2 Bltvector Representations 

• Supporting bitvector representations requires adding most of the set predi- 
cates. Furthe#Luore, the bitarray operations must be extended to handle vec- 
tors of differing lengths. The rule of th,,mb that applies is that the smaller 
array must be treated as if it were extended with zeros to be as big as the 
larger array. Set representations only require one dimensional arrays and so 
strictly this extension does not have to apply to higher-dimensial cases. How- 
ever, it seems that this extension would be useful in two dimensional arrays 
for graphics operations. Color graphics might be represented using three 
dimensional arrays. For example, a. glyph in some character set might be 
represented as a small bitarray copied into a picture with bit.-ior or bit-xor. 
The current Common Lisp specification [6, P.294] makes this unworkable. 

The additional functions required to support bitvector representations 
axe: 

bit,-subsetp (bit-axrayl bit-array2) 
logsubsetp (N M) 
bit-intersectsp (bit,-arrayl bit-array2) 
bit-set-equa] (bit-axrayl bit-axray2) 
bit-zerop (bit-array) 
bit-count (bit-array) 

Bit-set-equal is just like equalp except that it treats vectors as infinitely 
extended with zeros for comparison purposes. 

5.2 Conversions 

In many situations it is desirable to convert sets from one representation 
to another. For example, a program may internally manipu/ate sets using 
bitvectors for efficiency, while using a list representation for input and output. 
Some of these conversions already axe supported by Common Lisp. For 
example, a non-canonical list can be converted into a canonical list using 
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the remove-duplicates function. Once the set is represented as a canonical 
list, it may be converted into sorted canonical form using the sort function. 
Conversion in the other direction is not needed since a sorted canonical list 
can be used wherever a non-canonical list representation is acceptable. 

However, conversions to and from the bitvector representations are not 
supported. Common Lisp provides no facility to cot  ' +. a set represented 
using a bitarray into a set represented as an integer, L~n though some im- 
plementations use bitarrays internally to represent large integers [3] making 
hnpl,~mentation of this primitive trivial. Four new functions suffice to allow 
sets in any representation to be converted into equivalent sets in any other 

representation. 
set-vector-to-lnteger (vect) 
set.-integer-to.-vector (n) 
set.vector-to-list (vect map) 
set-list.-to-vector (list map &key test key) 

The last two functions require a map argllment, which is a general vec- 
tor in which the list representations of set elements are stored in positions 
corresponding to the placement of bits in the bitarray representations. For 
example: 

(Set,-|ist-to-vector '(C A) #(A B C)) = >  #*101 

5.3 C o s m e t i c  A d d i t i o n s  

A number of set manipulation functions are trivial variants of those proposed 
already. However, for consistency among programs it is better to provide 
these as part  of the language. For this reason it is desirable to provide 
superset and proper-subset functions in addition to the ml-hnally required 
subset functions. 
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supersetp (listl list2 &key key test test-not) 
logsupersetp (n m) 
bit-supersetp (bit-arrayl bit-array2) 

proper-subsetp (listl list2 &key key test test.not) 
logproper-subsetp (n m) 
bit-proper-subsetp (bit-array1 bit-.array2) 

proper-supersetp (listl list2 &key key test test-not) 
logproper-supersetp (n m) 
bit-proper-supelrsetp (bit..arrayl bit-array2) 

The proper-subset functions can be formed from the subset and equal 
functions. However, it is possible to implement proper subset using a single 
scan over the data, while the composite form implies two scans. Therefore 
adding the primitives for the proper subset operations might result in some 
efficiency gains. The proper superset functions are trivial wriants of these. 

Furthermore, to maintain the illusion that sets are being manipulated 
rather than arrays or integers the basic union, intersection and difference 
functions should be given synonyms that reflect their usage. The following 
table defines synonyms for six bit and integer functions. The synonomons 
names provide better mr~emonic reference to their function as set manipula- 
tion functions. 

root nzme synonym 
log ior union 
bit.- and intersection 

andc2 difference 

These cosmetic changes require the addition of twelve more symbols, but 
no significant implementation effort. 
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S o l u t i o n s  

Let us note cc the value of ca11/cc. 
clearly separate history of values. 

Continuations will be noted k as usual. Various indices will 

• F i r s t  P u z z l e  

Let us trace the computation of ~o(call/ccx ca11/cc2) where k0 is the embedding continuation. 
The evaluation of the terms lead to k,(ccl cc2) that.is to say, by virtue of cc, to ku(cc2 ko) and, by 
another virtue of cc, ko(ko ko) and eventually/¢0. 

Therefore ( ca l l / cc  c a l l / c c )  can be nicknamed ( the-cont inuat ion)  since it returns the cur- 
rent continuation. More precisely as shall be seen in the next puzzle, it feeds the current continuation 
with the current continuation. 

Had ca11/cc be "jumpy", the result would have been the ~black hole" continuation. Let us note 
k± this very continuation, something like Ae..l_ which swallows whatever value sent to it but also 
freezes all computations. The computation of ~o (ca l l /cCl  ca l l /cc~)  now leads to ku(ccx cc2) and 
then to k±, (cc~ ko) i.e. k±2 (k0 k±,) and eventually k±,, the black hole continuation. By the way it is 
unclear that (eq? k±~ k±2) is true, since nothing prevents black hole continuations to be the same 

all the time I CHRISTIAN QUEINNEC NITSAN SI~NIAK 
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