
Concise  Reference  Manual  for the  Series Macro Package 

R e s t r i c t i o n s  and  Def in i t ions  of Terms 

Series expressions are transformed into loops by pipelin- 
ing t h e m - - t h e  computat ion is converted from a form where 
entire series are computed one after the other to a form 
where the series are incrementally computed in parallel. 
In the resulting loop, each individual element is computed 
just  once, used, and then discarded before the next ele- 
ment is computed. For this pipelining to be possible, four 
restrictions have to be satisfied. Before looking at these 
restrictions, it is useful to consider a related issue. 

All  se r ies  f u n c t i o n s  a r e  p r e o r d e r  f u n c t i o n s .  The 
composition of two series functions cannot be pipelined un- 
less the destination function consumes series elements in 
the same order tha t  the source function produces them. 
Taken together, the series functions guarantee that  this 
will always be true, because they all follow the same 
fixed processing order. In particular, they are all preorder 
funct ions- - they  process the elements of their series inputs 
and outputs  in ascending order start ing with the first el- 
ement. Further,  while it is easy for users to define new 
series functions, it is impossible to define ones that  are not 
preorder. 

It turns out  tha t  most series operations can easily be 
implemented in a preorder fashion, (the only notable ex- 
ceptions being reversal and sorting). As a result, little is 
lost by outlawing non-preorder functions. If  some non- 
preorder operation has to be applied to a series, the series 
can be converted into a list or vector and the operation ap- 
plied to this new data  structure. (This is ineffcient, but  no 
less efficient than what would be required if non-preorder 
series functions were supported.)  

Se r i e s  e x p r e s s i o n s .  Before discussing the restrictions 
on series expressions, it is useful to define precisely what 
is meant by the term series expression. 

Loosely speaking, a series function is a function that  
consumes or returns a series. However, the Series macro 
package is not capable of looking at an arbi t rary function 
and determining whether or not it consumes or returns a 
series. To deal with this, series functions are precisely de- 
fined as being a function that  consumes or returns a series 
and is either: (1) described in this manual,  (2) defined 
using the declaration optimizable-series-:function, (3) a 
literal lambda expression appearing as the first argument of 
a funca l l ,  or (4) a macro that  expands into an expression 
involving (1), (2), or (3). Everything else is treated as not 
being a series function no mat te r  what kind of data  objects 
it consumes or returns. 

A series expression is an expression composed of series 
functions. However, beyond this, the definition of the term 
'series expression' is semantic rather  than syntactic in na- 
ture. Given a program, imagine it converted from Lisp 

code into a data  flow graph. In a data  flow graph, func- 
tions are represented as boxes, and both control flow and 
data  flow are represented as arrows between the boxes. 
Data  flow constructs such as l e t  and se tq  are converted 
into patterns of da ta  flow arcs. Control constructs such 
as i f  and loop are converted into patterns of control flow 
arcs. For example, the expression in the program below is 
converted into a graph with a chain of seven nodes corre- 
sponding to the seven function calls. 

(defun expression-examp (data) 
(abs (collect-sum 

(scan (cdr (collect-last 
(choose (scan data) ) ) ) ) ) ) ) 

A series expression is a subgraph of the data  flow graph 
for a program that  contains a group of interacting series 
functions. More specifically, given a call f on a series func- 
tion, the series expression E containing it is defined as fol- 
lows. E contains f .  Every function using a series created 
by a function in E is in E.  Every function computing a 
series used by a function in E is in E.  Finally, suppose 
that  two functions g and h are in E and that  there is a 
data  flow path consisting of series and /o r  non-series data 
flow arcs from g to h. Every function touched by this path 
(be it a series function or not) is in E.  

In the example program above, there are two series ex- 
pressions: one corresponding to ( c o l l e c t - s u m  ( s c a n  . . .  ) )  

and the other to (collect-last (choose (scan ... ))). Op- 
timization is applied to each series expression. The non- 
series parts of the Lisp code (e.g., the calls on abs and cdr) 
are left as-is and are evaluated/compiled in the normal 
way. While series functions and non-series functions can 
freely coexist in a piece of code, they are rigidly partitioned 
from each other when optimization is applied. 

Static analyzability. For optimization to be possible, 
Series expressions have to be statically analyzable. As with 
most other optimization processes, a series expression can- 
not be transformed into a loop at compile time, unless it 
can be determined at compile time exactly what computa- 
tion is being performed. This places a number of relatively 
minor limits on what can be written. To start with, the 
definition of a series function must appear before its first 
use. In addition, when using a series function that takes 
keyword arguments, the keywords themselves have to be 
constants rather than being the values of expressions. 

Whenever there is a failure of static analyzability, a 
warning message is issued and the containing series ex- 
pression is left unoptimized. The various limits imposed 
by the static analyzability restriction are described in [5] 
in conjunction with the associated warning messages. 

Locality of series. For optimization to be possible, ev- 
ery series created within a series expression must be used 

III-l.12 



solely inside the expression. (If a series is t ransmit ted out- 
side of the expression that  creates it, it has to be phys- 
ically represented as a whole. This is incompatible with 
the transformations required to pipeline the creating ex- 
pression.) To avoid this problem, series must not be re- 
turned as the results of series expressions, assigned to free 
variables, assigned to special variables, or stored in data  
structures. Further, optimization is blocked if a series is 
passed as an argument to an ordinary Lisp function. Se- 
ries can only be passed to the series functions defined in 
this manual and to new series functions defined using the 
declaration opt imizable-ser ies-funct ion. 

Straight-line computation. For optimization to be 
possible, series expressions must correspond to straight- 
line computations. That is to say, the data flow graph 
corresponding to the series expression cannot contain any 
conditional branches or loops. (Complex control flow is 
incompatible with pipelining.) Optimization is possible in 
the presence of standard straight-line forms such as progn, 
funcall, setq, lambda, let, let*, and multiple-value-bind 
as long as none of the variables bound are special. There is 
also no problem with macros as long as they expand into 
series functions and straight-line forms. However, opti- 
mization is blocked by forms that  specify complex control 
flow (i.e., conditionals i f ,  cond, etc., looping constructs 
loop, do, etc., or branching constructs tagbody, go, catch, 
etc.). 

In the first example below, optimization is blocked, be- 
cause the i f  form is inside of the series expression. How- 
ever, in the second example, optimization is possible, be- 
cause although the i f  feeds data  to the series expression, 
it is not inside the corresponding subgraph. The two ex- 
pressions produce the same value, however, the second one 
is much more efficient, because it can be transformed into 
a loop. 

(collect (if flag (scan x) (scan y))) ; Warning 
(collect (scan (if flag x y))) 

An obvious direction of future research with regard to 
the Series macro package is applying optimization to series 
expressions containing control flow constructs. There is 
little doubt that simple conditionals such as if and cond 
could be handled. However, it is not clear whether more 
complex constructs could be handled in a reasonable way. 

Constraint cycles. Even if a series expression satisfies 
all of the restrictions above, it may still not be possible to 
transform the expression into a loop. The sole remaining 
problem is that if a series is used in two places, the two 
uses may place incompatible constraints on the times at 
which series elements should be computed 

The series expression below shows a situation where this 
problem arises. The expression creates a series x of the 
elements in a list. It then creates a normalized series by 
dividing each element of x by the sum of the elements in 
x. Finally, the expression returns the maximum of the 
normalized elements. 

(let ((x (scan '(I 2 5 2)))) ; Warning 
(collect-max (#M/ x (series (collect-sum x))))) 

1/2 

The two uses of x in the expression place contradictory 
constraints on the way pipelined evaluation must proceed. 
The function collect-sum requires that all of the elements 
of x be produced before the sum can be returned and 
series requires that its input be available before it can 
start producing its output. However, #M/ requires that 
the first element of x be available at the same time as the 
first element of the output of series. For pipelining to 
work, this implies that the first element of the output of 
series (and therefore the output of collect-sum) must be 
available before the second element of x is computed. Un- 
fortunately, this is impossible. 

The essence of the inconsistency above is the cycle of 
constraints used in the argument. This in turn stems from 
a cycle in the data flow graph underlying the expression 
(see Figure 4). In Figure 4, function calls are represented 
by boxes and data flow is represented by arrows. Simple 
arrows indicate the flow of series values and cross hatched 
arrows indicate the flow of non-series values. 

Figure 4: A constraint cycle. 

Given a data  flow graph corresponding to a series ex- 
pression, a constraint cycle is a closed loop of data  flow 
arcs that  can be traversed in such a way that  each arc is 
traversed exactly once and no non-series arc is traversed 
backwards. (Series data  flow arcs can be traversed in ei- 
ther direction.) A constraint cycle is said to pass through 
an input or output  port  when exactly one of the arcs in 
the cycle touches the port.  In Figure 4 the data  flow arcs 
touching scan, sum, series, and #MI form a constraint cycle. 
Note that if the output of scan were not a series, this loop 
would not be a constraint cycle, because there would be 
no valid way to traverse it. Also note that while the con- 
straint cycle passes through all the other ports it touches, 
it does not pass through the output of scan. 

Whenever a constraint cycle passes through a non-series 
output, an argument analogous to the one above can be 
constructed and therefore pipelining is impossible. When 
this situation arises, a warning message is issued identify- 
ing the problematical port and the cycle passing through 
it. For instance, the warning triggered by the example 
above states that the constraint cycle associated with scan, 
collect-sum, series, and #MI passes through the non-series 
output of collect-sum. 

Given this kind of detailed information, it is easy to 
alleviate the problem. To start with, every cycle must 
contain at least one function that has two series data flows 
leaving it. At worst, the cycle can be broken by duplicating 
this function (and any functions computing series used by 
it). For instance, the example above can be rewritten as 
shown below. 
(let ((x (scan '(I 2 5 2))) 

(sum (collect-sum (scan ' (1  2 5 2))))) 
(collect-max (#MIx (series sum)))) ~ I12 
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It would be easy enough to automatically apply code 
copying to break problematical  constraint cycles. However, 
this is not done for two reasons. First, there is considerable 
virtue in maintaining the property that  each function in a 
series expression turns into one piece of computat ion in the 
loop produced. Users can be confident tha t  series expres- 
sions that  look simple and efficient actually are simple and 
efficient. Second, with a little creativity, constraint prob- 
lems can often be resolved in ways that  are much more 
efficient than copying code. In the example above, the 
conflict can be eliminated efficiently by interchanging the 
operation of computing the maximum with the operation 
of normalizing an element. 

(let ((x (scan ' ( I  2 5 2)))) 
( /  (col lec t -max x) (collect-sum x) ) )  ~ 1/2 

The  restriction tha t  optimizable series expressions can- 
not  contain constraint cycles tha t  pass through non-series 
outputs  places limits on the qualitative character of opti- 
mizable series expressions. In particular, optimizable se- 
ries expressions all have the general form of  creating some 
number of series using scanners, computing various inter- 
mediate series using transducers, and then computing one 
or more summary results using collectors. The  output  of a 
collector cannot be used in the intermediate computat ion 
unless it is the output  of a separate subexpression. 

It is worthy of  note tha t  the last expression above fixes 
the constraint conflict by moving the non-series output  out 
of the cycle, rather  than by breaking the cycle. This il- 
lustrates the fact tha t  constraint cycles tha t  do not pass 
through non-series outputs  do not necessarily cause prob- 
lems. Such constraint cycles cause problems only if they 
pass through off-line ports. 

