
Concise Reference Manual for the Series Macro Package

R e s t r i c t i o n s and Def in i t ions of Terms

Series expressions are transformed into loops by pipelin-
ing t h e m - - t h e computat ion is converted from a form where
entire series are computed one after the other to a form
where the series are incrementally computed in parallel.
In the resulting loop, each individual element is computed
just once, used, and then discarded before the next ele-
ment is computed. For this pipelining to be possible, four
restrictions have to be satisfied. Before looking at these
restrictions, it is useful to consider a related issue.

All se r ies f u n c t i o n s a r e p r e o r d e r f u n c t i o n s . The
composition of two series functions cannot be pipelined un-
less the destination function consumes series elements in
the same order tha t the source function produces them.
Taken together, the series functions guarantee that this
will always be true, because they all follow the same
fixed processing order. In particular, they are all preorder
funct ions- - they process the elements of their series inputs
and outputs in ascending order start ing with the first el-
ement. Further, while it is easy for users to define new
series functions, it is impossible to define ones that are not
preorder.

It turns out tha t most series operations can easily be
implemented in a preorder fashion, (the only notable ex-
ceptions being reversal and sorting). As a result, little is
lost by outlawing non-preorder functions. If some non-
preorder operation has to be applied to a series, the series
can be converted into a list or vector and the operation ap-
plied to this new data structure. (This is ineffcient, but no
less efficient than what would be required if non-preorder
series functions were supported.)

Se r i e s e x p r e s s i o n s . Before discussing the restrictions
on series expressions, it is useful to define precisely what
is meant by the term series expression.

Loosely speaking, a series function is a function that
consumes or returns a series. However, the Series macro
package is not capable of looking at an arbi t rary function
and determining whether or not it consumes or returns a
series. To deal with this, series functions are precisely de-
fined as being a function that consumes or returns a series
and is either: (1) described in this manual, (2) defined
using the declaration optimizable-series-:function, (3) a
literal lambda expression appearing as the first argument of
a funca l l , or (4) a macro that expands into an expression
involving (1), (2), or (3). Everything else is treated as not
being a series function no mat te r what kind of data objects
it consumes or returns.

A series expression is an expression composed of series
functions. However, beyond this, the definition of the term
'series expression' is semantic rather than syntactic in na-
ture. Given a program, imagine it converted from Lisp

code into a data flow graph. In a data flow graph, func-
tions are represented as boxes, and both control flow and
data flow are represented as arrows between the boxes.
Data flow constructs such as l e t and se tq are converted
into patterns of da ta flow arcs. Control constructs such
as i f and loop are converted into patterns of control flow
arcs. For example, the expression in the program below is
converted into a graph with a chain of seven nodes corre-
sponding to the seven function calls.

(defun expression-examp (data)
(abs (collect-sum

(scan (cdr (collect-last
(choose (scan data))))))))

A series expression is a subgraph of the data flow graph
for a program that contains a group of interacting series
functions. More specifically, given a call f on a series func-
tion, the series expression E containing it is defined as fol-
lows. E contains f . Every function using a series created
by a function in E is in E. Every function computing a
series used by a function in E is in E. Finally, suppose
that two functions g and h are in E and that there is a
data flow path consisting of series and /o r non-series data
flow arcs from g to h. Every function touched by this path
(be it a series function or not) is in E.

In the example program above, there are two series ex-
pressions: one corresponding to (c o l l e c t - s u m (s c a n . . .))

and the other to (collect-last (choose (scan ...))). Op-
timization is applied to each series expression. The non-
series parts of the Lisp code (e.g., the calls on abs and cdr)
are left as-is and are evaluated/compiled in the normal
way. While series functions and non-series functions can
freely coexist in a piece of code, they are rigidly partitioned
from each other when optimization is applied.

Static analyzability. For optimization to be possible,
Series expressions have to be statically analyzable. As with
most other optimization processes, a series expression can-
not be transformed into a loop at compile time, unless it
can be determined at compile time exactly what computa-
tion is being performed. This places a number of relatively
minor limits on what can be written. To start with, the
definition of a series function must appear before its first
use. In addition, when using a series function that takes
keyword arguments, the keywords themselves have to be
constants rather than being the values of expressions.

Whenever there is a failure of static analyzability, a
warning message is issued and the containing series ex-
pression is left unoptimized. The various limits imposed
by the static analyzability restriction are described in [5]
in conjunction with the associated warning messages.

Locality of series. For optimization to be possible, ev-
ery series created within a series expression must be used

III-l.12

solely inside the expression. (If a series is t ransmit ted out-
side of the expression that creates it, it has to be phys-
ically represented as a whole. This is incompatible with
the transformations required to pipeline the creating ex-
pression.) To avoid this problem, series must not be re-
turned as the results of series expressions, assigned to free
variables, assigned to special variables, or stored in data
structures. Further, optimization is blocked if a series is
passed as an argument to an ordinary Lisp function. Se-
ries can only be passed to the series functions defined in
this manual and to new series functions defined using the
declaration opt imizable-ser ies-funct ion.

Straight-line computation. For optimization to be
possible, series expressions must correspond to straight-
line computations. That is to say, the data flow graph
corresponding to the series expression cannot contain any
conditional branches or loops. (Complex control flow is
incompatible with pipelining.) Optimization is possible in
the presence of standard straight-line forms such as progn,
funcall, setq, lambda, let, let*, and multiple-value-bind
as long as none of the variables bound are special. There is
also no problem with macros as long as they expand into
series functions and straight-line forms. However, opti-
mization is blocked by forms that specify complex control
flow (i.e., conditionals i f , cond, etc., looping constructs
loop, do, etc., or branching constructs tagbody, go, catch,
etc.).

In the first example below, optimization is blocked, be-
cause the i f form is inside of the series expression. How-
ever, in the second example, optimization is possible, be-
cause although the i f feeds data to the series expression,
it is not inside the corresponding subgraph. The two ex-
pressions produce the same value, however, the second one
is much more efficient, because it can be transformed into
a loop.

(collect (if flag (scan x) (scan y))) ; Warning
(collect (scan (if flag x y)))

An obvious direction of future research with regard to
the Series macro package is applying optimization to series
expressions containing control flow constructs. There is
little doubt that simple conditionals such as if and cond
could be handled. However, it is not clear whether more
complex constructs could be handled in a reasonable way.

Constraint cycles. Even if a series expression satisfies
all of the restrictions above, it may still not be possible to
transform the expression into a loop. The sole remaining
problem is that if a series is used in two places, the two
uses may place incompatible constraints on the times at
which series elements should be computed

The series expression below shows a situation where this
problem arises. The expression creates a series x of the
elements in a list. It then creates a normalized series by
dividing each element of x by the sum of the elements in
x. Finally, the expression returns the maximum of the
normalized elements.

(let ((x (scan '(I 2 5 2)))) ; Warning
(collect-max (#M/ x (series (collect-sum x)))))

1/2

The two uses of x in the expression place contradictory
constraints on the way pipelined evaluation must proceed.
The function collect-sum requires that all of the elements
of x be produced before the sum can be returned and
series requires that its input be available before it can
start producing its output. However, #M/ requires that
the first element of x be available at the same time as the
first element of the output of series. For pipelining to
work, this implies that the first element of the output of
series (and therefore the output of collect-sum) must be
available before the second element of x is computed. Un-
fortunately, this is impossible.

The essence of the inconsistency above is the cycle of
constraints used in the argument. This in turn stems from
a cycle in the data flow graph underlying the expression
(see Figure 4). In Figure 4, function calls are represented
by boxes and data flow is represented by arrows. Simple
arrows indicate the flow of series values and cross hatched
arrows indicate the flow of non-series values.

Figure 4: A constraint cycle.

Given a data flow graph corresponding to a series ex-
pression, a constraint cycle is a closed loop of data flow
arcs that can be traversed in such a way that each arc is
traversed exactly once and no non-series arc is traversed
backwards. (Series data flow arcs can be traversed in ei-
ther direction.) A constraint cycle is said to pass through
an input or output port when exactly one of the arcs in
the cycle touches the port. In Figure 4 the data flow arcs
touching scan, sum, series, and #MI form a constraint cycle.
Note that if the output of scan were not a series, this loop
would not be a constraint cycle, because there would be
no valid way to traverse it. Also note that while the con-
straint cycle passes through all the other ports it touches,
it does not pass through the output of scan.

Whenever a constraint cycle passes through a non-series
output, an argument analogous to the one above can be
constructed and therefore pipelining is impossible. When
this situation arises, a warning message is issued identify-
ing the problematical port and the cycle passing through
it. For instance, the warning triggered by the example
above states that the constraint cycle associated with scan,
collect-sum, series, and #MI passes through the non-series
output of collect-sum.

Given this kind of detailed information, it is easy to
alleviate the problem. To start with, every cycle must
contain at least one function that has two series data flows
leaving it. At worst, the cycle can be broken by duplicating
this function (and any functions computing series used by
it). For instance, the example above can be rewritten as
shown below.
(let ((x (scan '(I 2 5 2)))

(sum (collect-sum (scan ' (1 2 5 2)))))
(collect-max (#MIx (series sum)))) ~ I12

III-l.13

It would be easy enough to automatically apply code
copying to break problematical constraint cycles. However,
this is not done for two reasons. First, there is considerable
virtue in maintaining the property that each function in a
series expression turns into one piece of computat ion in the
loop produced. Users can be confident tha t series expres-
sions that look simple and efficient actually are simple and
efficient. Second, with a little creativity, constraint prob-
lems can often be resolved in ways that are much more
efficient than copying code. In the example above, the
conflict can be eliminated efficiently by interchanging the
operation of computing the maximum with the operation
of normalizing an element.

(let ((x (scan ' (I 2 5 2))))
(/ (col lec t -max x) (collect-sum x))) ~ 1/2

The restriction tha t optimizable series expressions can-
not contain constraint cycles tha t pass through non-series
outputs places limits on the qualitative character of opti-
mizable series expressions. In particular, optimizable se-
ries expressions all have the general form of creating some
number of series using scanners, computing various inter-
mediate series using transducers, and then computing one
or more summary results using collectors. The output of a
collector cannot be used in the intermediate computat ion
unless it is the output of a separate subexpression.

It is worthy of note tha t the last expression above fixes
the constraint conflict by moving the non-series output out
of the cycle, rather than by breaking the cycle. This il-
lustrates the fact tha t constraint cycles tha t do not pass
through non-series outputs do not necessarily cause prob-
lems. Such constraint cycles cause problems only if they
pass through off-line ports.