O n - l l n e  a n d  off- l lne .  A series input port  or series 
ou tput  port  of a series function is on-line if and only if it 
is processed in lock step with all the other on-line ports as 
follows: The  initial element of each on-line input is read, 
then the initial element of each on-line output  is written, 
then the second element of  each on-line input is read, then 
the second element of each on-line output  is written, and so 
on. Ports tha t  are not on-line are off-line. If all the series 
ports of a function are on-line, the function is said to be 
on-line; otherwise, it is off-line. (The above extends the 
s tandard definition of the term 'on-line' (see [1]) so that  it 
applies to individual ports as well as whole functions.) 

The prototypical  example of an on-line series function is 
map-fn. Each time it reads an input element, it applies the 
mapped function to it and writes an output  element. In 
contrast,  the function pos i t i ons  is not on-line. Since null 
input elements do not lead to ou tput  elements, it is not 
possible for pos i t i ons  to write an output  element every 
time it reads an input element. 

For every series function, the documentat ion below spec- 
ifies which ports are on-line and which are off-line. In this 
regard, it is interesting to note tha t  every function that  
has only one series port  (i.e., scanners with only one out- 
put  and collectors with only one input) are trivially on- 
line. The only series functions tha t  have off-line ports are 
transducers. 
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If all of  the ports a cycle passes through are on-line, the 
lock step processing of these ports guarantees that  there 
cannot be any conflicts between the constraints associated 
with the cycle. However, passing through an off-line port 
leads to the same kinds of problems as passing through a 
non-series output .  

In summary, the fourth and final restriction is that: for 
optimization to be possible, a series expression cannot con- 
tain a constraint cycle tha t  passes through a non-series 
output  or an off-line port .  Whenever this restriction is vi- 
olated, a warning message is issued. Violations can be fixed 
either by breaking the cycle or restructuring the computa- 
tion so that  the offending por t  is removed from the cycle. 

Series  

The  Series macro package adds support  for a new data 
type called series to Common Lisp. Series are similar to 
lists or vectors in tha t  they are ordered multisets and simi- 
lar operations can be applied to them. However, series are 
also closely related to streams, both  because they can corn 
tain an unbounded number of elements and because they 
are suppor ted  using lazy evaluation semantics. In partic- 
ular, the j t h  element of a series is not computed until it is 
actually used (if ever). As a concrete example of the lazy 
evaluation semantics of series, consider the following. 

( s e t q  x 0) ~ 0 
( c o l l e c t - f i r s t  

(map-fn T # ' ( l a abda  (a) ( i nc f  x) (* 3 a))  
(scan-range :from 1 :upto 10) ) )  ~ 3 

x = ~ l  

The call on scan-range creates a series of ten elements. 
The  map-fn creates another  series of ten elements computed 
from this series. However, c o l l e c t - f i r s t  only uses the first 
element of its input.  Since the result of aap- fn  is not used 
anywhere else in this example, only the first element of this 
series is computed. As a result, the function being mapped 
is only applied once and x is only incremented once. In the 
absence of side effects, there is typically no need to think 
about  the lazy evaluation nature of the support  for series. 
However, when side effects are involved, this has to be kept 
in mind. 

The above not  withstanding, it  is typically better to 
think of series as being like lists rather  than streams in 
most situations. The  reason for this is tha t  there is a crit- 
ical difference between series and streams. Consider the 
code below. If  x contains a stream, the function g will only 
see the elements of x tha t  are not used by f .  Tha t  is to 
say, if f reads the first ten elements of x, these elements are 
gone and the first element seen by g will be the eleventh. 
( l e t  ( (x  . . . ) )  

( f  x) 
(g x) 
. . .> 

In contrast,  suppose that  x contains a list. The  mere act 
of looking at the elements of a list does not alter the list. 
As a result, both f and g see all the elements of x. This 
si tuation is exactly the same when x is a series. If a series 
is used in several places, all of  the elements of the series 
are available in each place. (Like a list, it is also possible 



for a series to be side effected in such a way tha t  changes 
propagate  f rom one use to another.  However, this is not 
the typical way they are used.) 

For the convenience of the reader, this documentat ion 
uses the following two orthographic conventions with re- 
gard to series. First,  the notat ion Sj is used to designate 
the j t h  element of the series s. As in a list or vector, the 
first element of a series has the subscript 0. Second, plural 
nouns (e.g., i tems, numbers)  are used to represent series 
inputs and outputs  of functions, while singular nouns (e.g., 
i t em,  number)  are used to indicate non-series inputs and 
outputs.  

• series k o p t i o n a l  (type T) 

This type specifier can be used to declare that something 
is a series value. The type argument specifies the type of 
the items in the series. 

( l e t  ( (x  ( s can  ' ( 1  2 3 ) ) ) )  
(declare (type (series integer) x)) 

(collect-sum x)) ~ 6 

• series i t em-1  . . .  i t e m - n  ~ i t e m s  

An unbounded series is created tha t  endlessly repeats 
the values of  the i t em- i .  As shown in the last example 
below, the function s e r i e s  is often used to create what  is 
in effect a constant  value to be passed into a series input  
of a series function. (Like lists, the same name is used for 
the name of the type specifier and the name of the pr imary  
constructor function.) 

(series 'b 'c) ::~ #Z(b c b c b c ...) 
( s e r i e s  1) ~ #Z(1 1 1 1 1 1 . . . )  
(#Mlist (series 'a) (scan '(I 2 3))) 

#Z((a 1) (a 2) (a 3)) 

* #Z (item-/ ... item-n) ::~ items 

The # macro character syntax #z is used to specify a 
literal series. It must be followed by a list of items. A se- 
ries is created that contains these items. As in #(...), 
the item-i are implicitly quoted. Unlike #(...), which 
turns directly into a data object when read in, instances 
of #z (...) turn into function calls and therefore should not 
be quoted. To activate the syntax #z for input, you must 
call ( s e r i e s :  : i n s t a l l  :macro T). However, whether or not 
this is done, the #Z syntax  is used for printing series. 

#Z(a b c)  :=~ #Z(a b c)  
#Z(...) =-- (scan '(...)) 

Se r i e s  o f  Se r i e s .  I t  is possible to create a series whose 
elements are themselves series. For instance, given a vector 
of lists of integers, the expression below creates a series of 
series of integers. I t  then creates a list of the sums of these 
integers. 

( l e t *  ( (v  ' # ( ( 1  2 3) (3 4 5 ) ) )  
(series-of-lists (scan 'vector v)) 
(series-of-series (#Mscan series-of-lists))) 

(collect (mapping ((integers series-of-series)) 
(collect-sum integers)))) ; Warning 

(6 12) 

I t  should be possible to opt imize the expression above 
creating a pair  of  nested loops. However, the Series 
macro package is not capable of opt imizing series of series. 
Rather ,  the expression above triggers a warning message 
(because there is da ta  flow from the assumed non-series 
value  i n t e g e r s  to the series input  of  c o l l e c t - s t m ) .  Only 
the outermost  level of the series of series is optimized. 

An obvious direction of future research with regard to 
the Series macro package is applying optimizat ion to series 
of series. However, it is not obvious whether the pragmatic  
benefits would be worth the effort involved. For instance, 
full opt imizat ion can be obtained in the example above, 
by merely writing it in the form shown below. The key 
difference is tha t  the inner loop is completely contained in 
the body of the mapping. 

(let ((v '#((I 2 3) (3 4 5))) 
(series-of-lists (scan ~vector v))) 

(collect (mapping ((list series-of-lists)) 
(collect-sum (scan list))))) ~ (6 12) 

Scanners 

Scanners create series outputs based on non-series in- 

puts. There are two basic kinds of scanners: ones that 
create a series based on some formula (e.g., scanning a 
range of integers) and ones tha t  create a series containing 
the elements of an aggregate da ta  structure (e.g., scanning 
the elements of a list). 

scan { type}  sequence  =~. e l emen t s  

Creates a series containing the successive elements of se- 
quence. If  sequence  is a list, then it must  be a proper list 
ending in n i l .  The  t y p e  argument  specifies the type of 
sequence to be scanned. This  type must  be a (not neces- 
sarily proper)  subtype of sequence. I f  omitted,  the type 
defaults to l i s t .  Scanning is significantly more efficient if 
it can be determined at compile t ime whether the type is 
a subtype of l i s t  or v e c t o r .  

(scan ' ( ) )  ~ #Z() 
( scan  ' ( a  b c ) )  ~ #Z(a b c) 
(scan 'string "BAR") :¢. #Z(#\B #\A #\R) 
(scan ' (simple-vector integer 3) '#(I 2 3)) 
::~ #Z(l 2 3) 

scan-multiple type sequence-1 ... sequence-n 

=~ elements-1 ... elements-n 

Several sequences can be scanned at once by using sev- 
eral calls on scan. Each call on scan will test to see when 
its sequence runs out of elements and execution will stop 
as soon as any of the sequences are exhausted. Although 
very robust,  this approach to scanning can be a significant 
source of inefficiency. In situations where it is known in 
advance which sequence is the shortest,  scan-mul t ip le  can 
be used to obtain the same results more rapidly. 

The function scan-multiple is similar to scan except 
that two or more sequences can be scanned at once. If 
there are n sequence inputs, scan-multiple returns n se- 
ries containing the elements of these sequences. It must be 
the case that none of the sequence inputs is shorter than 
the first sequence. All of the output series are the same 
length as the first input sequence. Extra elements in the 
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other input  sequences are ignored. Using scan-mul t ip le  
is more efficient than  using multiple instances of  scan, be- 
cause scan-mul t ip le  only has to check for the first input 
running out of elements. 

I f  type is of the form (values  Sl . . .  Sn), then there 
must  be n sequence inputs and sequenee-i must  have type 
si. Otherwise there can be any number  of sequence inputs 
each of which must  have type type. 
(multiple-value-bind (data weights) 

(scan-multiple 'list '(I 6 3 2 8) '(2 3 3 3 2)) 
(collect (map-fn T #'* data weights))) 

(2 18 9 6 16) 

• scan-range &key (:start O) (:by I) (:type 'number) 
:upto :below :downto :above :length 

::~ numbers 

Creates a series of  numbers  s tar t ing with : s t a r t  (de -  

fault  integer 0) and counting up by :by (default integer 1). 
The  : type argument  (which defaults to number) specifies 
the type of numbers  produced and must  be a subtype of 
number. The  arguments  : s t a r t  and :by must  be of  type 
type. 

The  last five arguments  specify the kind of end test  to 
be used. I f  :upto is specified, counting continues only so 
long as the numbers  generated are less than or equal to 
:upto. I f  :below is specified, counting continues only so 
long as the numbers  generated are less than  :below. If  
:do~nato is specified, counting continues only so long as the 
numbers  generated are greater  than  or equal to :do,into. I f  
:above is specified, counting continues only so long as the 
numbers  generated are greater  than  :above. I f  : l eng th  is 
specified, the series created has length : length.  (It  must  
be the case tha t  : l eng th  is a non-negative integer.) I f  none 
of the terminat ion arguments  are specified, the output  has 
unbounded length. I f  more than  one terminat ion argument  
is specified, it is an error. 
(scan-range) :=~ #Z(0 1 2 3 4 ...) 
(scan-range :upto 4) ::~ #Z(0 1 2 3 4) 
(scan-range :from 1 :below 4) ~ #Z(I 2 3) 
(scan-range :by -3 :downto -4) ~ #Z(0 -3) 
(scan-range :from 1 :above -4 :by -I) 

#Z(l 0 -I -2 -3) 
(scan-range :from 1.5 :by .I :length 3 :type 'float) 

#Z(I.5 1 .6  1 . 7 )  

• scan-sublists list =~. sublists 

Creates a series containing the successive sublists of  list, 
which must  be a proper  list ending in n i l .  
(scan-sublists '(a b c)) ~ #Z((a b c) (b c) (c)) 

• scan-alist alist &optional (test #'eql) ~ keys values 

Scans the entries in an association list, returning two 
series containing keys and their associated values. The first 
element of keys is the key in the first entry in alist, the first 
element of  values is the value in the first entry, and so on. 
The  alist must  be a proper  list ending in n i l  and each entry 
in alist must be a cons cell or nil. Like assoc, scan-alist 
skips entries that are nil and entries that have the same 
key as an earlier entry. The test argument (default eql) is 
used to determine when two keys are the same. 

(scan-alist nil) ~ #Z() and #Z() 
( s c a n - a l i s t  ' ( ( a  . 1) ( )  ( a  . 3) (b . 2 ) ) )  

=-~ #Z(a b) and #Z(1 2) 

• scan-plist plist ~ indicators values 

Scans the entries in a property list, returning two series 

containing indicators and their associated values. The first 

element of indicators is the first indicator in plist, the first 
element of values is the associated value, and so on. The 
plist argument must be a proper list of even length ending 
in nil. In analogy with the way get works, if an indicator 
appears more than once in plist, it (and its value) will only 
be enumerated the first t ime it appears.  

( s c a n - p l i s t  ' ( a  1 a 3 b 2)) ~ #Z(a b) and #Z(1 2) 
( s c a n - p l i s t  n i l )  => #Z() and #Z() 

• scan-hash table =-~ keys values 

Scans the entries in a hash table, returning two series 
containing keys and their associated values. The first ele- 
ment  of  keys is the key of the first entry, the first element 
of values is the value in the first entry, and so on. (There 
are no guarantees as to the order in which entries will be 
scanned.) 

(let ((h (make-hash-table))) 
(serf (gethash 'color h) 'brown) 
(serf (gethash 'name h) 'fred) 
(scan-hash h)) =~ #Z(name color) and #Z(fred brown) 

• scan-lists-of-lists lists-o[-lists &optional lea[-test 

nodes 

The argument lists-of-lists is viewed as an n-ary tree 
where each internal node is a non-empty  list and the ele- 
ments  of  the list are the children of the node. A node is 
considered to be a leaf if it is an a tom or if it satisfies the 
predicate leaf-test (if present).  (The predicate can count 
on only being applied to conses.) 

The  function s c a n - l i s t s - o f - l i s t s  creates a series con- 
taining all of the nodes in lists-of-lists. The  nodes are 
enumerated in preorder (i.e., first the root  is output ,  then 
the nodes in the first child of the root are enumerated in 
full, then the nodes in the second child of  the root are 
enumerated in full, etc.). 

The  function scan-lists-of-lists does not assume that  
the node lists end in n i l ;  however, it ignores any non-list 
cdrs. (This behavior  increases the util i ty of s c a n - l i s t s -  
o f - l i s t s  when it is used to scan Lisp code.) However, 
s c a n - l i s t s - o f - l i s t s  assumes tha t  lists-of-lists is a tree as 
opposed to a more general graph. I f  some node in the 
input has more than  one parent ,  then this node (and its 
descendants) are enumerated more than  once. I f  the input 
is cyclic, the ou tpu t  series is unbounded in length. 

(scan-lists-of-lists 'c) ~ #Z(c) 
(scan-lists-of-lists ' ((c) nil)) 

#Z(((c) nil) (c) c nil) 
(scan-lists-of-lists ' ((c) nil) 

#'(lambda (e) (atom (car e)))) 
# Z ( ( ( c )  n i l )  ( c )  n i l )  

• scan-lists-of-lists-fringe lists-of-lists 

&optional leaf-test ~ leaves 

This is the same as s c a n - l i s t s - o f - l i s t s  except that  it 
only scans the leaves of the tree, skipping all internal nodes. 
Note tha t  n i l  is t reated as a leaf, ra ther  than  as an internal 
node with no children. 
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(scan-lists-of-lists-fringe 'c) ~ #Z(c) 
(scan-lists-of-lists-fringe ' ((c) nil)) ~ #Z(c nil) 
(scan-lists-of-lists-fringe ' ((c) nil) 

#' (lambda (e) 
(atom (car e)))) 

::~ #Z((c) nil) 

• scan-symbols &optional (package *package*) :=~ symbols 

Creates a series, in no particular order, and possibly 
containing duplicates, of the symbols accessible in package 
(which defaults to the current package). 

(scan-symbols) ~ #Z(foo bar ... zot) <in some order> 

• scan-file file-name &optional (reader # 'read) ~ items 

Opens the file named by the string file-name and applies 
the function reader to it repeatedly until the end of the 
file is reached. The function reader must accept the stan- 
dard input-function arguments input-stream, eof-error-p, 
and eof-value as its arguments. (For instance, reader 
can be read, read-preserving-white-space, read-line, or 

read-char.) If omitted reader defaults to read. The func- 
tion scan-file returns a series of the values returned by 
reader, up to but not including the value returned when 
the end of file is reached. The file is correctly closed, even 
if an abort occurs. As the basis for the examples below, 
suppose that the file "test.lisp" contains "(t) I". 

(scan-file "test.lisp") ~ #Z((a) I) 
(scan-file "test.lisp" #'read-char) 

#Z(#\( #\A #\) #\space # \ 1 )  

• scan-fn type init step &optional test 
=~, results-1 . . .  r e su l t s -m 

The higher-order function scan-fn  supports the generic 
concept of scanning. The t y p e  is a type specifier. The  
v a l u e s  construct can be used to indicate multiple types; 
however, type cannot indicate zero types. If t ype  indicates 
m types rl  . . .  r,n, then scan-fn  returns m series where 
resul ts- i  has the type ( s e r i e s  r i ) .  The arguments ini t ,  
s tep,  and test are functions. 

The in i t  must be of type 
(function () (values rl ... rm)). 

The step must be of type 
(function (rl ... rm) (values rl ... rm)). 

The test (if present) must be of type 
(function (rl ... rm) T). 

The elements of the results-i are computed as follows: 

( v a l u e s  results-lo . . .  results-too) = ( f u n c a l l  init)  
(values results-I i . . .  results-m j )  
= ( funca l l  step results-l(,_1) . . .  resu/ts-m(i_l )) 

The outputs  all have the same length. If there is no test, 
the outputs  have unbounded length. If there is a test, the 
outputs  consist of the elements up to but  not including, 
the first elements for which the following is not n i l .  It is 
guaranteed that  step will not be applied to the elements 
that  pass the test ( funcal l tes t  results-lj . . .results-re,).  

If ini t ,  s tep,  or test have side effects, they can count on 
being called in the order indicated by the equations above, 
with test called just  before s t ep  on each cycle. However, 
due to the lazy evaluation nature of series, these functions 
will not be called until their outputs  are actually used (if 
ever). In addition, no assumptions can be made about  the 

relative order of evaluation of these calls with regard to 
execution in other parts of a given series expression. 

( s c a n - f n  ' l i s t  # ' ( l a m b d a  0 ' ( a  b c d ) )  
#'cddr #'null) ~ #Z((a b c d) (c d)) 

(scan-fn T #'(lambda () '(a b c d)) #'cddr) 
#Z((a b c d) (c d) nil nil ...) 

( l e t  ( ( l i s t  '(a b c))) 
(scan-fn ' (values T list) 

#'(lambda () (values (car list) list)) 
%' (lambda (element list) 

(declare (ignore element)) 
(values (cadr list) (cdr list))) 

#' (lambda (element list) 
(declare (ignore element)) 

(null list) ) ) ) 
#Z(a b c) and #Z((a b c) (a b) (c)) 

If there is no test, then each time an element is output, 
the function step is applied to it. Therefore, it is impor- 
tant that other factors in an expression cause termination 
before scan-fn computes an element which step cannot be 
applied to. In this regard, it is interesting that the fol- 
lowing equivalence is almost, but not quite true. The dif- 
ference is that including the test argument in the call on 
scan-fn guarantees that step will not be applied to the el- 
ement which fails test, while the expression using until-if 
guarantees that it will. 

(scan-fn T init step test) 
(until-if teat (scan-fn T init step)) 

scan-fn-inclusive t y p e  in i t  s t ep  tes t  
::~ results-1 . . .  r e su l t s -m 

The higher-order function scan- fn - inc lus ive  is the same 
as scan-fn  except that  the first set of elements for which 
test is true is included in the output .  As with scan-fn, it 
is guaranteed that  s tep  will not be applied to the elements 
for which test is true. 
(scan-fn-inclusive 'list #'(lambda () '(a b c d)) 

#'cddr #'null) 
#Z((a b c d) (c d) ()) 

M a p p i n g  

By far the most common kind of series operation is map- 
ping. In cognizance of this fact, four different ways are 
provided for specifying mapping. 

• map-fn t ype  func t ion  sources-1 . . .  sources-n 
results-1 . . .  r e su l t s -m 

The higher-order function map-fn supports the generic 
concept of mapping. The  t y p e  is a type specifier, which 
specifies the type of value(s) returned by funct ion.  The 
values construct can be used to indicate multiple types; 
however, t y p e  cannot indicate zero values. If t ype  indicates 
m types r l  . . .  rm, then m a p - f n  returns m series where 
resul ts- i  has the type ( s e r i e s  r i ) .  The argument funct ion 
is a function. The remaining arguments (if any) are all 
series. Suppose that  sources-i  has the type ( s e r i e s  s i ) .  

The func t ion  must be of type 
( f u n c t i o n  (Sl  . . .  Sn) ( v a l u e s  r l  . . .  r m ) ) .  

The length of each output  is the same as the length of 
the shortest input. If there are no bounded series inputs, 
the outputs  are unbounded. The elements of the results-i  
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are the results of  applying function to the corresponding 
elements of  the sources-i. 
(values results-lj . . .  results-m j)  
ffi (funcall [unc~ion sources-lj ... sources-n i) 

I f  function has side effects, it can count on being called 
first on the sourcesJo, then on the sources-il, and so on. 
However, due to the lazy evaluation nature  of  series, func- 
tion will not be called on any group of input  elements until 
the result is actually used (if ever). In addition, no assump- 
tions can be made  about  the relative order of  evaluation 
of these calls with regard to execution in other par ts  of  a 
given series expression. 
(map-fn ' i n t e g e r  # '+  #Z(1 2 3) #Z(4 5)) ~ #Z(5 7) 
(map-fn T #'gensym) =-~ #Z(#:GO03 #:GO04 #:GO05 . . . )  
(map-fn ' (values integer rational) #'floor 

#Z(1/4 12/3)) ~ #Z(0 4) and #Z(1/4 0) 

The  function map-fn can be used to specify any kind 
of mapp ing  operation.  However, in practice, it can be 
cumbersome to use. Three shor thand forms are provided, 
which are more convenient in part icular  common situa- 
tions. 

• #M function =# series-function 

Often one wants to m a p  a given named function over 
one or more series producing a series of the resulting val- 
ues. This  can be done succinctly by using the # macro  
character syntax  #M. This  readmacro  converts a non-series 
function into a series function by using mapping.  All but  
the first value returned by function are ignored. The  
form #l,lfunction can only be used in the function posi- 
tion of a list. To act ivate  the syntax  #M, you must  call 
(series: :install :macro T). 