O n - l l n e a n d off- l lne . A series input port or series
ou tput port of a series function is on-line if and only if it
is processed in lock step with all the other on-line ports as
follows: The initial element of each on-line input is read,
then the initial element of each on-line output is written,
then the second element of each on-line input is read, then
the second element of each on-line output is written, and so
on. Ports tha t are not on-line are off-line. If all the series
ports of a function are on-line, the function is said to be
on-line; otherwise, it is off-line. (The above extends the
s tandard definition of the term 'on-line' (see [1]) so that it
applies to individual ports as well as whole functions.)

The prototypical example of an on-line series function is
map-fn. Each time it reads an input element, it applies the
mapped function to it and writes an output element. In
contrast, the function pos i t i ons is not on-line. Since null
input elements do not lead to ou tput elements, it is not
possible for pos i t i ons to write an output element every
time it reads an input element.

For every series function, the documentat ion below spec-
ifies which ports are on-line and which are off-line. In this
regard, it is interesting to note tha t every function that
has only one series port (i.e., scanners with only one out-
put and collectors with only one input) are trivially on-
line. The only series functions tha t have off-line ports are
transducers.

III-l.14

If all of the ports a cycle passes through are on-line, the
lock step processing of these ports guarantees that there
cannot be any conflicts between the constraints associated
with the cycle. However, passing through an off-line port
leads to the same kinds of problems as passing through a
non-series output .

In summary, the fourth and final restriction is that: for
optimization to be possible, a series expression cannot con-
tain a constraint cycle tha t passes through a non-series
output or an off-line port . Whenever this restriction is vi-
olated, a warning message is issued. Violations can be fixed
either by breaking the cycle or restructuring the computa-
tion so that the offending por t is removed from the cycle.

Series

The Series macro package adds support for a new data
type called series to Common Lisp. Series are similar to
lists or vectors in tha t they are ordered multisets and simi-
lar operations can be applied to them. However, series are
also closely related to streams, both because they can corn
tain an unbounded number of elements and because they
are suppor ted using lazy evaluation semantics. In partic-
ular, the j t h element of a series is not computed until it is
actually used (if ever). As a concrete example of the lazy
evaluation semantics of series, consider the following.

(s e t q x 0) ~ 0
(c o l l e c t - f i r s t

(map-fn T # ' (l a abda (a) (i nc f x) (* 3 a))
(scan-range :from 1 :upto 10))) ~ 3

x = ~ l

The call on scan-range creates a series of ten elements.
The map-fn creates another series of ten elements computed
from this series. However, c o l l e c t - f i r s t only uses the first
element of its input. Since the result of aap- fn is not used
anywhere else in this example, only the first element of this
series is computed. As a result, the function being mapped
is only applied once and x is only incremented once. In the
absence of side effects, there is typically no need to think
about the lazy evaluation nature of the support for series.
However, when side effects are involved, this has to be kept
in mind.

The above not withstanding, it is typically better to
think of series as being like lists rather than streams in
most situations. The reason for this is tha t there is a crit-
ical difference between series and streams. Consider the
code below. If x contains a stream, the function g will only
see the elements of x tha t are not used by f . Tha t is to
say, if f reads the first ten elements of x, these elements are
gone and the first element seen by g will be the eleventh.
(l e t ((x . . .))

(f x)
(g x)
. . .>

In contrast, suppose that x contains a list. The mere act
of looking at the elements of a list does not alter the list.
As a result, both f and g see all the elements of x. This
si tuation is exactly the same when x is a series. If a series
is used in several places, all of the elements of the series
are available in each place. (Like a list, it is also possible

for a series to be side effected in such a way tha t changes
propagate f rom one use to another. However, this is not
the typical way they are used.)

For the convenience of the reader, this documentat ion
uses the following two orthographic conventions with re-
gard to series. First, the notat ion Sj is used to designate
the j t h element of the series s. As in a list or vector, the
first element of a series has the subscript 0. Second, plural
nouns (e.g., i tems, numbers) are used to represent series
inputs and outputs of functions, while singular nouns (e.g.,
i t em, number) are used to indicate non-series inputs and
outputs.

• series k o p t i o n a l (type T)

This type specifier can be used to declare that something
is a series value. The type argument specifies the type of
the items in the series.

(l e t ((x (s can ' (1 2 3))))
(declare (type (series integer) x))

(collect-sum x)) ~ 6

• series i t em-1 . . . i t e m - n ~ i t e m s

An unbounded series is created tha t endlessly repeats
the values of the i t em- i . As shown in the last example
below, the function s e r i e s is often used to create what is
in effect a constant value to be passed into a series input
of a series function. (Like lists, the same name is used for
the name of the type specifier and the name of the pr imary
constructor function.)

(series 'b 'c) ::~ #Z(b c b c b c ...)
(s e r i e s 1) ~ #Z(1 1 1 1 1 1 . . .)
(#Mlist (series 'a) (scan '(I 2 3)))

#Z((a 1) (a 2) (a 3))

* #Z (item-/ ... item-n) ::~ items

The # macro character syntax #z is used to specify a
literal series. It must be followed by a list of items. A se-
ries is created that contains these items. As in #(...),
the item-i are implicitly quoted. Unlike #(...), which
turns directly into a data object when read in, instances
of #z (...) turn into function calls and therefore should not
be quoted. To activate the syntax #z for input, you must
call (s e r i e s : : i n s t a l l :macro T). However, whether or not
this is done, the #Z syntax is used for printing series.

#Z(a b c) :=~ #Z(a b c)
#Z(...) =-- (scan '(...))

Se r i e s o f Se r i e s . I t is possible to create a series whose
elements are themselves series. For instance, given a vector
of lists of integers, the expression below creates a series of
series of integers. I t then creates a list of the sums of these
integers.

(l e t * ((v ' # ((1 2 3) (3 4 5)))
(series-of-lists (scan 'vector v))
(series-of-series (#Mscan series-of-lists)))

(collect (mapping ((integers series-of-series))
(collect-sum integers)))) ; Warning

(6 12)

I t should be possible to opt imize the expression above
creating a pair of nested loops. However, the Series
macro package is not capable of opt imizing series of series.
Rather , the expression above triggers a warning message
(because there is da ta flow from the assumed non-series
value i n t e g e r s to the series input of c o l l e c t - s t m) . Only
the outermost level of the series of series is optimized.

An obvious direction of future research with regard to
the Series macro package is applying optimizat ion to series
of series. However, it is not obvious whether the pragmatic
benefits would be worth the effort involved. For instance,
full opt imizat ion can be obtained in the example above,
by merely writing it in the form shown below. The key
difference is tha t the inner loop is completely contained in
the body of the mapping.

(let ((v '#((I 2 3) (3 4 5)))
(series-of-lists (scan ~vector v)))

(collect (mapping ((list series-of-lists))
(collect-sum (scan list))))) ~ (6 12)

Scanners

Scanners create series outputs based on non-series in-

puts. There are two basic kinds of scanners: ones that
create a series based on some formula (e.g., scanning a
range of integers) and ones tha t create a series containing
the elements of an aggregate da ta structure (e.g., scanning
the elements of a list).

scan { type} sequence =~. e l emen t s

Creates a series containing the successive elements of se-
quence. If sequence is a list, then it must be a proper list
ending in n i l . The t y p e argument specifies the type of
sequence to be scanned. This type must be a (not neces-
sarily proper) subtype of sequence. I f omitted, the type
defaults to l i s t . Scanning is significantly more efficient if
it can be determined at compile t ime whether the type is
a subtype of l i s t or v e c t o r .

(scan ' ()) ~ #Z()
(scan ' (a b c)) ~ #Z(a b c)
(scan 'string "BAR") :¢. #Z(#\B #\A #\R)
(scan ' (simple-vector integer 3) '#(I 2 3))
::~ #Z(l 2 3)

scan-multiple type sequence-1 ... sequence-n

=~ elements-1 ... elements-n

Several sequences can be scanned at once by using sev-
eral calls on scan. Each call on scan will test to see when
its sequence runs out of elements and execution will stop
as soon as any of the sequences are exhausted. Although
very robust, this approach to scanning can be a significant
source of inefficiency. In situations where it is known in
advance which sequence is the shortest, scan-mul t ip le can
be used to obtain the same results more rapidly.

The function scan-multiple is similar to scan except
that two or more sequences can be scanned at once. If
there are n sequence inputs, scan-multiple returns n se-
ries containing the elements of these sequences. It must be
the case that none of the sequence inputs is shorter than
the first sequence. All of the output series are the same
length as the first input sequence. Extra elements in the

III-l.15

other input sequences are ignored. Using scan-mul t ip le
is more efficient than using multiple instances of scan, be-
cause scan-mul t ip le only has to check for the first input
running out of elements.

I f type is of the form (values Sl . . . Sn), then there
must be n sequence inputs and sequenee-i must have type
si. Otherwise there can be any number of sequence inputs
each of which must have type type.
(multiple-value-bind (data weights)

(scan-multiple 'list '(I 6 3 2 8) '(2 3 3 3 2))
(collect (map-fn T #'* data weights)))

(2 18 9 6 16)

• scan-range &key (:start O) (:by I) (:type 'number)
:upto :below :downto :above :length

::~ numbers

Creates a series of numbers s tar t ing with : s t a r t (de -

fault integer 0) and counting up by :by (default integer 1).
The : type argument (which defaults to number) specifies
the type of numbers produced and must be a subtype of
number. The arguments : s t a r t and :by must be of type
type.

The last five arguments specify the kind of end test to
be used. I f :upto is specified, counting continues only so
long as the numbers generated are less than or equal to
:upto. I f :below is specified, counting continues only so
long as the numbers generated are less than :below. If
:do~nato is specified, counting continues only so long as the
numbers generated are greater than or equal to :do,into. I f
:above is specified, counting continues only so long as the
numbers generated are greater than :above. I f : l eng th is
specified, the series created has length : length. (It must
be the case tha t : l eng th is a non-negative integer.) I f none
of the terminat ion arguments are specified, the output has
unbounded length. I f more than one terminat ion argument
is specified, it is an error.
(scan-range) :=~ #Z(0 1 2 3 4 ...)
(scan-range :upto 4) ::~ #Z(0 1 2 3 4)
(scan-range :from 1 :below 4) ~ #Z(I 2 3)
(scan-range :by -3 :downto -4) ~ #Z(0 -3)
(scan-range :from 1 :above -4 :by -I)

#Z(l 0 -I -2 -3)
(scan-range :from 1.5 :by .I :length 3 :type 'float)

#Z(I.5 1 .6 1 . 7)

• scan-sublists list =~. sublists

Creates a series containing the successive sublists of list,
which must be a proper list ending in n i l .
(scan-sublists '(a b c)) ~ #Z((a b c) (b c) (c))

• scan-alist alist &optional (test #'eql) ~ keys values

Scans the entries in an association list, returning two
series containing keys and their associated values. The first
element of keys is the key in the first entry in alist, the first
element of values is the value in the first entry, and so on.
The alist must be a proper list ending in n i l and each entry
in alist must be a cons cell or nil. Like assoc, scan-alist
skips entries that are nil and entries that have the same
key as an earlier entry. The test argument (default eql) is
used to determine when two keys are the same.

(scan-alist nil) ~ #Z() and #Z()
(s c a n - a l i s t ' ((a . 1) () (a . 3) (b . 2)))

=-~ #Z(a b) and #Z(1 2)

• scan-plist plist ~ indicators values

Scans the entries in a property list, returning two series

containing indicators and their associated values. The first

element of indicators is the first indicator in plist, the first
element of values is the associated value, and so on. The
plist argument must be a proper list of even length ending
in nil. In analogy with the way get works, if an indicator
appears more than once in plist, it (and its value) will only
be enumerated the first t ime it appears.

(s c a n - p l i s t ' (a 1 a 3 b 2)) ~ #Z(a b) and #Z(1 2)
(s c a n - p l i s t n i l) => #Z() and #Z()

• scan-hash table =-~ keys values

Scans the entries in a hash table, returning two series
containing keys and their associated values. The first ele-
ment of keys is the key of the first entry, the first element
of values is the value in the first entry, and so on. (There
are no guarantees as to the order in which entries will be
scanned.)

(let ((h (make-hash-table)))
(serf (gethash 'color h) 'brown)
(serf (gethash 'name h) 'fred)
(scan-hash h)) =~ #Z(name color) and #Z(fred brown)

• scan-lists-of-lists lists-o[-lists &optional lea[-test

nodes

The argument lists-of-lists is viewed as an n-ary tree
where each internal node is a non-empty list and the ele-
ments of the list are the children of the node. A node is
considered to be a leaf if it is an a tom or if it satisfies the
predicate leaf-test (if present). (The predicate can count
on only being applied to conses.)

The function s c a n - l i s t s - o f - l i s t s creates a series con-
taining all of the nodes in lists-of-lists. The nodes are
enumerated in preorder (i.e., first the root is output , then
the nodes in the first child of the root are enumerated in
full, then the nodes in the second child of the root are
enumerated in full, etc.).

The function scan-lists-of-lists does not assume that
the node lists end in n i l ; however, it ignores any non-list
cdrs. (This behavior increases the util i ty of s c a n - l i s t s -
o f - l i s t s when it is used to scan Lisp code.) However,
s c a n - l i s t s - o f - l i s t s assumes tha t lists-of-lists is a tree as
opposed to a more general graph. I f some node in the
input has more than one parent , then this node (and its
descendants) are enumerated more than once. I f the input
is cyclic, the ou tpu t series is unbounded in length.

(scan-lists-of-lists 'c) ~ #Z(c)
(scan-lists-of-lists ' ((c) nil))

#Z(((c) nil) (c) c nil)
(scan-lists-of-lists ' ((c) nil)

#'(lambda (e) (atom (car e))))
Z (((c) n i l) (c) n i l)

• scan-lists-of-lists-fringe lists-of-lists

&optional leaf-test ~ leaves

This is the same as s c a n - l i s t s - o f - l i s t s except that it
only scans the leaves of the tree, skipping all internal nodes.
Note tha t n i l is t reated as a leaf, ra ther than as an internal
node with no children.

III-l.16

(scan-lists-of-lists-fringe 'c) ~ #Z(c)
(scan-lists-of-lists-fringe ' ((c) nil)) ~ #Z(c nil)
(scan-lists-of-lists-fringe ' ((c) nil)

#' (lambda (e)
(atom (car e))))

::~ #Z((c) nil)

• scan-symbols &optional (package *package*) :=~ symbols

Creates a series, in no particular order, and possibly
containing duplicates, of the symbols accessible in package
(which defaults to the current package).

(scan-symbols) ~ #Z(foo bar ... zot) <in some order>

• scan-file file-name &optional (reader # 'read) ~ items

Opens the file named by the string file-name and applies
the function reader to it repeatedly until the end of the
file is reached. The function reader must accept the stan-
dard input-function arguments input-stream, eof-error-p,
and eof-value as its arguments. (For instance, reader
can be read, read-preserving-white-space, read-line, or

read-char.) If omitted reader defaults to read. The func-
tion scan-file returns a series of the values returned by
reader, up to but not including the value returned when
the end of file is reached. The file is correctly closed, even
if an abort occurs. As the basis for the examples below,
suppose that the file "test.lisp" contains "(t) I".

(scan-file "test.lisp") ~ #Z((a) I)
(scan-file "test.lisp" #'read-char)

#Z(#\(#\A #\) #\space # \ 1)

• scan-fn type init step &optional test
=~, results-1 . . . r e su l t s -m

The higher-order function scan-fn supports the generic
concept of scanning. The t y p e is a type specifier. The
v a l u e s construct can be used to indicate multiple types;
however, type cannot indicate zero types. If t ype indicates
m types rl . . . r,n, then scan-fn returns m series where
resul ts- i has the type (s e r i e s r i) . The arguments ini t ,
s tep, and test are functions.

The in i t must be of type
(function () (values rl ... rm)).

The step must be of type
(function (rl ... rm) (values rl ... rm)).

The test (if present) must be of type
(function (rl ... rm) T).

The elements of the results-i are computed as follows:

(v a l u e s results-lo . . . results-too) = (f u n c a l l init)
(values results-I i . . . results-m j)
= (funca l l step results-l(,_1) . . . resu/ts-m(i_l))

The outputs all have the same length. If there is no test,
the outputs have unbounded length. If there is a test, the
outputs consist of the elements up to but not including,
the first elements for which the following is not n i l . It is
guaranteed that step will not be applied to the elements
that pass the test (funcal l tes t results-lj . . .results-re,).

If ini t , s tep, or test have side effects, they can count on
being called in the order indicated by the equations above,
with test called just before s t ep on each cycle. However,
due to the lazy evaluation nature of series, these functions
will not be called until their outputs are actually used (if
ever). In addition, no assumptions can be made about the

relative order of evaluation of these calls with regard to
execution in other parts of a given series expression.

(s c a n - f n ' l i s t # ' (l a m b d a 0 ' (a b c d))
#'cddr #'null) ~ #Z((a b c d) (c d))

(scan-fn T #'(lambda () '(a b c d)) #'cddr)
#Z((a b c d) (c d) nil nil ...)

(l e t ((l i s t '(a b c)))
(scan-fn ' (values T list)

#'(lambda () (values (car list) list))
%' (lambda (element list)

(declare (ignore element))
(values (cadr list) (cdr list)))

#' (lambda (element list)
(declare (ignore element))

(null list))))
#Z(a b c) and #Z((a b c) (a b) (c))

If there is no test, then each time an element is output,
the function step is applied to it. Therefore, it is impor-
tant that other factors in an expression cause termination
before scan-fn computes an element which step cannot be
applied to. In this regard, it is interesting that the fol-
lowing equivalence is almost, but not quite true. The dif-
ference is that including the test argument in the call on
scan-fn guarantees that step will not be applied to the el-
ement which fails test, while the expression using until-if
guarantees that it will.

(scan-fn T init step test)
(until-if teat (scan-fn T init step))

scan-fn-inclusive t y p e in i t s t ep tes t
::~ results-1 . . . r e su l t s -m

The higher-order function scan- fn - inc lus ive is the same
as scan-fn except that the first set of elements for which
test is true is included in the output . As with scan-fn, it
is guaranteed that s tep will not be applied to the elements
for which test is true.
(scan-fn-inclusive 'list #'(lambda () '(a b c d))

#'cddr #'null)
#Z((a b c d) (c d) ())

M a p p i n g

By far the most common kind of series operation is map-
ping. In cognizance of this fact, four different ways are
provided for specifying mapping.

• map-fn t ype func t ion sources-1 . . . sources-n
results-1 . . . r e su l t s -m

The higher-order function map-fn supports the generic
concept of mapping. The t y p e is a type specifier, which
specifies the type of value(s) returned by funct ion. The
values construct can be used to indicate multiple types;
however, t y p e cannot indicate zero values. If t ype indicates
m types r l . . . rm, then m a p - f n returns m series where
resul ts- i has the type (s e r i e s r i) . The argument funct ion
is a function. The remaining arguments (if any) are all
series. Suppose that sources-i has the type (s e r i e s s i) .

The func t ion must be of type
(f u n c t i o n (Sl . . . Sn) (v a l u e s r l . . . r m)) .

The length of each output is the same as the length of
the shortest input. If there are no bounded series inputs,
the outputs are unbounded. The elements of the results-i

III-l.17

are the results of applying function to the corresponding
elements of the sources-i.
(values results-lj . . . results-m j)
ffi (funcall [unc~ion sources-lj ... sources-n i)

I f function has side effects, it can count on being called
first on the sourcesJo, then on the sources-il, and so on.
However, due to the lazy evaluation nature of series, func-
tion will not be called on any group of input elements until
the result is actually used (if ever). In addition, no assump-
tions can be made about the relative order of evaluation
of these calls with regard to execution in other par ts of a
given series expression.
(map-fn ' i n t e g e r # '+ #Z(1 2 3) #Z(4 5)) ~ #Z(5 7)
(map-fn T #'gensym) =-~ #Z(#:GO03 #:GO04 #:GO05 . . .)
(map-fn ' (values integer rational) #'floor

#Z(1/4 12/3)) ~ #Z(0 4) and #Z(1/4 0)

The function map-fn can be used to specify any kind
of mapp ing operation. However, in practice, it can be
cumbersome to use. Three shor thand forms are provided,
which are more convenient in part icular common situa-
tions.

• #M function =# series-function

Often one wants to m a p a given named function over
one or more series producing a series of the resulting val-
ues. This can be done succinctly by using the # macro
character syntax #M. This readmacro converts a non-series
function into a series function by using mapping. All but
the first value returned by function are ignored. The
form #l,lfunction can only be used in the function posi-
tion of a list. To act ivate the syntax #M, you must call
(series: :install :macro T).

(#Mr x y) =-- (map-fn T #'f x y)
(collect (#Mcar (scan '((a) (b) (c))))) :=~ (a b c)

• mapping vax-value-pair-list kbody body :=~ i t ems

The syntax #Mfunction is only helpful when the com-
puta t ion to be mapped is a named function. The form
mapping is helpful in si tuations where a more complex com-
puta t ion needs to be mapped. The syntax of mapping is
analogous to l e t . The vat-value-pair-list specifies zero or
more variables tha t are bound to successive values of se-
ries. The value par ts of the pairs must all return series.
The body is t reated as the body of a lambda expression
tha t is mapped over the series values. A series of the first
values returned by this laabda expression is returned as the
result of mapping. Any kind of declaration can be used at
the beginning of the body; however it should be noted tha t
the variables in the vat-value pairs contain series elements,
not series.