(#Mr x y) =-- (map-fn T #'f x y) 
(collect (#Mcar (scan '((a) (b) (c))))) :=~ (a b c) 

• mapping vax-value-pair-list kbody body :=~ i t ems  

The syntax  #Mfunction is only helpful when the com- 
puta t ion  to be  mapped  is a named function. The  form 
mapping is helpful in si tuations where a more complex com- 
puta t ion  needs to be mapped.  The  syntax  of mapping is 
analogous to l e t .  The  vat-value-pair-list specifies zero or 
more variables tha t  are bound to successive values of se- 
ries. The  value par ts  of  the pairs must  all return series. 
The  body is t reated as the body  of a lambda expression 
tha t  is mapped  over the series values. A series of the first 
values returned by this laabda expression is returned as the 
result of  mapping. Any kind of declaration can be used at 
the beginning of the body; however it should be noted tha t  
the variables in the vat-value pairs contain series elements, 
not series. 

(mapping ((x r) (y s)) ...) 
--: (map-fn T #'(lambda (x y) ...) r s) 

(mapping ((x (scan '(2 -2 3)))) 
(declare (fixnum x)) 

(expt (abs x) 3)) ~ #Z(8 8 27) 

The form mapping supports  a special syntax  tha t  facili- 
tates the use of  series functions tha t  return multiple values. 
Instead of being a symbol,  the variable par t  of  a var-value 
pair can be a list of  symbols.  This  list is t reated the same 
way as the first a rgument  to mul t ip le -va lue -b ind .  

(mapping ( ( ( i  v) ( s c a n - p l i s t  ' ( a  1 b 2 ) ) ) )  
( l i s t  i v))  ~ #Z((a 1) (b 2)) 

• iterate var-vaIue-pair-]ist &body body ~ nil 

The form i t e r a t e  is identical to mapping except that  the 
value n i l  is always returned. 

( i t e r a t e  . . . )  
_---- (progn ( c o l l e c t - l a s t  ( m a p p i n g . . . ) )  n i l )  

( l e t  ( ( i t em (scan ' ( ( 1 )  (-2) ( 3 ) ) ) ) )  
( i t e r a t e  ((x (#Meat i t em) ) )  

( i f  (plusp x) ( p r i n l  x ) ) ) )  
n i l  <after printing "13"> 

To a first approximat ion,  i t e r a t e  and mapping differ in 
the same way as mapc and mapcar. In part icular,  like inapt, 
i t e r a t e  is intended to be used in si tuations where the body 
is being evaluated for side effect ra ther  than  for its result. 
However, due to the lazy evaluation semantics of series, 
the difference between i t e r a t e  and mapping is more than 
jus t  a question of efficiency. 

I f  mapcar is used in a s i tuat ion where the output  is not 
used, t ime is wasted unnecessarily creating the output  list. 
However, if mapping is used in a s i tuat ion where the out- 
put  is not used, no computa t ion  is performed, because se- 
ries elements are not computed  until they are used. Thus 
i t e r a t e  can be thought  of  as a declaration tha t  the in- 
dicated computa t ion  is to be performed even though the 
output  is not used. 

(let ((item (scan '((I) (-2) (3))))) 
(mapping ((x (#Mcar item))) 

(if (plusp x) (prinl x))) 
nil) ~ nil <without printing any output> 

An impor tan t  use of  the forms mapping and i t e r a t e  is 
to create series expressions corresponding to nested loops. 
For instance, the following expression takes a vector of  lists 
and produces a list of  the sums of the elements in these 
lists. When opt imizat ion is applied, the series expression 
in the mapping body becomes a nested loop. 

( l e t  ( (v  ' # ( (1  2 3) (3 4 5) ) )  
( c o l l e c t  (mapping ((1 (scan ' v e c t o r  v ) ) )  

(collect-sum (scan I)))) ~ (6 12) 

T r u n c a t i o n  

The  functions below suppor t  the concept of  producing a 
bounded series as opposed to an unbounded one. 

• u n t i l  bools i tems-1 . . ,  items-n 
::~ initial-items-I . . .  initial-items-n 

Truncates  one or more series of  elements based on a se- 
ries of  boolean values. The  outputs  consists of  the elements 
of  the inputs  up to, but  not including, the first element 
which corresponds to a non-null element of  bools. Tha t  
is to say, initial-items-ij=items-ij and if the first non-null 
value in bools is the ruth, each ou tpu t  has length m. (The 
effect of  including the ruth element in the output  can he 
obtained by using p rev ious  as shown in the last example 
below.) In addition, the outputs  te rminate  as soon as any 
input runs out  of elements even if a non-null element of 
bools has not been encountered. 

III-l.18 



(until #Z(nil nil T nil T) #Z(I 2 -3 4 -5)) 
#Z(I 2) 

(until #Z(nil nil T nil T) #Z(I 2) #Z(a b c)) 
#g(l 2) and #Z(a b) 

(until (series nil) (scan-range)) ~ #Z(0 I 2 ...) 
(until #Z(nil nil T nil T) (scan-range)) ~ #Z(0 I) 
(let ((x #Z(1 2 -3 4 -5))) 

(until (previous (#Mminusp x)) x)) ~ #Z(1 2 -3) 

• until-if pred items-1 ... items-n 

=~ i n i t i a l - i t e m s - 1  . . .  i n i t i a i - i t e m s - n  

This function is the same as u n t i l  except tha t  it takes a 
functional argument instead of a series of boolean values. 
The  function p r e d  is mapped over i t e r n s - I  to obtain a series 
of boolean values tha t  control the truncation. The basic 
relationship between u n t i l - i f  and u n t i l  is shown in the 
last example below. 

(until-if #'minusp #Z(l 2 -3 4 -5)) ::~ #Z(l 2) 
(until-if #'minusp #Z(1 2) #Z(a b c)) 

#Z(1 2) and #Z(a b) 
(until-if #'minusp (scan-range)) ~ #Z(0 1 2 ...) 
(until-if #'pred items) 

(let ((v items)) (until (#Mpred v) v)) 

• cotruncate items-1 ... items-n 
::~ ]nitial-items-1 ... initial-items-n 

The inputs and outputs are all series and the number 
of outputs is the same as the number of inputs. Further, 
the elements of the outputs  are exactly the same as the 
elements of the inputs. However, the outputs  are truncated 
so that  they are all the same length as the shortest input. 

(cotruncate #Z(a b) #Z()) ~ #ZO and #Z() 
(cotruncate #Z(I 2 -3 4 -5) #Z(10)) 

#Z(1) and #Z(10) 
(cotruncate (scan-range) #Z(a b)) 

#Z(0 1) and #Z(a b) 

Other On-Line Transducers 

Transducers compute series from series and form the 
heart of most series expressions. The ubiquitous transduc- 
tion operations of mapping and truncating are described 
above. This section presents the other predefined trans- 

ducers that are on-line. 

• p r e v i o u s  i t e m s  &optional ( d e f a u l t  n i l )  (amount  1) 
=~ s h i f t e d - i t e m s  

Creates a series tha t  is shifted right a m o u n t  elements. 
The input a m o u n t  must be a positive integer. The shifting 
is done by inserting a m o u n t  copies of d e f a u l t  before items 
and discarding a m o u n t  elements from the end of i t e m s .  

The output  is always the same length as the input. 

(previous #Z(a b c))  ~ #Z(ni l  a b) 
(previous #Z(a b c) 'z) ~ #Z(z a b) 
(previous #Z(a b c) 'z 2) ~ #Z(z z a) 
(previous #Z()) ~ #Z() 

The word previous is used as the name for this function, 
because the function is typically used to access previous 
values of a series. An example of previous used in this 
way is shown in conjunction with until above. To insert 
some amount of stuff in front of a series without losing any 
of the elements off the end, use catenate. 

• l a t c h  i t e n l s & k e y  : a f t e r  : b e f o r e  : p r e  : p o s t  

::~ m a s k e d - i t e m s  

This function acts like a l a t c h  electronic circuit compo- 
nent. Each input element causes the creation of a cor- 
responding output  element. After a specified number of 
non-null input elements have been encountered, the latch 
is triggered and the output  mode is permanently changed. 

The :after and :before arguments specify the latch 
point. The latch point is just after the :after-th non-null 
element in items or just before the :before-th non-null ele- 
ment. If neither :after nor :before is specified, an :after 
of I is assumed. If both are specified, it is an error. 

If a :pre is specified,, every element prior to the latch 
point is replaced by this value. If a :post is specified, this 
value is used to replace every element after the latch point. 
If neither is specified, a :post of nil is assumed. 

(latch #Z(nil c nil d e)) :=~ #Z(nil c nil nil nil) 
(latch #Z(nil c nil d e) :before 2 :pre 'z) 

#Z(z z z d e) 
(latch #Z(nil c nil d e) :before 2 :post T) 
:=~ #Z(nil c nil T T) 

• collecting-fn type init function sources-1 ... sources-n 

::~ r e s u l t s - 1  . . .  results-m 

The  higher-order function c o l l e c t i n g - f n  supports the 
generic concept of an on-line transducer with internal 
State. The  t y p e  is a type specifier, which specifies the type 
of value(s) returned by function. The v a l u e s  construct can 
be used to indicate multiple types; however, type cannot 
indicate zero types. If type indicates m types ri ... rm, 
then collecting-fn returns m series where result-i has the 
type (series ri). The arguments init and function are 
functions. The remaining arguments (if any) are all series. 
Suppose that sources-i has the type (series Sl). 

The init must be of type 

(function () (values rl ... rm)). 

The function must be of type 

(function (rl ..- rm Sl ... so) 
( v a l u e s  r l  . . .  r m ) ) .  

The length of each output  is the same as the length of 
the shortest input. If there are no bounded series inputs, 
the outputs  are unbounded. The elements of the resu l t s - i  

are computed as follows: 

(values results-lo.., r e su / t s -m0)  
= (multiple-value-call function (funcall/nit) 

sources- lo  . . .  sources-no)  
(values resul ts-  l j .  . . r e su l t s -m  i )  
= ( funca l l  f unc t ion  resul t s . - l ( j_ l )  . . .  resul ts-re( j_1)  

s o u r c e s - l j  . . .  sources-n j )  

If init and /or  f u n c t i o n  have side effects, they can count 
on being called in the order indicated by the equations 
above. However, due to the lazy evaluation nature of series, 
these functions will not be called until their outputs are 
actually used (if ever). In addition, no assumptions can be 
made about  the relative order of evaluation of these calls 
with regard to execution in other parts of a given series 
expression. 
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( c o l l e c t i n g - f n  T # ' ( l a m b d a  () 0) # ' +  #Z(1 2 3))  
:=~ #z(1 3 6) 

(collecting-fn T #'(lambda () 5) #'+ #Z(l 2 3)) 
#Z(6 8 11) 

(collecting-fn T #'(lambda () O) #'+ #Z(I 2) #Z(4 5)) 
::~ #z(5 12) 

(collecting-fn '(values integer integer) 
#'(lambda () (values 0 1)) 
#' (lambda (sum prod x) 

(values (+ sum x) (* prod x))) 
#Z(i 2 3)) 

#Z(l 3 6) and #Z(l 2 6) 

It is important to remember that when computing the 
first elements of the output, /.unction is called with the 
values returned by init preceding the first elements of the 
series inputs. The order of arguments to collecting-fn is 
chosen to highlight this fact. 

(collecting-fn T #'(lambda () nil) #'cons #Z(a b)) 
#Z((nil . a) ((nil . a) . b)) 

(collecting-fn T #' (lambda () nil) 
#'(lambda (i x) (cons x i)) #Z(a b)) 

:::F #Z((a) (b a)) 

The first of the six examples above shows the most com- 
mon way collecting-fn is used. In this usage, /'unction 
takes two arguments returning one and the value returned 
by init is a left identity of/.unction. In this situation, 
results-10=sources-10. Sometimes, this behavior is de- 
sired even in situations where/.unction does not have a left 
identity. This can be achieved by using an auxiliary flag 
as shown below. This example computes a running max- 
imum. The auxiliary flag is used to differentiate the first 
element of the input from the rest. 