(mapping ((x r) (y s)) ...)
--: (map-fn T #'(lambda (x y) ...) r s)

(mapping ((x (scan '(2 -2 3))))
(declare (fixnum x))

(expt (abs x) 3)) ~ #Z(8 8 27)

The form mapping supports a special syntax tha t facili-
tates the use of series functions tha t return multiple values.
Instead of being a symbol, the variable par t of a var-value
pair can be a list of symbols. This list is t reated the same
way as the first a rgument to mul t ip le -va lue -b ind .

(mapping (((i v) (s c a n - p l i s t ' (a 1 b 2))))
(l i s t i v)) ~ #Z((a 1) (b 2))

• iterate var-vaIue-pair-]ist &body body ~ nil

The form i t e r a t e is identical to mapping except that the
value n i l is always returned.

(i t e r a t e . . .)
_---- (progn (c o l l e c t - l a s t (m a p p i n g . . .)) n i l)

(l e t ((i t em (scan ' ((1) (-2) (3)))))
(i t e r a t e ((x (#Meat i t em)))

(i f (plusp x) (p r i n l x))))
n i l <after printing "13">

To a first approximat ion, i t e r a t e and mapping differ in
the same way as mapc and mapcar. In part icular, like inapt,
i t e r a t e is intended to be used in si tuations where the body
is being evaluated for side effect ra ther than for its result.
However, due to the lazy evaluation semantics of series,
the difference between i t e r a t e and mapping is more than
jus t a question of efficiency.

I f mapcar is used in a s i tuat ion where the output is not
used, t ime is wasted unnecessarily creating the output list.
However, if mapping is used in a s i tuat ion where the out-
put is not used, no computa t ion is performed, because se-
ries elements are not computed until they are used. Thus
i t e r a t e can be thought of as a declaration tha t the in-
dicated computa t ion is to be performed even though the
output is not used.

(let ((item (scan '((I) (-2) (3)))))
(mapping ((x (#Mcar item)))

(if (plusp x) (prinl x)))
nil) ~ nil <without printing any output>

An impor tan t use of the forms mapping and i t e r a t e is
to create series expressions corresponding to nested loops.
For instance, the following expression takes a vector of lists
and produces a list of the sums of the elements in these
lists. When opt imizat ion is applied, the series expression
in the mapping body becomes a nested loop.

(l e t ((v ' # ((1 2 3) (3 4 5)))
(c o l l e c t (mapping ((1 (scan ' v e c t o r v)))

(collect-sum (scan I)))) ~ (6 12)

T r u n c a t i o n

The functions below suppor t the concept of producing a
bounded series as opposed to an unbounded one.

• u n t i l bools i tems-1 . . , items-n
::~ initial-items-I . . . initial-items-n

Truncates one or more series of elements based on a se-
ries of boolean values. The outputs consists of the elements
of the inputs up to, but not including, the first element
which corresponds to a non-null element of bools. Tha t
is to say, initial-items-ij=items-ij and if the first non-null
value in bools is the ruth, each ou tpu t has length m. (The
effect of including the ruth element in the output can he
obtained by using p rev ious as shown in the last example
below.) In addition, the outputs te rminate as soon as any
input runs out of elements even if a non-null element of
bools has not been encountered.

III-l.18

(until #Z(nil nil T nil T) #Z(I 2 -3 4 -5))
#Z(I 2)

(until #Z(nil nil T nil T) #Z(I 2) #Z(a b c))
#g(l 2) and #Z(a b)

(until (series nil) (scan-range)) ~ #Z(0 I 2 ...)
(until #Z(nil nil T nil T) (scan-range)) ~ #Z(0 I)
(let ((x #Z(1 2 -3 4 -5)))

(until (previous (#Mminusp x)) x)) ~ #Z(1 2 -3)

• until-if pred items-1 ... items-n

=~ i n i t i a l - i t e m s - 1 . . . i n i t i a i - i t e m s - n

This function is the same as u n t i l except tha t it takes a
functional argument instead of a series of boolean values.
The function p r e d is mapped over i t e r n s - I to obtain a series
of boolean values tha t control the truncation. The basic
relationship between u n t i l - i f and u n t i l is shown in the
last example below.

(until-if #'minusp #Z(l 2 -3 4 -5)) ::~ #Z(l 2)
(until-if #'minusp #Z(1 2) #Z(a b c))

#Z(1 2) and #Z(a b)
(until-if #'minusp (scan-range)) ~ #Z(0 1 2 ...)
(until-if #'pred items)

(let ((v items)) (until (#Mpred v) v))

• cotruncate items-1 ... items-n
::~]nitial-items-1 ... initial-items-n

The inputs and outputs are all series and the number
of outputs is the same as the number of inputs. Further,
the elements of the outputs are exactly the same as the
elements of the inputs. However, the outputs are truncated
so that they are all the same length as the shortest input.

(cotruncate #Z(a b) #Z()) ~ #ZO and #Z()
(cotruncate #Z(I 2 -3 4 -5) #Z(10))

#Z(1) and #Z(10)
(cotruncate (scan-range) #Z(a b))

#Z(0 1) and #Z(a b)

Other On-Line Transducers

Transducers compute series from series and form the
heart of most series expressions. The ubiquitous transduc-
tion operations of mapping and truncating are described
above. This section presents the other predefined trans-

ducers that are on-line.

• p r e v i o u s i t e m s &optional (d e f a u l t n i l) (amount 1)
=~ s h i f t e d - i t e m s

Creates a series tha t is shifted right a m o u n t elements.
The input a m o u n t must be a positive integer. The shifting
is done by inserting a m o u n t copies of d e f a u l t before items
and discarding a m o u n t elements from the end of i t e m s .

The output is always the same length as the input.

(previous #Z(a b c)) ~ #Z(ni l a b)
(previous #Z(a b c) 'z) ~ #Z(z a b)
(previous #Z(a b c) 'z 2) ~ #Z(z z a)
(previous #Z()) ~ #Z()

The word previous is used as the name for this function,
because the function is typically used to access previous
values of a series. An example of previous used in this
way is shown in conjunction with until above. To insert
some amount of stuff in front of a series without losing any
of the elements off the end, use catenate.

• l a t c h i t e n l s & k e y : a f t e r : b e f o r e : p r e : p o s t

::~ m a s k e d - i t e m s

This function acts like a l a t c h electronic circuit compo-
nent. Each input element causes the creation of a cor-
responding output element. After a specified number of
non-null input elements have been encountered, the latch
is triggered and the output mode is permanently changed.

The :after and :before arguments specify the latch
point. The latch point is just after the :after-th non-null
element in items or just before the :before-th non-null ele-
ment. If neither :after nor :before is specified, an :after
of I is assumed. If both are specified, it is an error.

If a :pre is specified,, every element prior to the latch
point is replaced by this value. If a :post is specified, this
value is used to replace every element after the latch point.
If neither is specified, a :post of nil is assumed.

(latch #Z(nil c nil d e)) :=~ #Z(nil c nil nil nil)
(latch #Z(nil c nil d e) :before 2 :pre 'z)

#Z(z z z d e)
(latch #Z(nil c nil d e) :before 2 :post T)
:=~ #Z(nil c nil T T)

• collecting-fn type init function sources-1 ... sources-n

::~ r e s u l t s - 1 . . . results-m

The higher-order function c o l l e c t i n g - f n supports the
generic concept of an on-line transducer with internal
State. The t y p e is a type specifier, which specifies the type
of value(s) returned by function. The v a l u e s construct can
be used to indicate multiple types; however, type cannot
indicate zero types. If type indicates m types ri ... rm,
then collecting-fn returns m series where result-i has the
type (series ri). The arguments init and function are
functions. The remaining arguments (if any) are all series.
Suppose that sources-i has the type (series Sl).

The init must be of type

(function () (values rl ... rm)).

The function must be of type

(function (rl ..- rm Sl ... so)
(v a l u e s r l . . . r m)) .

The length of each output is the same as the length of
the shortest input. If there are no bounded series inputs,
the outputs are unbounded. The elements of the resu l t s - i

are computed as follows:

(values results-lo.., r e su / t s -m0)
= (multiple-value-call function (funcall/nit)

sources- lo . . . sources-no)
(values resul ts- l j . . . r e su l t s -m i)
= (funca l l f unc t ion resul t s . - l (j_ l) . . . resul ts-re(j_1)

s o u r c e s - l j . . . sources-n j)

If init and /or f u n c t i o n have side effects, they can count
on being called in the order indicated by the equations
above. However, due to the lazy evaluation nature of series,
these functions will not be called until their outputs are
actually used (if ever). In addition, no assumptions can be
made about the relative order of evaluation of these calls
with regard to execution in other parts of a given series
expression.

III-l.19

(c o l l e c t i n g - f n T # ' (l a m b d a () 0) # ' + #Z(1 2 3))
:=~ #z(1 3 6)

(collecting-fn T #'(lambda () 5) #'+ #Z(l 2 3))
#Z(6 8 11)

(collecting-fn T #'(lambda () O) #'+ #Z(I 2) #Z(4 5))
::~ #z(5 12)

(collecting-fn '(values integer integer)
#'(lambda () (values 0 1))
#' (lambda (sum prod x)

(values (+ sum x) (* prod x)))
#Z(i 2 3))

#Z(l 3 6) and #Z(l 2 6)

It is important to remember that when computing the
first elements of the output, /.unction is called with the
values returned by init preceding the first elements of the
series inputs. The order of arguments to collecting-fn is
chosen to highlight this fact.

(collecting-fn T #'(lambda () nil) #'cons #Z(a b))
#Z((nil . a) ((nil . a) . b))

(collecting-fn T #' (lambda () nil)
#'(lambda (i x) (cons x i)) #Z(a b))

:::F #Z((a) (b a))

The first of the six examples above shows the most com-
mon way collecting-fn is used. In this usage, /'unction
takes two arguments returning one and the value returned
by init is a left identity of/.unction. In this situation,
results-10=sources-10. Sometimes, this behavior is de-
sired even in situations where/.unction does not have a left
identity. This can be achieved by using an auxiliary flag
as shown below. This example computes a running max-
imum. The auxiliary flag is used to differentiate the first
element of the input from the rest.

(defun collecting-max (numbers)
(declare (opt imizable-series-funct ion))

(values
(collecting-fn ' (values number T)

#'(lambda () (values 0 T))
#' (lambda (max first? x)

(values (if first? x
(max max x))

nil))
numbers)))

(collecting-max #Z(9 4 25 6))
#Z(9 9 25 25)

The use of an auxiliary flag is not particularly efficient.
As a result, it is usually better to use a left identity of
/.unction when possible. The only exception to this is that if
/'unction is expensive to compute, using a flag may promote
efficiency by eliminating one execution of/.unction.

Choosing and Expanding
Choosing and its inverse are part icularly impor tan t

kinds of off-line transducers. (Underlining is used to in-
dicate series inputs and outputs tha t are off-line.)