(defun collecting-max (numbers) 
(declare (opt imizable-series-funct ion) ) 

(values 
(collecting-fn ' (values number T) 

#'(lambda () (values 0 T)) 
#' (lambda (max first? x) 

(values (if first? x 
(max max x)) 

nil)) 
numbers ) ) ) 

(collecting-max #Z(9 4 25 6)) 
#Z(9 9 25 25) 

The use of an auxiliary flag is not particularly efficient. 
As a result, it is usually better to use a left identity of 
/.unction when possible. The only exception to this is that if 
/'unction is expensive to compute, using a flag may promote 
efficiency by eliminating one execution of/.unction. 

Choosing and Expanding 
Choosing and its inverse are part icularly impor tan t  

kinds of off-line transducers.  (Underlining is used to in- 
dicate series inputs and outputs  tha t  are off-line.) 

• choose bools I topt ional  items ~ chosen-items 

Chooses elements f rom a series based on a boolean series. 
The off-line output  consists of the elements of  items tha t  
correspond to non-null elements of  bools. T h a t  is to say, 
the j t h  element of items is in the output  if and only if the 
j t h  element of bools is non-null. The  order of the elements 
in chosen-items is the same as the order of  the elements in 

items. The output  terminates  as soon as either input runs 
out of elements. If  no items input  is specified, then the 
non-null elements of  bools are themselves returned as the 
output  of choose. 
(choose #Z(T nil T nil) #Z(a b c d)) ~ #Z(a c) 
(choose #Z(a nil b nil)) ~ #Z(a b) 
(choose #Z(nil nil) #Z(a b)) ~ #Z() 

(An interesting aspect of choose is that the output series 

is off-line rather than having the two input series be off- 

line. This  is done in recognition of the fact tha t  the two 
input series are always in synchrony with each other; and 
having only one off-line por t  allows more flexibility then 
having two off-line ports.)  

One might  want to select elements out of  a series based 
on their positions in the series rather  than  on boolean val- 
ues. This can be done using mask as shown below. 

(choose (mask #Z(0 2)) #Z(a b c d)) ~ #Z(a c) 
(choose (#Mnot (mask #Z(0 2))) (scan-range)) 

#Z(I 3 4 5 ...) 

A key feature of choose in particular, and many off-line 
transducers in general, is illustrated by the expression bee- 
low. In this expression, the choose causes the first scan to 
get out of phase with the second scan. As a result, it is 
important to think of series expressions as passing around 
series objects rather than as abbreviations for loops where 
things are always happening in lock step. The latter point 
of view might lead to the idea that the output of the ex- 
pression below would be ((a I) (c 2) (d 4)). 

(let ((tag (scan '(a b c d e))) 
(x (scan '(i -2 2 4 -5)))) 

(collect (#Mlist tag (choose (#Mplusp x) x)))) 
=~ ((a l )  (b 2) (c 4))  

choose-if prod items ::~ chosen-items 

This function is the same as choose, except that  it maps 
the non-series function prod over items to obtain a series 
of boolean values with which to control the choosing. In 
addition, the input is off-line ra ther  than  the output .  (It 
turns out tha t  this allows for be t ter  opt imizat ion in some 
situations.) The  logical relationship between choose and 
choose - i f  is shown in the last example  below. 
(choose-if #'plusp #Z(-I 2 -3 4)) ~ #Z(2 4) 
(choose-if #'identity #Z(a nil nil b nil)) ~ #Z(a b) 
(choose-if #'prod items) 

__---- (let ((v items)) (choose (#Mpred v) v)) 

expand bools items ~optional (de/.auIt nil) 
expanded-items 

This function is a quasi-inverse of choose. The output 
contains the elements of  the off-line input  items spread 
out into the positions specified by the non-null elements 
in bools---i.e., the j t h  element of items is in the position 
occupied by the j t h  non-null element in bools. The other 
positions in the output  are occupied by default. The out- 
put  stops as soon as bools runs out of elements or a non- 
null element in bools is encountered for which there is no 
corresponding element in items. 

(expand #Z(nil T nil T T) #Z(a)) ~ #Z(nil a nil) 
(expand #Z(nil T) #Z(a b c) 'z) ::~ #Z(z a) 
(expand #Z(nil T nil T T) #Z()) ~ #Z(nil) 
(expand #Z(nil T nil T T) #Z(a b c)) 

#Z(nil a nil b c) 
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• split i t e m s  bools-1 . . .  bools-n 

::~ i tems-1  . . .  i t ems -n  i t e m s - n +  l 

This function is similar to choose except that  instead 
of producing one restricted output ,  it partit ions the input 
series between two or more outputs.  This makes it possible 
to use both the chosen items and the non-chosen items in 
later computations.  

If there are n boolean inputs then there are n + l  outputs,  
all of which are off-line. Each input element is placed in 
exactly one output  series. Suppose that  the j t h  element of 
bools-1 is non-null. In this case, the j t h  element of i t e m s  
will be placed in i t ems-1 .  On the other hand, if the j t h  
element of bools-1 is n i l ,  the second boolean input (if any) 
is consulted to see whether the input element should be 
placed in the second output  or in a later output .  (As in a 
cond, each t ime a boolean element is n i l ,  the next boolean 
series is consulted.) If the j t h  element of every boolean 
series is n i l ,  then the j t h  element of i t e m s  is placed in 
i t e m s - n +  l .  

( s p l i t  #Z(-1 -2 3 4) #Z(T T T T)) 
#Z(-1 -2 3 4) and #Z() 

(split #Z(-I -2 3 4) #Z(T T nil nil)) 
#Z(-1 -2) and #Z(3 4) 

(split #Z(-1 -2 3 4) #Z(T T nil nil) #Z(nil T nil T)) 
#Z(-1 -2) and #Z(4) and #Z(3) 

• s p l i t - i f  i t e m s  pred-1 . . .  pred-n 

i t ems-  I . . .  i tems-m i tems-n-+1 

This function is the same as s p l i t ,  except tha t  it takes 
predicates as arguments rather than boolean series. The 
predicates are applied to the elements of items to create 
boolean values. The relationship between s p l i t - i f  and 
s p l i t  is almost but  not exactly as shown below. 

(split-if items #'f #'g) 
(let ((v items)) (split v (#Mr v) (#Mg v))) 

The reason that the equivalence above does not quite 

hold is that, as in a cond, the predicates are not applied 

to individual elements of i tems unless the resulting value 
is needed to determine which output  series the element 
should be placed in (e.g., if the first predicate returns non- 
null when given the j t h  element of items, the second pred- 
icate will not be called). This promotes efficiency and al- 
lows earlier predicates to act as guards for later predicates. 

(split-if #Z(I.3 3 2.7 4) #'floatp) 
#Z(1.3 2.7") and #Z(3 4) 

( s p l i t - i f  #Z(1.3 3 2.7 4) # ' f l o a t p  # 'evenp) 
#Z(1.3 2.7) and #Z(4) and #Z(3) 

O t h e r  Off-Line Transducers  

This section describes a number of off-line transducers. 
(Underlining is used to indicate series inputs and outputs  
that  are off-line.) 

• ca tenate  i tems-1 . . .  i t ems -n  =~ i t e m s  

Creates a series by concatenating together two or more 
off-line input series. The length of the output  is the sum 
of the lengths of the inputs. 

(ca tena te  #Z(b c) #Z() #Z(d)) ~ #Z(b c d) 
(ca tena te  #Z() #Z()) ~ #Z() 

• subaeriea i t e m s  s tar t  &optional be low ::~ se lec ted- i tems  

Creates a series containing a subseries of the elements in 
the off-line input i t e m s  from s tar t  up to, but  not includ- 
ing, below. If be low is greater than the length of i tems,  
output  nevertheless stops as soon as the input runs out of 
elements. If be low is not specified, the output  continues 
all the way to the end of items. Both of the arguments 
s tar t  and below must be non-negative integers. 
(aubseries #Z(a b c d) I) ~ #Z(b c d) 
(subseries #Z(a b c d) 1 3) ~ #Z(b c) 
(collect (aubseries (scan list) x y)) 

~_ (subseq list x y) 

• positions bools ~ indices 

l~eturns a series of the indices of the non-null elements 

in the off-line input booIs. 

(pos i t ions  #Z(T n i l  T 44)) ~ #Z(0 2 3) 
(positions #Z(nil nil nil)) ~ #Z() 

• mask monotonic-indices ~ bools 

This function is a quasi-inverse of positions. The off- 

line input monoton ic - ind ices  must be a strictly increasing 
series of non-negative integers. The output ,  which is al- 
ways unbounded, contains T in the positions specified by 
monoton ic - ind ices  and n i l  everywhere else. 
(mask #Z()) ~ #Z(nil nil ...) 
(mask #Z(0 2 3)) ~ #Z(T nil T T nil nil ...) 
(mask (positions #Z(nil a nil b nil))) 
:=~ #Z(nil T nil T nil nil ...) 

• mingle items-/ items-2 comparator =~. items 

The output  series contains the elements of the two off- 
line input series. The elements of i tems-1  appear in the 
same order that  they are read in. Similarly, the elements 
of i t ems-2  appear in the same order that  they are read 
in. However, the elements from the two inputs are stably 
intermixed under the control of the comparator .  

The  compara tor  must accept two arguments and return 
non-null if and only if its first argument is strictly less than 
its second argument (in some appropriate sense). At each 
step, the compara tor  is used to compare the current ele- 
ments in the two series. If the current element from i tems-2  
is strictly less than the current element from i t e m s - l ,  the 
current element is removed from i t ems -2  and transferred 
to the output .  Otherwise, the next output  element comes 
from i tems-1 .  (If, as in the first example below, the ele- 
ments of the individual input series are ordered with re- 
spect to comparator ,  then the result will also be ordered 
with respect to comparator . )  

(mingle #Z(l 3 7 9) #Z(4 5) #'<) :=~ #Z(l 3 4 5 7 9) 
(mingle #Z(I 7 3 9) #Z(4 5) #'<) ~ #Z(l 4 5 7 3 9) 

• chunk m {n} items ~ items-1 . . .  items-m 

This function has the effect of breaking the off-line input 

series i t e m s  into (possibly overlapping) chunks of width m. 
Successive chunks are displaced n elements to the right, in 
the manner of a moving window. The  inputs m and n 
must both be positive integers. The input n is optional 
and defaults to 1. For uses of chunk to be transformed into 
loops, the arguments m and n must be constants. 

The function chunk produces m output  series. The ith 
chunk is composed of the ith elements of the m outputs. 
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Suppose tha t  the length of items is i. The length of each 
output  is L1 + ( l -m) /nJ .  The outputs  are computed as 
follows: iterns-kjffiitems(j,n+k_D, j counting f rom zero and 
k counting f rom one. 

Note tha t  if  I < m, there will be no output  elements and 
if l - m  is not a mult iple of  n, the last few input elements 
will not appear  in the output .  I f  m ~ n, one can guarantee 
tha t  the last chunk will contain the last element of  items 
be catenat ing n - 1  copies of  an appropr ia te  padding value 
to the end of items. 