• choose bools I topt ional items ~ chosen-items

Chooses elements f rom a series based on a boolean series.
The off-line output consists of the elements of items tha t
correspond to non-null elements of bools. T h a t is to say,
the j t h element of items is in the output if and only if the
j t h element of bools is non-null. The order of the elements
in chosen-items is the same as the order of the elements in

items. The output terminates as soon as either input runs
out of elements. If no items input is specified, then the
non-null elements of bools are themselves returned as the
output of choose.
(choose #Z(T nil T nil) #Z(a b c d)) ~ #Z(a c)
(choose #Z(a nil b nil)) ~ #Z(a b)
(choose #Z(nil nil) #Z(a b)) ~ #Z()

(An interesting aspect of choose is that the output series

is off-line rather than having the two input series be off-

line. This is done in recognition of the fact tha t the two
input series are always in synchrony with each other; and
having only one off-line por t allows more flexibility then
having two off-line ports.)

One might want to select elements out of a series based
on their positions in the series rather than on boolean val-
ues. This can be done using mask as shown below.

(choose (mask #Z(0 2)) #Z(a b c d)) ~ #Z(a c)
(choose (#Mnot (mask #Z(0 2))) (scan-range))

#Z(I 3 4 5 ...)

A key feature of choose in particular, and many off-line
transducers in general, is illustrated by the expression bee-
low. In this expression, the choose causes the first scan to
get out of phase with the second scan. As a result, it is
important to think of series expressions as passing around
series objects rather than as abbreviations for loops where
things are always happening in lock step. The latter point
of view might lead to the idea that the output of the ex-
pression below would be ((a I) (c 2) (d 4)).

(let ((tag (scan '(a b c d e)))
(x (scan '(i -2 2 4 -5))))

(collect (#Mlist tag (choose (#Mplusp x) x))))
=~ ((a l) (b 2) (c 4))

choose-if prod items ::~ chosen-items

This function is the same as choose, except that it maps
the non-series function prod over items to obtain a series
of boolean values with which to control the choosing. In
addition, the input is off-line ra ther than the output . (It
turns out tha t this allows for be t ter opt imizat ion in some
situations.) The logical relationship between choose and
choose - i f is shown in the last example below.
(choose-if #'plusp #Z(-I 2 -3 4)) ~ #Z(2 4)
(choose-if #'identity #Z(a nil nil b nil)) ~ #Z(a b)
(choose-if #'prod items)

__---- (let ((v items)) (choose (#Mpred v) v))

expand bools items ~optional (de/.auIt nil)
expanded-items

This function is a quasi-inverse of choose. The output
contains the elements of the off-line input items spread
out into the positions specified by the non-null elements
in bools---i.e., the j t h element of items is in the position
occupied by the j t h non-null element in bools. The other
positions in the output are occupied by default. The out-
put stops as soon as bools runs out of elements or a non-
null element in bools is encountered for which there is no
corresponding element in items.

(expand #Z(nil T nil T T) #Z(a)) ~ #Z(nil a nil)
(expand #Z(nil T) #Z(a b c) 'z) ::~ #Z(z a)
(expand #Z(nil T nil T T) #Z()) ~ #Z(nil)
(expand #Z(nil T nil T T) #Z(a b c))

#Z(nil a nil b c)

III-l.20

• split i t e m s bools-1 . . . bools-n

::~ i tems-1 . . . i t ems -n i t e m s - n + l

This function is similar to choose except that instead
of producing one restricted output , it partit ions the input
series between two or more outputs. This makes it possible
to use both the chosen items and the non-chosen items in
later computations.

If there are n boolean inputs then there are n + l outputs,
all of which are off-line. Each input element is placed in
exactly one output series. Suppose that the j t h element of
bools-1 is non-null. In this case, the j t h element of i t e m s
will be placed in i t ems-1 . On the other hand, if the j t h
element of bools-1 is n i l , the second boolean input (if any)
is consulted to see whether the input element should be
placed in the second output or in a later output . (As in a
cond, each t ime a boolean element is n i l , the next boolean
series is consulted.) If the j t h element of every boolean
series is n i l , then the j t h element of i t e m s is placed in
i t e m s - n + l .

(s p l i t #Z(-1 -2 3 4) #Z(T T T T))
#Z(-1 -2 3 4) and #Z()

(split #Z(-I -2 3 4) #Z(T T nil nil))
#Z(-1 -2) and #Z(3 4)

(split #Z(-1 -2 3 4) #Z(T T nil nil) #Z(nil T nil T))
#Z(-1 -2) and #Z(4) and #Z(3)

• s p l i t - i f i t e m s pred-1 . . . pred-n

i t ems- I . . . i tems-m i tems-n-+1

This function is the same as s p l i t , except tha t it takes
predicates as arguments rather than boolean series. The
predicates are applied to the elements of items to create
boolean values. The relationship between s p l i t - i f and
s p l i t is almost but not exactly as shown below.

(split-if items #'f #'g)
(let ((v items)) (split v (#Mr v) (#Mg v)))

The reason that the equivalence above does not quite

hold is that, as in a cond, the predicates are not applied

to individual elements of i tems unless the resulting value
is needed to determine which output series the element
should be placed in (e.g., if the first predicate returns non-
null when given the j t h element of items, the second pred-
icate will not be called). This promotes efficiency and al-
lows earlier predicates to act as guards for later predicates.

(split-if #Z(I.3 3 2.7 4) #'floatp)
#Z(1.3 2.7") and #Z(3 4)

(s p l i t - i f #Z(1.3 3 2.7 4) # ' f l o a t p # 'evenp)
#Z(1.3 2.7) and #Z(4) and #Z(3)

O t h e r Off-Line Transducers

This section describes a number of off-line transducers.
(Underlining is used to indicate series inputs and outputs
that are off-line.)

• ca tenate i tems-1 . . . i t ems -n =~ i t e m s

Creates a series by concatenating together two or more
off-line input series. The length of the output is the sum
of the lengths of the inputs.

(ca tena te #Z(b c) #Z() #Z(d)) ~ #Z(b c d)
(ca tena te #Z() #Z()) ~ #Z()

• subaeriea i t e m s s tar t &optional be low ::~ se lec ted- i tems

Creates a series containing a subseries of the elements in
the off-line input i t e m s from s tar t up to, but not includ-
ing, below. If be low is greater than the length of i tems,
output nevertheless stops as soon as the input runs out of
elements. If be low is not specified, the output continues
all the way to the end of items. Both of the arguments
s tar t and below must be non-negative integers.
(aubseries #Z(a b c d) I) ~ #Z(b c d)
(subseries #Z(a b c d) 1 3) ~ #Z(b c)
(collect (aubseries (scan list) x y))

~_ (subseq list x y)

• positions bools ~ indices

l~eturns a series of the indices of the non-null elements

in the off-line input booIs.

(pos i t ions #Z(T n i l T 44)) ~ #Z(0 2 3)
(positions #Z(nil nil nil)) ~ #Z()

• mask monotonic-indices ~ bools

This function is a quasi-inverse of positions. The off-

line input monoton ic - ind ices must be a strictly increasing
series of non-negative integers. The output , which is al-
ways unbounded, contains T in the positions specified by
monoton ic - ind ices and n i l everywhere else.
(mask #Z()) ~ #Z(nil nil ...)
(mask #Z(0 2 3)) ~ #Z(T nil T T nil nil ...)
(mask (positions #Z(nil a nil b nil)))
:=~ #Z(nil T nil T nil nil ...)

• mingle items-/ items-2 comparator =~. items

The output series contains the elements of the two off-
line input series. The elements of i tems-1 appear in the
same order that they are read in. Similarly, the elements
of i t ems-2 appear in the same order that they are read
in. However, the elements from the two inputs are stably
intermixed under the control of the comparator .

The compara tor must accept two arguments and return
non-null if and only if its first argument is strictly less than
its second argument (in some appropriate sense). At each
step, the compara tor is used to compare the current ele-
ments in the two series. If the current element from i tems-2
is strictly less than the current element from i t e m s - l , the
current element is removed from i t ems -2 and transferred
to the output . Otherwise, the next output element comes
from i tems-1 . (If, as in the first example below, the ele-
ments of the individual input series are ordered with re-
spect to comparator , then the result will also be ordered
with respect to comparator .)

(mingle #Z(l 3 7 9) #Z(4 5) #'<) :=~ #Z(l 3 4 5 7 9)
(mingle #Z(I 7 3 9) #Z(4 5) #'<) ~ #Z(l 4 5 7 3 9)

• chunk m {n} items ~ items-1 . . . items-m

This function has the effect of breaking the off-line input

series i t e m s into (possibly overlapping) chunks of width m.
Successive chunks are displaced n elements to the right, in
the manner of a moving window. The inputs m and n
must both be positive integers. The input n is optional
and defaults to 1. For uses of chunk to be transformed into
loops, the arguments m and n must be constants.

The function chunk produces m output series. The ith
chunk is composed of the ith elements of the m outputs.

III-l.21

Suppose tha t the length of items is i. The length of each
output is L1 + (l -m) /nJ . The outputs are computed as
follows: iterns-kjffiitems(j,n+k_D, j counting f rom zero and
k counting f rom one.

Note tha t if I < m, there will be no output elements and
if l - m is not a mult iple of n, the last few input elements
will not appear in the output . I f m ~ n, one can guarantee
tha t the last chunk will contain the last element of items
be catenat ing n - 1 copies of an appropr ia te padding value
to the end of items.

The first example below shows chunk used to compute a
moving average. The second example shows chunk used to
convert a proper ty list into an association list.
(mapping (((xi xi+l xi+2) (chunk 3 #Z(l 5 3 4 5 6))))

(/ (+ xi xi+l xi+2) 3)) ~ #Z(3 4 4 5)

(collect (mapping (((prop val)
(chunk 2 2 (scan '(a 2 b 5)))))

(cons prop val))) ~ ((a . 2) (b . 5))

Collectors

Collectors produce non-series outputs based on series
inputs. There are two basic kinds of collectors: ones that
combine the elements of series together into aggregate data
structures (e.g., into a list) and ones that compute some
summary value from these elements (e.g., the sum).

@ c o l l e c t - l a s t i tems Eopt ional (default n i l) ~ item

Returns the last element of items. I f i tems is of zero
length, default is returned.

(c o l l e c t - l a s t #Z(a b c)) ~ c
(c o l l e c t - l a s t #Z() ' z) ~ z

• collect-first items koptional (default nil) =~ item

Returns the first element of items. If items is of zero
length, default is returned. The function collect-first
only reads the first element of items. This means that
none of the other elements will be computed, unless they
are needed for some other purpose.