The first example  below shows chunk used to compute  a 
moving average. The  second example  shows chunk used to 
convert a proper ty  list into an association list. 
(mapping (((xi xi+l xi+2) (chunk 3 #Z(l 5 3 4 5 6)))) 

(/ (+ xi xi+l xi+2) 3)) ~ #Z(3 4 4 5) 

(collect (mapping (((prop val) 
(chunk 2 2 (scan '(a 2 b 5))))) 

(cons prop val))) ~ ((a . 2) (b . 5)) 

Collectors 

Collectors produce non-series outputs based on series 
inputs. There are two basic kinds of collectors: ones that 
combine the elements of series together into aggregate data 
structures (e.g., into a list) and ones that compute some 
summary value from these elements (e.g., the sum). 

@ c o l l e c t - l a s t  i tems Eopt ional  (default n i l )  ~ item 

Returns the last  element of  items. I f  i tems is of  zero 
length, default is returned. 

( c o l l e c t - l a s t  #Z(a b c))  ~ c 
( c o l l e c t - l a s t  #Z() ' z )  ~ z 

• collect-first items koptional (default nil) =~ item 

Returns the first element of items. If items is of zero 
length, default is returned. The function collect-first 
only reads the first element of items. This means that 
none of the other elements will be computed, unless they 
are needed for some other purpose. 

( c o l l e c t - f i r s t  #Z(a b c))  ~ a 
(collect-first #tO 'z) ~ z 

• collect-nth n items &optional (default nil) :=~ item 

Returns the n th  element of items. I f  n is greater than  
or equal to the length of items, default is returned. The  
function c o l l e c t - n t h  does not read past  the n th  element 
of items. 
( c o l l e c t - n t h  1 #Z(a b c))  ~ b 
( c o l l e c t - n t h  1 #Z() ' z )  ~ z 

• collect { type} items ~ sequence 

Creates a sequence containing the elements of  items. 
The type argument  specifies the type of sequence to be 
created. This  type must  be a proper  subtype  of sequence. 
I t  omit ted,  type defaults to l i s t .  I f  the type specifies 
an explicit length (i.e., of  a vector), i tems must  be short 
enough to fit in the space allowed. Any extra  space is left 
uninitialized. 

( c o l l e c t  #Z()) ~ () 
( c o l l e c t  #Z(a b c))  ~ (a b c) 
(collect 'string #Z(#\B #\A #\R)) ~ "BAR" 
(collect (#Mr (scan x) (scan y))) .~ (mapcar #'f x y) 

Collecting is significantly more efficient if it can be de- 
termined at  compile t ime whether the type is a subtype of 
list or vec tor .  For vectors, further  efficiency is obtained 
if the length of  the vector is also specified as par t  of the 
type and known at  compile time. 

( c o l l e c t  ' ( v e c t o r  • 3) #Z(1 2 3)) ~ #(1 2 3) 

In addit ion to subtypes  of sequence, the type can be 
specified to be bag. I f  this is the case, a list is produced 
with no guarantees as to the order of the elements. All 
other types specify tha t  the order of the elements in the 
sequence created must  be  the same as their order in the 
input series. An unordered ou tpu t  is acceptable in many 
situations and is significantly more efficient than  collecting 
into an ordered list. 

( c o l l e c t  'bag #Z(a b c))  ~ (c a b) <in some order> 
( c o l l e c t  'bag #Z()) ~ () 

• co l l ec t - append  {type} sequences ::~ sequence 

Given a series of  sequences, co l l ec t - append  returns a 
new sequence by concatenat ing these sequences together in 
order. The  type is a type specifier indicating the type of se- 
quence created and must  be a proper  subtype  of sequence. 
I f  type is omit ted,  it defaults to l i s t .  I t  must  be possible 
for every element of  every sequence in the input series to 
be an element of  a sequence of type type. The result does 
not share any s t ructure  with the sequences in the input. 

(collect-append #Z()) ~ () 
(collect-append #Z((a b) nil (c d))) ~ (a b c d) 
(collect-append 'string #Z("A " "big " "cat.")) 

"A big c a t . "  

• collect-nconc lists ::~ list 

This function nconcs the elements of  the series lists to- 
gether in order and returns the result. This  is the same as 
co l l ec t - append  except tha t  the input  must  be a series of 
lists, the output  is always a list, the concatenation is done 
rapidly by destructively modifying the input elements, and 
therefore the ou tpu t  shares all of its s t ructure with the in- 
put  elements. 

( co l l ec t -nconc  #tO) :=~ () 
(collect-nconc #Z((a b) n i l  (c d))) ~ (a b c d) 
(collect-nconc (#Mr (scan x) ( s c a n  y))) 

__= (mapcan # ' f  x y) 

• collect-alist keys values ::~ alist 

Creates an association list containing keys and values. 
I t  terminates  as soon as either of  the inputs  runs out of 
elements. Following the order of the inputs,  each key/value 
pair is entered into the association list being created so that  
it overrides all earlier associations. 

(collect-alist #Z(a b) #Z()) ~ () 
( c o l l e c t - a l i s t  #Z(a b) #Z(1 2)) ~ ((b . 2) (a . 1)) 
(collect-alist #Z(a b a) #Z(l 2 3)) 

( (a  . 3) (b . 2) (a . 1)) 

• collect-plist indicators values =~. plist 

Creates a proper ty  list containing keys and values. It  
terminates  as soon as either of  the inputs runs out of ele- 
ments.  Following the order of  the inputs,  each key/value 
pair  is entered into the proper ty  list being created so that  
it overrides all earlier associations. 
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( c o l l e c t - p l i s t  #Z(a b) #Z())  ~ () 
( c o l l e c t - p l i s t  #Z(a b a) #Z(1 2 3)) ~ (a 3 b 2 a 1) 

• co l lec t -ha~h  keys values &rest option-plist ~ table 

Creates a hash table containing keys and values. It  ter- 
minates as soon as either of the inputs runs out of elements. 
Following the order of the inputs, each key/vMue pair is 
entered into the hash table being created so that  it over- 
rides all earlier associations. The  option-plist can contain 
any options acceptable to make-hash-table. 

(collect-hash #Z(a b a) #Z(I 2 3)) 
<hash table with a~-~3 and b~-+2> 

(collect-hash #Z(a b) #Z()) 
<empty hash table> 

• collect-file I~]e-narne items &optional (printer #'print) 

ST 

Creates a file named file-name and writes the elements 
of the series i tems into it using the function p r i n t e r .  The  
function printer  must accept two inputs: an object and an 
output  stream. (For instance, printer  can be p r in t ,  p r in l ,  
print, pprint, write-char, write-string, or write-line.) 

If omitted, printer defaults to p r i n t .  The value T is always 
returned. The file is correctly closed, even if an abort 
occurs. 

(collect-file "test.lisp" #Z((a) (I 2) T) #'prinl) 
T <after writing "(A)(1 2)T ~ into the file> 

• c o l l e c t - l e n ~ h  items =~. number 

Returns the number of elements in items. 

( c o l l e c t - l e n g t h  #Z())  ~ 0 
( c o l l e c t - l e n g t h  #Z(a b c ) )  ~ 3 

• collect-sum n u m b e r s  &optional (type 'number) 
=~ number 

Computes the sum of the elements in numbers. These 
elements must be numbers, but  they need not be integers. 
The type is a type specifier that  indicates the type of sum 
to be created. If there are no elements in the input, a zero 
(of the appropriate type) is returned. 

( c o l l e c t - s u m  #Z() 'complex) =~ #C(O O) 
(collect-sum #Z(l 2 3) 'integer) ~ 6 
( c o l l e c t - s u m  #Z(1.1 1.2 1 .3 ) )  ::::b 3.6 

• collect-max numbers ~ number 

Computes the maximum of the elements in numbers. 
These elements must be non-complex numbers, but they 
need not be integers. The value nil is returned if numbers 
has length zero. 

(collect-max #Z()) :=~ nil 
(collect-max #Z(2 1 4 3)) ~ 4 
(collect-max #Z(l.2 I.I 1.4 1.3)) ::~ 1.4 

• collect-rain numbers =~ number 

Computes the minimum of the elements in numbers. 
These elements must be non-complex numbers, but  they 
need not be integers. The  value n i l  is returned if numbers 
has length zero. 

(collect-min #Z()) :¢- nil 
(collect-rain #Z(2 1 4 3)) =~ 1 
(collect-min #Z(1.2  1.1 1.4 1 .3 ) )  ~ 1.1 

co l l e c t - an d  bools ~ bool 

Computes the and of the elements in bools. As with 
the function and, n i l  is returned if any element of bools is 
n i l .  Otherwise, the last element of bools is returned. The 
value T is returned if bools has length zero. If a value of 
n i l  is encountered, c o l l e c t - a n d  immediately stops reading 
elements from bools. 

(collect-and #Z()) ::~ T 
(collect-and #Z(a b c)) ~ c 
(collect-and #Z(a nil c)) ~ nil 
(collect-and (#Mpred (scan x) (scan y))) 

_~ (every #'pred x y) 

collect-or bools ::~ bool 

Computes the or of the elements in bools. As with the 
function or, n i l  is returned if every element of bools is n i l .  
Otherwise, the first non-null element of bools is returned. 
The value n i l  is returned if bools has length zero. If a non- 
null value is encountered, c o l l e c t - o r  immediately stops 
reading elements from bools. 

(collect-or #Z()) ~ nil 
(collect-or #Z(a b c)) ~ a 
(collect-or #Z(a nil c)) ~ a 
(collect-or (#Mpred (scan x) (scan y))) 

--Z (some #'pred x y) 

collect-In type init [unction source#-1 ... sources-n 

result-1 ... result-m 

The higher-order function c o l l e c t - I n  is used to create 
collectors. It  is identical to c o l l e c t i n g - I n  except that 
rather than returning series of values, it only returns the 
last element of each series. If the series that  would be re- 
turned by collecting-In given the same arguments have 
zero length, then the values returned by init are returned 
directly as the output  of c o l l e c t - I n .  

(collect-In 'integer #'(lambda () O) #'+ #Z()) :¢- 0 
(collect-In 'integer #'(lambda () O) #'+ #Z(1 2 3)) 
~6 

(collect-In T #'(lambda () init) $'f s) 
( l e t  ((v i n i t ) )  

( c o l l e c t - l a s t  
(collecting-In T #'(lambda () v) #'f s) v)) 

As shown in the last example above, the init input to 
c o l l e c t - I n  does double duty, acting both as the init input 
to c o l l e c t i n g - I n  and as the default input to c o l l e c t - l a s t .  
To specify a default value that  is different from the initial 
value, use c o l l e c t - l a s t  and c o l l e c t i n g - I n  directly. 

(defun c o l l e c t - m a x  (numbers) 
(declare (opt imizable-series-function) ) 

(collect-last 
(collecting-In ~ (values integer T) 

#'(lambda () (values 0 T)) 
#' (lambda (max first? x) 

(values (if first? x 
(max max x)) 

nil) ) 
numbers) 

nil) ) 

If the series inputs of c o l l e c t - I n  are unbounded, then 
c o l l e c t - I n  will not terminate.  This is a property shared 
by all of the predefined collectors, except c o l l e c t - f i r s t ,  
c o l l e c t - n t h ,  c o l l e c t - a n d  nnd c o l l e c t - o r .  
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D e f i n i n g  N e w  S e r i e s  F u n c t i o n s  

An impor tan t  aspect of  the Series macro package is tha t  
it is easy for p rogrammers  to define new series functions 
and macros. The  s tandard  Lisp defining forms defum and 
defmacro can be used to define new series operations. 

However, when a series function is defined with defun, 
the Series macro  package is not capable of  optimizing a se- 
ries expression containing this new function unless the dec- 
larat ion optimizable-series-function is specified in the 
defun and the defun appears before the expression in ques- 
tion. The declaration optimizable-series-function is not 
required when using defmacro. 

• optimizable-series-function &optional (n I) 

The only place the declaration specifier optimizable- 
series-function is allowed to appear is in a declaration 
immediately inside a defun. It indicates that the function 
being defined is a series function that needs to be ana- 
lyzed so that it can be optimized when it appears in series 
expressions. (A warning is issued if the function being de- 
fined neither takes a series as input nor produces a series 
as output.) 

For optimization to be possible, there are some limita~ 
tions on the form of the containing deflm. The lambda list 
cannot contain any keywords other than &optional. It is 
erroneous if a default value -for an optional argument refers 
to the values of other arguments. There cannot be any dec- 
larations in the body of the defun other than ignore and 
type declarations. In particular, none of the arguments 
can be declared to be special. 

A final limitation is that the number of values re- 
turned by the function being defined must be a con- 
stant and this constant must be known to the Series 
macro package at the t ime the definition is initially pro- 
cessed. The  argument  n (default 1) to the declaration 
optimizable-series-expression specifies the number  of  
values returned by the function being defined. (This can- 
not necessarily be determined by local analysis.) 

(defun collect-product (numbers) 
(declare (opt imizable-series-funct ion) ) 

(collect-fn 'number #'(lambda () I) #'* numbers)) 

I t  may  seem unduly restrictive tha t  one can only use 
the keyword &optional  when using defun to define an op- 
t imizable series function. However, this is not much of a 
problem, because defmacro can be used in si tuations where 
other keywords are desired. For example,  ca t ena te  could 
be defined in terms of a more primit ive series function 
ca tena te2  as follows. 

(defmacro catenate (items-I items-2 &rest items-i) 
(if (null items-i) '(catenate2 ,items-I ,items-2) 

c (catenate2 ,items-I 
(catenate ,items-2 ,@ items-i)))) 

Using defmacro directly also makes it possible to define 
new higher-order series functions. For example, a series 
function analogous to the sequence function substitute-if 
could be defined as follows. 

(defmacro substitute-if-series (nevitem test items) 
'(let ((newitem ,newitem) 

(test ,test) 
(items ,items)) 

(mapping ((item items)) 
( i f  ( f u n c a l l  t e s t  item) newitem item)))) 

(substitute-if-series 3 #'minusp #Z(I -I 2 -3)) 
# Z ( t  3 2 3) 

A l t e r a t i o n  o f  V a l u e s  

The  t ransformat ions  introduced by the Series macro 
package are inherently antagonist ic  to the transformations 
introduced by the macro s e r f .  As a result, series function 
calls are not allowed to be used as destinations of s e t f .  
However, the Series macro package supports  a related con- 
cept tha t  is actually more powerful than  s e t f .  

• alter destinations i t ems  ~ nil 

This  form takes in two series. The  destination series is 
altered so tha t  its elements have the values specified in 
items. More important ly ,  in the manner  of  s e t f ,  the data  
s tructure tha t  underlies the destination series is altered so 
tha t  if the series were to be regenerated, the new values 
would be observed. This  al terat ion process stops as soon 
as either input  runs out  of  elements. The  function a l t e r  
always returns n i l .  

Consider the example  below. Each negative element in a 
list is replaced with its square. The  function a l t e r  is more 
powerful than  s e r f ,  because it can be applied to a vari- 
able tha t  holds a value, ra ther  than  having to be directly 
applied to the function call tha t  produces the value. This 
makes it convenient to use the old value when deciding 
what  the new value should be. 

( l e t *  ( ( d a t a  ( l i s t  1 -2 3 4 -5 6)) 
(X (choose-if #'minusp (scan data)))) 

(alter x (#M* x x)) 
data) 

(I 4 3 4 25 6) 

Like s e r f ,  alter cannot be applied to jus t  any destina- 
tion. Rather ,  a l t e r  can only be applied to series tha t  are 
alterable, scan, s c a n - a l i s t ,  s can -mu l t i p l e ,  s c a n - p l i s t ,  
and s c a n - l i s t s - o f - l i s t s - f r i n g e  produce alterable series. 
However, the al terabil i ty of  the output  of  s c a n - l i s t s -  
o f - l i s t s - f r i n g e  is incomplete. I f  s c a n - l i s t s - o f - l i s t s -  
f r i n g e  is applied to an object  tha t  is a leaf, altering the 
output  series does not change the object.  

In general, the output  of  a t ransducer is alterable as 
long as the elements of  the output  come directly from the 
elements of  an input tha t  is alterable. In particular,  the 
outputs of choose, choose-if, split, split-if, cotruncate, 
u n t i l ,  u n t i l - i f ,  and s u b s e r i e s  are alterable as long as the 
corresponding inputs are alterable. 

For example,  the following alters a segment of a list. 
( l e t  ( (da t a  ( l i s t ' a  'b  ' c  'd  ' e ) ) )  

(alter (subseries (scan data) I 3) (scan-range)) 
data) ::~ (a 0 1 d e) 

• t o - a l t e r  i t ems  alter-In other-i tems-1 . . .  other-i tems-n 

=~ al terable- i tems 

Alterable series are created by using this function. The 
function t o - a l t e r  takes a series and returns an alterable 
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series containing the same elements. The  elements of the 
output  are taken directly f rom items. The  input alter-fn is 
a function. The  other inputs are all series, each of which 
must  be at least as long as items. I f  there are n inputs 
other-items-i, alter-fn must  accept n + l  inputs. 

If  an a t t empt  is made  to alter the j t h  element of the out- 
put  series, the al terat ion is performed by applying alter-In 
to the new value as its first argument  and the j t h  elements 
of the other-items-i as the remaining arguments.  As an ex- 
ample, consider the following definition of a series function 
tha t  scans the elements of a list. Alterat ion is performed 
by changing cons cells in the list being scanned. 
(defun scan-list (list) 

(declare (optimizable-series-function)) 
(let ((sublists (scan-sublists list))) 

(to-alter (#Mcar sublists) 
#' (lambda (new parent) 

(serf (car parent) new)) 
s u b l i s t  s )  ) ) 

( l e t *  ( ( d a t a  ( l i s t  1 -1  2 - 2 ) )  
(x (scan-list data))) 

(alter (choose (#Mminusp x) x) (series 0)) 
data) :=~ (I 0 2 O) 

G e n e r a t o r s  a n d  G a t h e r e r s  

Generators  and gatherers are yet another  way of pro- 
cessing ordered multi-sets. They  were originally proposed 
by C. Perdue and P. Curtis  as an alternative to series. 
However, it has since been realized tha t  the two concepts 
are actually synergistically supportive,  rather  than antag- 
onistic. As a result, generators and gatherers have been 
included as an integral par t  of the Series macro package. 

G e n e r a t o r s .  A generator is similar to a series in tha t  
it represents a potential ly unbounded,  ordered multi-set 
and is supported by lazy evaluation. However, generators 
follow the semantics of s t reams more closely than  series 
do. In part icular,  the fundamental  operat ion available for 
generators is nex t - i n ,  which gets the next element f rom a 
series by side effect. (No such operat ion is available for 
series.) I f  a generator is used in two places, the second use 
will only see the elements tha t  are not read by the first 
use.  

There is a close relationship between a generator and a 
series of  the elements it produces. In particular,  any series 
can be converted into a generator.  As a result, all of the 
scanner functions used for creating series can be used to 
create generators as well and there is no need to have a 
separate  set of functions for creating generators. 

• n e x t - i n  generator &body action-list ::~ i tem 

Reads the next element out of a generator. As with 
streams, the element is removed by side effect and will 
therefore not be seen anywhere else tha t  elements are read 
from the generator in question. 

The action-list specifies what  should be done when gen- 
erator  runs out of elements. If  the action-list is empty,  it 
is an error for the generator  to run out of elements. I t  is 
erroneous (with unpredictable results) to apply n e x t - i n  to 
a generator  a second t ime after the generator runs out of 
elements. 

• generator series ~ generator 

Given a series, this function creates a generator con- 
taining the same elements. As an example of the use of 
generators consider the following. 

(let ((x (generator (scan '(I 2 3 4))))) 
(loop (prinl (next-in x (return T))) 

(prinl (next-in x (return nil))) 
(princ ", ") ) ) 

T <after pr in t ing " 1 2 , 3 4 , " >  

G a t h e r e r s .  A gather is the inverse of a genera tor - -  
i.e., it is analogous to an output  s t ream rather  than an 
input stream. An unbounded number  of  elements can be 
put  into a gatherer  one at a time. In a manner  similar to 
a collector, the gatherer  combines the elements based on 
some formula. The  resulting value can be obtained at any 
time. 

There is a close relationship between a gatherer and a 
collector function tha t  combines elements in the same way. 
In part icular,  any one-input one-output  collector can be 
converted into a gatherer.  As a result, all of the collectors 
used for comput ing summary  results f rom series can be 
used to create gatherers and there is no need to have a 
separate  set of functions for creating gatherers. 

nex t -ou t  gatherer i tem :.~ n i l  

Writes a value into a gatherer.  This  is done be side effect 
in such a way tha t  the value is seen f rom the perspective 
of every use of the gatherer  in question. The  value n i l  is 
always returned. 

r e s u l t - o f  gatherer  ~ result 

Retrieves the net result f rom a gatherer.  This can be 
done at  any time. However, it is erroneous (with unpre- 
dictable results) to apply r e s u l t - o f  twice to the same gath- 
erer, or to apply nex t -ou t  to a gather once r e s u l t - o f  has 
been applied. 

• gatherer c o l l e c t o r  ~ gatherer 

The collector input  must  be a one input collector. The 
collector input  can be of the form # '  (lambda . . .  ). (This is 
necessary when utilizing a predefined collector that  takes 
more than  one argument . )  The  function ga the re r  returns 
a gatherer tha t  performs the same internal computat ion 
as the collector. As an example of the use of gatherers, 
consider the following. 

(let ((x (gatherer #'collect)) 
(y (gatherer 

#' (lambda (x) 
(collect-sum (choose-if #'oddp x)))))) 

(dotimes (i 4) 
(next-out x i) 
(next-out y i) 
(if (evenp i) (next-out x (* i I0)))) 

(values (result-of x) (result-of y))) 
(0 0 1 2 20 3) and 4 

• gathering var-collector-pair-list &body body 
=~ result-1 . . .  result-n 

The vat-collector-pair-list must  be a list of  pairs, where 
the first element of each pair  is a symbol.  The  second 
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element of each pair must be a function that ,  when prefixed 
with # '  is acceptable as an argument to ga therer .  The 
body can be any Lisp expression. Typically it will contain 
calls on next-out. 

Gathering operates as follows. Each variable in the vat- 
collector-pair-list is bound to a gatherer produced by ap- 
plying gatherer to the corresponding collector in the vat- 
collector-pair-list. The body is then run until it terminates. 
The gathering form returns n values where n is the length 
of the vat-collector-pair-list. Each value is the result-of 
the corresponding gatherer. For instance, 

(gathering ((x collect) 
(y collect-sum) ) 

(dotimes (i 3) 
(next-out y i) 
(if (evenp i) (next-out x (* i I0))))) 
(0 20) and 3 

is equivalent to 

(let ((x (gatherer #'collect)) 
(y (gatherer # 'collect-sum)) ) 

(dotimes (i 3) 
(next-out y i )  
(if (evenp i) (next-out x (* i 10)))) 

(values (result-of x) (result-of y))) 
(0 20) and 3 

Defining New Off-Line Series Functions 
The following primitive form can be used to define any 

preorder series operation. 