(c o l l e c t - f i r s t #Z(a b c)) ~ a
(collect-first #tO 'z) ~ z

• collect-nth n items &optional (default nil) :=~ item

Returns the n th element of items. I f n is greater than
or equal to the length of items, default is returned. The
function c o l l e c t - n t h does not read past the n th element
of items.
(c o l l e c t - n t h 1 #Z(a b c)) ~ b
(c o l l e c t - n t h 1 #Z() ' z) ~ z

• collect { type} items ~ sequence

Creates a sequence containing the elements of items.
The type argument specifies the type of sequence to be
created. This type must be a proper subtype of sequence.
I t omit ted, type defaults to l i s t . I f the type specifies
an explicit length (i.e., of a vector), i tems must be short
enough to fit in the space allowed. Any extra space is left
uninitialized.

(c o l l e c t #Z()) ~ ()
(c o l l e c t #Z(a b c)) ~ (a b c)
(collect 'string #Z(#\B #\A #\R)) ~ "BAR"
(collect (#Mr (scan x) (scan y))) .~ (mapcar #'f x y)

Collecting is significantly more efficient if it can be de-
termined at compile t ime whether the type is a subtype of
list or vec tor . For vectors, further efficiency is obtained
if the length of the vector is also specified as par t of the
type and known at compile time.

(c o l l e c t ' (v e c t o r • 3) #Z(1 2 3)) ~ #(1 2 3)

In addit ion to subtypes of sequence, the type can be
specified to be bag. I f this is the case, a list is produced
with no guarantees as to the order of the elements. All
other types specify tha t the order of the elements in the
sequence created must be the same as their order in the
input series. An unordered ou tpu t is acceptable in many
situations and is significantly more efficient than collecting
into an ordered list.

(c o l l e c t 'bag #Z(a b c)) ~ (c a b) <in some order>
(c o l l e c t 'bag #Z()) ~ ()

• co l l ec t - append {type} sequences ::~ sequence

Given a series of sequences, co l l ec t - append returns a
new sequence by concatenat ing these sequences together in
order. The type is a type specifier indicating the type of se-
quence created and must be a proper subtype of sequence.
I f type is omit ted, it defaults to l i s t . I t must be possible
for every element of every sequence in the input series to
be an element of a sequence of type type. The result does
not share any s t ructure with the sequences in the input.

(collect-append #Z()) ~ ()
(collect-append #Z((a b) nil (c d))) ~ (a b c d)
(collect-append 'string #Z("A " "big " "cat."))

"A big c a t . "

• collect-nconc lists ::~ list

This function nconcs the elements of the series lists to-
gether in order and returns the result. This is the same as
co l l ec t - append except tha t the input must be a series of
lists, the output is always a list, the concatenation is done
rapidly by destructively modifying the input elements, and
therefore the ou tpu t shares all of its s t ructure with the in-
put elements.

(co l l ec t -nconc #tO) :=~ ()
(collect-nconc #Z((a b) n i l (c d))) ~ (a b c d)
(collect-nconc (#Mr (scan x) (s c a n y)))

__= (mapcan # ' f x y)

• collect-alist keys values ::~ alist

Creates an association list containing keys and values.
I t terminates as soon as either of the inputs runs out of
elements. Following the order of the inputs, each key/value
pair is entered into the association list being created so that
it overrides all earlier associations.

(collect-alist #Z(a b) #Z()) ~ ()
(c o l l e c t - a l i s t #Z(a b) #Z(1 2)) ~ ((b . 2) (a . 1))
(collect-alist #Z(a b a) #Z(l 2 3))

((a . 3) (b . 2) (a . 1))

• collect-plist indicators values =~. plist

Creates a proper ty list containing keys and values. It
terminates as soon as either of the inputs runs out of ele-
ments. Following the order of the inputs, each key/value
pair is entered into the proper ty list being created so that
it overrides all earlier associations.

III-1.22

(c o l l e c t - p l i s t #Z(a b) #Z()) ~ ()
(c o l l e c t - p l i s t #Z(a b a) #Z(1 2 3)) ~ (a 3 b 2 a 1)

• co l lec t -ha~h keys values &rest option-plist ~ table

Creates a hash table containing keys and values. It ter-
minates as soon as either of the inputs runs out of elements.
Following the order of the inputs, each key/vMue pair is
entered into the hash table being created so that it over-
rides all earlier associations. The option-plist can contain
any options acceptable to make-hash-table.

(collect-hash #Z(a b a) #Z(I 2 3))
<hash table with a~-~3 and b~-+2>

(collect-hash #Z(a b) #Z())
<empty hash table>

• collect-file I~]e-narne items &optional (printer #'print)

ST

Creates a file named file-name and writes the elements
of the series i tems into it using the function p r i n t e r . The
function printer must accept two inputs: an object and an
output stream. (For instance, printer can be p r in t , p r in l ,
print, pprint, write-char, write-string, or write-line.)

If omitted, printer defaults to p r i n t . The value T is always
returned. The file is correctly closed, even if an abort
occurs.

(collect-file "test.lisp" #Z((a) (I 2) T) #'prinl)
T <after writing "(A)(1 2)T ~ into the file>

• c o l l e c t - l e n ~ h items =~. number

Returns the number of elements in items.

(c o l l e c t - l e n g t h #Z()) ~ 0
(c o l l e c t - l e n g t h #Z(a b c)) ~ 3

• collect-sum n u m b e r s &optional (type 'number)
=~ number

Computes the sum of the elements in numbers. These
elements must be numbers, but they need not be integers.
The type is a type specifier that indicates the type of sum
to be created. If there are no elements in the input, a zero
(of the appropriate type) is returned.

(c o l l e c t - s u m #Z() 'complex) =~ #C(O O)
(collect-sum #Z(l 2 3) 'integer) ~ 6
(c o l l e c t - s u m #Z(1.1 1.2 1 .3)) ::::b 3.6

• collect-max numbers ~ number

Computes the maximum of the elements in numbers.
These elements must be non-complex numbers, but they
need not be integers. The value nil is returned if numbers
has length zero.

(collect-max #Z()) :=~ nil
(collect-max #Z(2 1 4 3)) ~ 4
(collect-max #Z(l.2 I.I 1.4 1.3)) ::~ 1.4

• collect-rain numbers =~ number

Computes the minimum of the elements in numbers.
These elements must be non-complex numbers, but they
need not be integers. The value n i l is returned if numbers
has length zero.

(collect-min #Z()) :¢- nil
(collect-rain #Z(2 1 4 3)) =~ 1
(collect-min #Z(1.2 1.1 1.4 1 .3)) ~ 1.1

co l l e c t - an d bools ~ bool

Computes the and of the elements in bools. As with
the function and, n i l is returned if any element of bools is
n i l . Otherwise, the last element of bools is returned. The
value T is returned if bools has length zero. If a value of
n i l is encountered, c o l l e c t - a n d immediately stops reading
elements from bools.

(collect-and #Z()) ::~ T
(collect-and #Z(a b c)) ~ c
(collect-and #Z(a nil c)) ~ nil
(collect-and (#Mpred (scan x) (scan y)))

_~ (every #'pred x y)

collect-or bools ::~ bool

Computes the or of the elements in bools. As with the
function or, n i l is returned if every element of bools is n i l .
Otherwise, the first non-null element of bools is returned.
The value n i l is returned if bools has length zero. If a non-
null value is encountered, c o l l e c t - o r immediately stops
reading elements from bools.

(collect-or #Z()) ~ nil
(collect-or #Z(a b c)) ~ a
(collect-or #Z(a nil c)) ~ a
(collect-or (#Mpred (scan x) (scan y)))

--Z (some #'pred x y)

collect-In type init [unction source#-1 ... sources-n

result-1 ... result-m

The higher-order function c o l l e c t - I n is used to create
collectors. It is identical to c o l l e c t i n g - I n except that
rather than returning series of values, it only returns the
last element of each series. If the series that would be re-
turned by collecting-In given the same arguments have
zero length, then the values returned by init are returned
directly as the output of c o l l e c t - I n .

(collect-In 'integer #'(lambda () O) #'+ #Z()) :¢- 0
(collect-In 'integer #'(lambda () O) #'+ #Z(1 2 3))
~6

(collect-In T #'(lambda () init) $'f s)
(l e t ((v i n i t))

(c o l l e c t - l a s t
(collecting-In T #'(lambda () v) #'f s) v))

As shown in the last example above, the init input to
c o l l e c t - I n does double duty, acting both as the init input
to c o l l e c t i n g - I n and as the default input to c o l l e c t - l a s t .
To specify a default value that is different from the initial
value, use c o l l e c t - l a s t and c o l l e c t i n g - I n directly.

(defun c o l l e c t - m a x (numbers)
(declare (opt imizable-series-function))

(collect-last
(collecting-In ~ (values integer T)

#'(lambda () (values 0 T))
#' (lambda (max first? x)

(values (if first? x
(max max x))

nil))
numbers)

nil))

If the series inputs of c o l l e c t - I n are unbounded, then
c o l l e c t - I n will not terminate. This is a property shared
by all of the predefined collectors, except c o l l e c t - f i r s t ,
c o l l e c t - n t h , c o l l e c t - a n d nnd c o l l e c t - o r .

III-1.23

D e f i n i n g N e w S e r i e s F u n c t i o n s

An impor tan t aspect of the Series macro package is tha t
it is easy for p rogrammers to define new series functions
and macros. The s tandard Lisp defining forms defum and
defmacro can be used to define new series operations.

However, when a series function is defined with defun,
the Series macro package is not capable of optimizing a se-
ries expression containing this new function unless the dec-
larat ion optimizable-series-function is specified in the
defun and the defun appears before the expression in ques-
tion. The declaration optimizable-series-function is not
required when using defmacro.

• optimizable-series-function &optional (n I)

The only place the declaration specifier optimizable-
series-function is allowed to appear is in a declaration
immediately inside a defun. It indicates that the function
being defined is a series function that needs to be ana-
lyzed so that it can be optimized when it appears in series
expressions. (A warning is issued if the function being de-
fined neither takes a series as input nor produces a series
as output.)

For optimization to be possible, there are some limita~
tions on the form of the containing deflm. The lambda list
cannot contain any keywords other than &optional. It is
erroneous if a default value -for an optional argument refers
to the values of other arguments. There cannot be any dec-
larations in the body of the defun other than ignore and
type declarations. In particular, none of the arguments
can be declared to be special.

A final limitation is that the number of values re-
turned by the function being defined must be a con-
stant and this constant must be known to the Series
macro package at the t ime the definition is initially pro-
cessed. The argument n (default 1) to the declaration
optimizable-series-expression specifies the number of
values returned by the function being defined. (This can-
not necessarily be determined by local analysis.)

(defun collect-product (numbers)
(declare (opt imizable-series-funct ion))

(collect-fn 'number #'(lambda () I) #'* numbers))

I t may seem unduly restrictive tha t one can only use
the keyword &optional when using defun to define an op-
t imizable series function. However, this is not much of a
problem, because defmacro can be used in si tuations where
other keywords are desired. For example, ca t ena te could
be defined in terms of a more primit ive series function
ca tena te2 as follows.

(defmacro catenate (items-I items-2 &rest items-i)
(if (null items-i) '(catenate2 ,items-I ,items-2)

c (catenate2 ,items-I
(catenate ,items-2 ,@ items-i))))

Using defmacro directly also makes it possible to define
new higher-order series functions. For example, a series
function analogous to the sequence function substitute-if
could be defined as follows.

(defmacro substitute-if-series (nevitem test items)
'(let ((newitem ,newitem)

(test ,test)
(items ,items))

(mapping ((item items))
(i f (f u n c a l l t e s t item) newitem item))))

(substitute-if-series 3 #'minusp #Z(I -I 2 -3))
Z (t 3 2 3)

A l t e r a t i o n o f V a l u e s

The t ransformat ions introduced by the Series macro
package are inherently antagonist ic to the transformations
introduced by the macro s e r f . As a result, series function
calls are not allowed to be used as destinations of s e t f .
However, the Series macro package supports a related con-
cept tha t is actually more powerful than s e t f .

• alter destinations i t ems ~ nil

This form takes in two series. The destination series is
altered so tha t its elements have the values specified in
items. More important ly , in the manner of s e t f , the data
s tructure tha t underlies the destination series is altered so
tha t if the series were to be regenerated, the new values
would be observed. This al terat ion process stops as soon
as either input runs out of elements. The function a l t e r
always returns n i l .

Consider the example below. Each negative element in a
list is replaced with its square. The function a l t e r is more
powerful than s e r f , because it can be applied to a vari-
able tha t holds a value, ra ther than having to be directly
applied to the function call tha t produces the value. This
makes it convenient to use the old value when deciding
what the new value should be.

(l e t * ((d a t a (l i s t 1 -2 3 4 -5 6))
(X (choose-if #'minusp (scan data))))

(alter x (#M* x x))
data)

(I 4 3 4 25 6)

Like s e r f , alter cannot be applied to jus t any destina-
tion. Rather , a l t e r can only be applied to series tha t are
alterable, scan, s c a n - a l i s t , s can -mu l t i p l e , s c a n - p l i s t ,
and s c a n - l i s t s - o f - l i s t s - f r i n g e produce alterable series.
However, the al terabil i ty of the output of s c a n - l i s t s -
o f - l i s t s - f r i n g e is incomplete. I f s c a n - l i s t s - o f - l i s t s -
f r i n g e is applied to an object tha t is a leaf, altering the
output series does not change the object.

In general, the output of a t ransducer is alterable as
long as the elements of the output come directly from the
elements of an input tha t is alterable. In particular, the
outputs of choose, choose-if, split, split-if, cotruncate,
u n t i l , u n t i l - i f , and s u b s e r i e s are alterable as long as the
corresponding inputs are alterable.

For example, the following alters a segment of a list.
(l e t ((da t a (l i s t ' a 'b ' c 'd ' e)))

(alter (subseries (scan data) I 3) (scan-range))
data) ::~ (a 0 1 d e)

• t o - a l t e r i t ems alter-In other-i tems-1 . . . other-i tems-n

=~ al terable- i tems

Alterable series are created by using this function. The
function t o - a l t e r takes a series and returns an alterable

111-1.24

series containing the same elements. The elements of the
output are taken directly f rom items. The input alter-fn is
a function. The other inputs are all series, each of which
must be at least as long as items. I f there are n inputs
other-items-i, alter-fn must accept n + l inputs.

If an a t t empt is made to alter the j t h element of the out-
put series, the al terat ion is performed by applying alter-In
to the new value as its first argument and the j t h elements
of the other-items-i as the remaining arguments. As an ex-
ample, consider the following definition of a series function
tha t scans the elements of a list. Alterat ion is performed
by changing cons cells in the list being scanned.
(defun scan-list (list)

(declare (optimizable-series-function))
(let ((sublists (scan-sublists list)))

(to-alter (#Mcar sublists)
#' (lambda (new parent)

(serf (car parent) new))
s u b l i s t s)))

(l e t * ((d a t a (l i s t 1 -1 2 - 2))
(x (scan-list data)))

(alter (choose (#Mminusp x) x) (series 0))
data) :=~ (I 0 2 O)

G e n e r a t o r s a n d G a t h e r e r s

Generators and gatherers are yet another way of pro-
cessing ordered multi-sets. They were originally proposed
by C. Perdue and P. Curtis as an alternative to series.
However, it has since been realized tha t the two concepts
are actually synergistically supportive, rather than antag-
onistic. As a result, generators and gatherers have been
included as an integral par t of the Series macro package.

G e n e r a t o r s . A generator is similar to a series in tha t
it represents a potential ly unbounded, ordered multi-set
and is supported by lazy evaluation. However, generators
follow the semantics of s t reams more closely than series
do. In part icular, the fundamental operat ion available for
generators is nex t - i n , which gets the next element f rom a
series by side effect. (No such operat ion is available for
series.) I f a generator is used in two places, the second use
will only see the elements tha t are not read by the first
use.

There is a close relationship between a generator and a
series of the elements it produces. In particular, any series
can be converted into a generator. As a result, all of the
scanner functions used for creating series can be used to
create generators as well and there is no need to have a
separate set of functions for creating generators.

• n e x t - i n generator &body action-list ::~ i tem

Reads the next element out of a generator. As with
streams, the element is removed by side effect and will
therefore not be seen anywhere else tha t elements are read
from the generator in question.

The action-list specifies what should be done when gen-
erator runs out of elements. If the action-list is empty, it
is an error for the generator to run out of elements. I t is
erroneous (with unpredictable results) to apply n e x t - i n to
a generator a second t ime after the generator runs out of
elements.

• generator series ~ generator

Given a series, this function creates a generator con-
taining the same elements. As an example of the use of
generators consider the following.

(let ((x (generator (scan '(I 2 3 4)))))
(loop (prinl (next-in x (return T)))

(prinl (next-in x (return nil)))
(princ ", ")))

T <after pr in t ing " 1 2 , 3 4 , " >

G a t h e r e r s . A gather is the inverse of a genera tor - -
i.e., it is analogous to an output s t ream rather than an
input stream. An unbounded number of elements can be
put into a gatherer one at a time. In a manner similar to
a collector, the gatherer combines the elements based on
some formula. The resulting value can be obtained at any
time.

There is a close relationship between a gatherer and a
collector function tha t combines elements in the same way.
In part icular, any one-input one-output collector can be
converted into a gatherer. As a result, all of the collectors
used for comput ing summary results f rom series can be
used to create gatherers and there is no need to have a
separate set of functions for creating gatherers.

nex t -ou t gatherer i tem :.~ n i l

Writes a value into a gatherer. This is done be side effect
in such a way tha t the value is seen f rom the perspective
of every use of the gatherer in question. The value n i l is
always returned.

r e s u l t - o f gatherer ~ result

Retrieves the net result f rom a gatherer. This can be
done at any time. However, it is erroneous (with unpre-
dictable results) to apply r e s u l t - o f twice to the same gath-
erer, or to apply nex t -ou t to a gather once r e s u l t - o f has
been applied.

• gatherer c o l l e c t o r ~ gatherer

The collector input must be a one input collector. The
collector input can be of the form # ' (lambda . . .). (This is
necessary when utilizing a predefined collector that takes
more than one argument .) The function ga the re r returns
a gatherer tha t performs the same internal computat ion
as the collector. As an example of the use of gatherers,
consider the following.

(let ((x (gatherer #'collect))
(y (gatherer

#' (lambda (x)
(collect-sum (choose-if #'oddp x))))))

(dotimes (i 4)
(next-out x i)
(next-out y i)
(if (evenp i) (next-out x (* i I0))))

(values (result-of x) (result-of y)))
(0 0 1 2 20 3) and 4

• gathering var-collector-pair-list &body body
=~ result-1 . . . result-n

The vat-collector-pair-list must be a list of pairs, where
the first element of each pair is a symbol. The second

III-l.25

element of each pair must be a function that , when prefixed
with # ' is acceptable as an argument to ga therer . The
body can be any Lisp expression. Typically it will contain
calls on next-out.

Gathering operates as follows. Each variable in the vat-
collector-pair-list is bound to a gatherer produced by ap-
plying gatherer to the corresponding collector in the vat-
collector-pair-list. The body is then run until it terminates.
The gathering form returns n values where n is the length
of the vat-collector-pair-list. Each value is the result-of
the corresponding gatherer. For instance,

(gathering ((x collect)
(y collect-sum))

(dotimes (i 3)
(next-out y i)
(if (evenp i) (next-out x (* i I0)))))
(0 20) and 3

is equivalent to

(let ((x (gatherer #'collect))
(y (gatherer # 'collect-sum)))

(dotimes (i 3)
(next-out y i)
(if (evenp i) (next-out x (* i 10))))

(values (result-of x) (result-of y)))
(0 20) and 3

Defining New Off-Line Series Functions
The following primitive form can be used to define any

preorder series operation.

• producing output-list input-list &body body
=~ output-1 . . . output-n

Computes and returns a group of series and non-series
outputs given a group of series and non-series inputs. The
key feature of produc ing is that some or all of the series
inputs and outputs can he processed in an off-line way. To
support this, the processing in the body is performed from
the perspective of generators and gatherers. Each series
input is converted to a generator before being used in the
body. Each series ou tput is associated with a gatherer in
the body.

The output-list has the same syntax as the binding list
of a l e t . The names of these variables must be distinct
from each other and from the names of the variables in
the i n p u t - l i s t . If there are n variables in the output-list,
then producing computes n outputs. There must be at
least one output variable. The variables act as the names
for the outputs and can be used in either of two ways.
First, if an output variable has a value associated with it
in the output-list, then the variable is treated as holding a
non-series value. The variable is initialized to the indicated
value and can be used in any way desired in the body. The
eventual output value is whatever value is in the variable
when the execution of the body terminates. Second, if
an output variable does not have a value associated with
it in the output-list, the variable is given as its value a
gatherer that collects elements. The only valid way to use
the variable in the body is in calls on next -out . The output
returned is a series containing these elements. If the body
never terminates, this series is unbounded.

The input-list also has the same syntax as the binding
list of a l e t . The names of these variables must be dim
tinct from each other and the names of the variables in
the output-list. The values can be series or non-series. If
the value is not explicitly specified, it defaults to n i l . The
variables' act logically both as inputs and state variables
and can be used in one of two ways. First, if an input vari-
able is associated with a non-series value, then it is given
this value before the evaluation of the body begins and can
be used in any way desired in the body. Second, if an in-
put variable is associated with a series, then the variable is
given a generator corresponding to this series as its initial
value. The only valid way to use the variable in the body
is in calls on nex t - in .

Declarations can be included at the start of the body.
However, the only declarations allowed are ignore declara-
tions, type declarations, and p r o p a g a t e - a l t e r a b i l i t y dec-
larations (see below). In particular, it is an error for any
of the input or output variables to be special.

In conception, the body can contain arbi t rary Lisp ex-
pressions. After the appropriate generators and gatherers
have been set up, the body is executed until it terminates.
At that t ime the final values of the non-series output vari-
ables are returned as results of the producing form. The
series outputs are returned one element at a time as they
are produced. (Following the lazy evaluation semantics of
series, the evaluation of the body is delayed so that individ-
ual series elements are not computed until they are actually
used.) If the body never terminates, the series outputs (if
any) are unbounded in length and the non-series outputs
(if any) are never produced.

Although easy to understand, this view of what can hap-
pen in the body presents severe difficulties when optimizing
(and even when evaluating) series expressions that contain
calls on producing. As a result, several limitations are im-
posed on the form of the body to simplify the processing
required.

The first l imitation is that , exclusive of any declarations,
the body must have the form (loop (tagbody ...)). The
following example shows how producing could be used to
implement a scanner creating an unbounded series of inte-
gers.

(defun scan-integers O
(declare (opt imizable-ser lea-function))

(producing (hUmS) ((num-I))
(declare (integer hum)

(type (series integer) nums))
(loop

(tagbody
(s e t q num (1+ hum))
(n e x t - o u t hUmS num)))))

(s c a n - i n t e g e r s) ~ #Z(0 1 2 3 4 . . .)

The second l imitation is tha t the execution of the body
must be terminated using the form terminate-producing.
Any other method of terminating the body (e.g., with
re tu rn) is an error. The following example shows how
producing could be used to implement a simplified ver-
sion of col lect-sum. The function t e rmina t e -p roduc ing is
used to stop the computat ion when numbers runs out of
elements.

III-1.26

(defun simple-collect-sum (numbers)
(declare (opt imizable-ser ies-funct ion))

(producing ((sum 0)) ((numbers numbers) hUm)
(loop

(tagbody
(setcl hUm (next-in numbers

(terminate-producing)))
(setq sum (+ sum hum))))))

(simple-collect-sum #Z(I 2 3)) ::~ 6

The third limitation is that calls on next-out associ-
ated with output variables must appear at top level in the
tagbody in the body. They cannot be nested in other forms.
In addition, an output variable can be the destination of
at most one call on next-out and if it is the destination of
a next-out, it cannot be used in any other way.

If the call on next-out for a given output appears in the
final part of the tagbody in the body, after everything other
than other calls on next-out, then the output is an on-line
output--a new value is written on every cycle of the body.
Otherwise the output is off-line.

The following example shows how producing could be
used to implement a simple version of split-if that only
accepts one predicate input. Items are read in one at a
time and tested. Depending on the test, they are written
to one of two outputs. Note the use of labels and branches
to keep the calls on n e x t - o u t at top level. Both outputs
are off-line. The scan- in tegers example above shows an
on-line output .

(deftm split-if2 (items pred)
(declare (optimizable-series-function 2)

(off-line-port 0 I))
(producing (items-I items-2) ((items items) item)

(declare (propagate-alterability items items-l)
(propagate-alterability items items-2))

(loop
(tagbody

(setq item (next-in items
(terminate-producing)))

(if (not (funcall pred item)) (go D))
(next-out items-I item)
(go F)

D (next-out items-2 item)
Z))))

(s p l i t - i f 2 #Z(1 -2 3 -4) # 'p lusp)
#Z(l 3) and #Z(-2 -4)

The fourth l imitation is tha t the calls on nex t - i n asso-
ciated with an input variable v must appear at top level in
t h e t a g h o d y in the body, nested in assignments of the form
(se tq element-vaxiable (n e x t - i n v . . .)) . They cannot be
nested in other forms. In addition, an input variable can
be the source for at most one call on n e x t - i n and if it is
the source for a nex t - in , it cannot be used in any other
way.

If the call on n e x t - i n for a given input has as its sole
termination action (terminate-producing) and appears in
the initial part of the tagbody in the body, before anything
other than similar calls on nex t - in , then the input is an
on-line i n p u t - - a new value is read on every cycle of the
body. Otherwise the input is off-line.

The following example shows how producing could be
used to implement a simple version of ca tena te tha t only
accepts two arguments. To start with, elements are read

from the first input series. When this runs out, a flag is set
and reading begins from the second input. Both inputs are
off-line. The s imple-col lec t -sum and s p l i t - i f 2 examples
above have on-line inputs.

(defun catenate2 (items-I items-2)
(declare (opt imizable-series-function)

(off-line-port items-I items-2))
(producing (items) ((items-I items-l)

(items-2 items-2)
(in-2 nil) item)

(loop
(tagbody

(if in-2 (go D))
(setq item (next-in items-I

(setq in-2 T)
(go D)))

(go F)
D (setq item (next-in items-2

(terminate-producing)))
F (next-out items item)))))

(catenate2 #Z(1 2) #Z(3 4)) =~ #Z(1 2 3 4)

terminate-producing =~

This form (which takes no arguments) is used to ter-
minate the execution of (the expansion of) the macro
producing. As with the form go, terminate-producing does
not return any values, rather control immediately leaves
the current context. The form terminate-producing is only
allowed to appear in the body of producing.

propagate-alterability input output

Transducers that propagate alterability from inputs to
outputs (such as choose and s p l i t) can be defined us-
ing the declaration p r o p a g a t e - a l t e r a b i l i t y in conjunction
with producing. (This declaration is not valid in any other
context.) The declaration p r o p a g a t e - a l t e r a b i l i t y spec-
ifies tha t a t tempts to alter an element of the indicated
output will be supported by altering the corresponding el-
ement of the indicated input. (The corresponding element
of the input is the one most recently read at the moment
when the output element is written. It must be the case
that the output element is the corresponding input ele-
ment.) For an example, see the definition of s p l i t - i f 2
above.

W a r n i n g s a b o u t off - l lne i n p u t s a n d o u t p u t s . It
is possible to obtain off-line inputs and outputs without
using producing. The easiest way to do this is to define a
series function by combining together one or more off-line
series functions. For instance, in the example below, the
items input is off-line, because it is connected directly to
the off-line input of choose- i f .

(defun choose-positive (items)
(declare (opt imizable-series-funct ion)

(off-line-port items))
(choose-if #'plusp items))

(choose-positive #Z(l -2 3 -4)) ~ #Z(I 3)

Although it may seem surprising, it is also possible to get
an off-line input or output even when M1 of the functions
used when defining a new series function are on-line. For
instance, in the example below, the input weights is off-
line.

III-1.27

(defun weighted-sum (numbers weights)
(declare (opt imizable-series-funct ion)

(off-line-port weights))
(values (collect-sum numbers)

(collect-sum (#M* numbers weights))))

(weighted-sum #Z(I 2 3) #Z(3 2)) ~ 6 and 7

To see why weights is off-line, consider what happens
when the input numbers is longer than the input weights.
In this situation, the computation of the first collect-sum
must continue even after the computation of the second
collect-sum halts. Thus, the reading of weights has to stop
before the reading of numbers stops. As a result, weights
cannot be handled in an on-line way.

As can be seen by the examples above, it is not simple to
look at a function and determine whether or not a given
input is on-line. This is unfortunate , since on-line ports
are significantly more useful than off-line ones. The dec-
larat ion o f f - l i n e - p o r t is suppor ted to allow programmers
to verify tha t por ts they think are on-line are in fact on-
line. I t is also worthy of note tha t off-line ports vir tual ly
never arise when defining scanners or reducers.

$ o f f - l i n e - p o r t port-spec-1 . . . port-spec-n

The declaration specifier o f f - l i n e - p o r t is used to indi-
cate the inputs and outputs of a function tha t are off-
line. The only place this declaration is allowed is in
a deftm tha t also contains the declaration op t imizab le -
s e r i e s - f u n c t i o n . Each port-spec-i must either be a sym-
bol tha t is one of the inputs of the function or an integer j
indicating the j t h output (counting from zero). For exam-
ple, (o f f - l i n e - p o r t x 1) indicates tha t the input x and the
second ou tpu t are off-line. By default, every por t tha t is
not mentioned in an o f f - l i n e - p o r t declaration is assumed
to be on-line. A warning is issued whenever a por t ' s ac-
tual on-line/off-line s ta tus does not agree with its declared
status. Several examples of using the declaration specifier
o f f - l i n e - p o r t are shown on the last few pages.

In the function weighted-sum above, it might well have
been the p rogrammers intention tha t the inputs numbers
and weights would always have the same length. Or fail-
ing that , it might have been his intention tha t any excess
values of numbers be ignored. I f tha t were the case, there
would be no need for the function to be off-line. An on-line
version could be wri t ten by using the function co t runca te
as shown below.

(defun on-line-weighted-sum (numbers weights)
(declare (optimizable-series-function))

(multiple-value-b£nd (numbers weights)
(cotruncate numbers weights)

(values (collect-sum numbers)
(collect-sum (#M* numbers weights)))))

(on-line-weighted-sum #Z(I 2 3) #Z(3 2)) =~ 3 and 7

Features That Facilitate Debugging
The Series macro package supports a number of features

tha t facili tate debugging. One example of this is the fact
tha t the macro package tries to use the variable names that
are bound by a l e t in the code produced. Since the macro
package is forced to use variable renaming to implement
variable scoping, it cannot guarantee tha t these variable
names will be used. However, there is a high probabili ty
tha t they will. I f a break occurs in the middle of a series
expression, these variables can be inspected to determine
what is going on. I f a l e t variable holds a series, then the
variable will contain the current element of the series. For
example, the series expression below is t ransformed into
the loop shown. (For a discussion of how this transforma-
tion is performed see [6].)

(l e t * ((x (scan ' (v e c t o r i n t ege r) v)))
(collect-sum x))

(let ((#:index-9 O) (#:limit-8 0) (#:sum-2 O) (x 0))
(declare (type fixnum #:index-9 #:limit-8)

(type number #:sum-2)
(type integer x))

(tagbody (setq #:index-9 -I)
(setq #:limit-8 (length v))
(setq #:sum-2 O)

#:L-I (incf #:index-9)
(if (not (< #:index-9 #:limit-8))

(go series : : end))
(setq x (aref v #:index-9))
(setq #:sum-2 (+ #:sum-2 x))
(go #:L-l)

series : : end)
#:sum-2)

last-series-loop

This variable contains the loop most recently produced
by the Series macro package. After evaluating (or macro-
expanding) a series expression, this variable can be in-
spected to see the code produced.

last-series-error

This variable contains the most recently printed warning
or error message produced by the Series macro package.
The information in this variable can be useful for tracking
down errors.

III-1.28