• producing output-list input-list &body body 
=~ output-1 . . .  output-n 

Computes and returns a group of series and non-series 
outputs  given a group of series and non-series inputs. The 
key feature of  produc ing  is that  some or all of  the series 
inputs and outputs  can he processed in an off-line way. To 
support  this, the processing in the body is performed from 
the perspective of generators and gatherers. Each series 
input is converted to a generator before being used in the 
body. Each series ou tput  is associated with a gatherer in 
the body. 

The output-list has the same syntax as the binding list 
of a l e t .  The  names of these variables must be distinct 
from each other and from the names of the variables in 
the i n p u t - l i s t .  If  there are n variables in the output-list, 
then producing computes n outputs. There must be at 
least one output  variable. The variables act as the names 
for the outputs  and can be used in either of two ways. 
First, if an output  variable has a value associated with it 
in the output-list, then the variable is treated as holding a 
non-series value. The  variable is initialized to the indicated 
value and can be used in any way desired in the body. The 
eventual output  value is whatever value is in the variable 
when the execution of the body terminates. Second, if 
an output  variable does not have a value associated with 
it in the output-list, the variable is given as its value a 
gatherer that  collects elements. The only valid way to use 
the variable in the body is in calls on next -out .  The output  
returned is a series containing these elements. If  the body 
never terminates,  this series is unbounded. 

The input-list also has the same syntax as the binding 
list of a l e t .  The names of these variables must be dim 
tinct from each other and the names of the variables in 
the output-list. The values can be series or non-series. If 
the value is not explicitly specified, it defaults to n i l .  The 
variables' act logically both as inputs and state variables 
and can be used in one of two ways. First, if an input vari- 
able is associated with a non-series value, then it is given 
this value before the evaluation of the body begins and can 
be used in any way desired in the body. Second, if an in- 
put  variable is associated with a series, then the variable is 
given a generator corresponding to this series as its initial 
value. The only valid way to use the variable in the body 
is in calls on nex t - in .  

Declarations can be included at the start  of the body. 
However, the only declarations allowed are ignore declara- 
tions, type declarations, and p r o p a g a t e - a l t e r a b i l i t y  dec- 
larations (see below). In particular,  it is an error for any 
of the input or output  variables to be special. 

In conception, the body can contain arbi t rary Lisp ex- 
pressions. After the appropriate generators and gatherers 
have been set up, the body is executed until it terminates. 
At that  t ime the final values of the non-series output  vari- 
ables are returned as results of the producing form. The 
series outputs  are returned one element at a time as they 
are produced. (Following the lazy evaluation semantics of 
series, the evaluation of the body is delayed so that  individ- 
ual series elements are not computed until they are actually 
used.) If the body never terminates,  the series outputs (if 
any) are unbounded in length and the non-series outputs 
(if any) are never produced. 

Although easy to understand, this view of what can hap- 
pen in the body presents severe difficulties when optimizing 
(and even when evaluating) series expressions that  contain 
calls on producing. As a result, several limitations are im- 
posed on the form of the body to simplify the processing 
required. 

The first l imitation is that ,  exclusive of any declarations, 
the body must have the form (loop (tagbody ... )). The 
following example shows how producing could be used to 
implement a scanner creating an unbounded series of inte- 
gers. 

(defun scan-integers O 
(declare (opt imizable-ser lea-function) ) 

(producing (hUmS) ((num-I)) 
(declare (integer hum) 

(type (series integer) nums)) 
(loop 

(tagbody 
( s e t q  num (1+ hum)) 
( n e x t - o u t  hUmS num) ) ) ) ) 

( s c a n - i n t e g e r s )  ~ #Z(0 1 2 3 4 . . . )  

The second l imitation is tha t  the execution of the body 
must be terminated using the form terminate-producing. 
Any other method of terminating the body (e.g., with 
re tu rn )  is an error. The following example shows how 
producing could be used to implement a simplified ver- 
sion of col lect-sum. The function t e rmina t e -p roduc ing  is 
used to stop the computat ion when numbers runs out of 
elements. 
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(defun simple-collect-sum (numbers) 
(declare (opt imizable-ser ies-funct ion) ) 

(producing ((sum 0)) ((numbers numbers) hUm) 
(loop 

(tagbody 
(setcl hUm (next-in numbers 

(terminate-producing)) ) 
(setq sum (+ sum hum)))))) 

(simple-collect-sum #Z(I 2 3)) ::~ 6 

The third limitation is that calls on next-out associ- 
ated with output variables must appear at top level in the 
tagbody in the body. They cannot be nested in other forms. 
In addition, an output variable can be the destination of 
at most one call on next-out and if it is the destination of 
a next-out, it cannot be used in any other way. 

If the call on next-out for a given output appears in the 
final part of the tagbody in the body, after everything other 
than other calls on next-out, then the output is an on-line 
output--a new value is written on every cycle of the body. 
Otherwise the output is off-line. 

The following example shows how producing could be 
used to implement a simple version of split-if that only 
accepts one predicate input. Items are read in one at a 
time and tested. Depending on the test, they are written 
to one of two outputs.  Note the use of labels and branches 
to keep the calls on n e x t - o u t  at top level. Both outputs  
are off-line. The scan- in tegers  example above shows an 
on-line output .  

(deftm split-if2 (items pred) 
(declare (optimizable-series-function 2) 

(off-line-port 0 I)) 
(producing (items-I items-2) ((items items) item) 

(declare (propagate-alterability items items-l) 
(propagate-alterability items items-2)) 

(loop 
(tagbody 

(setq item (next-in items 
(terminate-producing)) ) 

(if (not (funcall pred item)) (go D)) 
(next-out items-I item) 
(go F) 

D (next-out items-2 item) 
Z))))  

( s p l i t - i f 2  #Z(1 -2 3 -4) # 'p lusp)  
#Z(l 3) and #Z(-2 -4) 

The fourth l imitation is tha t  the calls on nex t - i n  asso- 
ciated with an input variable v must appear at top level in 
t h e  t a g h o d y  in the body, nested in assignments of the form 
(se tq  element-vaxiable ( n e x t - i n  v . . .  ) ) .  They cannot be 
nested in other forms. In addition, an input variable can 
be the source for at most one call on n e x t - i n  and if it is 
the source for a nex t - in ,  it cannot be used in any other 
way.  

If the call on n e x t - i n  for a given input has as its sole 
termination action ( terminate-producing)  and appears in 
the initial part  of the tagbody in the body, before anything 
other than similar calls on nex t - in ,  then the input is an 
on-line i n p u t - - a  new value is read on every cycle of the 
body. Otherwise the input is off-line. 

The following example shows how producing could be 
used to implement a simple version of ca tena te  tha t  only 
accepts two arguments. To start  with, elements are read 

from the first input series. When this runs out, a flag is set 
and reading begins from the second input. Both inputs are 
off-line. The s imple-col lec t -sum and s p l i t - i f 2  examples 
above have on-line inputs. 

(defun catenate2 (items-I items-2) 
(declare (opt imizable-series-function) 

(off-line-port items-I items-2)) 
(producing (items) ((items-I items-l) 

(items-2 items-2) 
(in-2 nil) item) 

(loop 
(tagbody 

(if in-2 (go D)) 
(setq item (next-in items-I 

(setq in-2 T) 
(go D) )) 

(go F) 
D (setq item (next-in items-2 

(terminate-producing)) ) 
F (next-out items item)))) ) 

(catenate2 #Z(1 2) #Z(3 4)) =~ #Z(1 2 3 4) 

terminate-producing =~ 

This form (which takes no arguments) is used to ter- 
minate the execution of (the expansion of) the macro 
producing. As with the form go, terminate-producing does 
not return any values, rather control immediately leaves 
the current context. The form terminate-producing is only 
allowed to appear in the body of producing. 

propagate-alterability input output 

Transducers that  propagate alterability from inputs to 
outputs  (such as choose and s p l i t )  can be defined us- 
ing the declaration p r o p a g a t e - a l t e r a b i l i t y  in conjunction 
with producing. (This declaration is not valid in any other 
context.) The declaration p r o p a g a t e - a l t e r a b i l i t y  spec- 
ifies tha t  a t tempts  to alter an element of the indicated 
output  will be supported by altering the corresponding el- 
ement of the indicated input. (The corresponding element 
of the input is the one most recently read at the moment 
when the output  element is written. It must be the case 
that  the output  element is the corresponding input ele- 
ment.) For an example, see the definition of s p l i t - i f 2  
above. 

W a r n i n g s  a b o u t  off - l lne  i n p u t s  a n d  o u t p u t s .  It 
is possible to obtain off-line inputs and outputs  without 
using producing. The easiest way to do this is to define a 
series function by combining together one or more off-line 
series functions. For instance, in the example below, the 
items input is off-line, because it is connected directly to 
the off-line input of choose- i f .  

(defun choose-positive (items) 
(declare (opt imizable-series-funct ion) 

(off-line-port items) ) 
(choose-if #'plusp items)) 

(choose-positive #Z(l -2 3 -4)) ~ #Z(I 3) 

Although it may seem surprising, it is also possible to get 
an off-line input or output  even when M1 of the functions 
used when defining a new series function are on-line. For 
instance, in the example below, the input weights is off- 
line. 
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(defun weighted-sum (numbers weights) 
(declare (opt imizable-series-funct ion) 

(off-line-port weights) ) 
(values (collect-sum numbers) 

(collect-sum (#M* numbers weights)))) 

(weighted-sum #Z(I 2 3) #Z(3 2)) ~ 6 and 7 

To see why weights is off-line, consider what happens 
when the input numbers is longer than the input weights. 
In this situation, the computation of the first collect-sum 
must continue even after the computation of the second 
collect-sum halts. Thus, the reading of weights has to stop 
before the reading of numbers stops. As a result, weights 
cannot  be handled in an on-line way. 

As can be seen by the examples above, it is not simple to 
look at a function and determine whether or not a given 
input is on-line. This  is unfortunate ,  since on-line ports  
are significantly more useful than  off-line ones. The  dec- 
larat ion o f f - l i n e - p o r t  is suppor ted  to allow programmers  
to verify tha t  por ts  they think are on-line are in fact on- 
line. I t  is also worthy of note tha t  off-line ports  vir tual ly 
never arise when defining scanners or reducers. 

$ o f f - l i n e - p o r t  port-spec-1 . . .  port-spec-n 

The declaration specifier o f f - l i n e - p o r t  is used to indi- 
cate the inputs  and outputs  of  a function tha t  are off- 
line. The  only place this declaration is allowed is in 
a deftm tha t  also contains the declaration op t imizab le -  
s e r i e s - f u n c t i o n .  Each port-spec-i must  either be a sym- 
bol tha t  is one of the inputs of  the function or an integer j 
indicating the j t h  output  (counting from zero). For exam- 
ple, ( o f f - l i n e - p o r t  x 1) indicates tha t  the input x and the 
second ou tpu t  are off-line. By default, every por t  tha t  is 
not mentioned in an o f f - l i n e - p o r t  declaration is assumed 
to be on-line. A warning is issued whenever a por t ' s  ac- 
tual  on-line/off-line s ta tus  does not agree with its declared 
status.  Several examples of  using the declaration specifier 
o f f - l i n e - p o r t  are shown on the last few pages. 

In the function weighted-sum above, it might  well have 
been the p rogrammers  intention tha t  the inputs numbers 
and weights would always have the same length. Or fail- 
ing that ,  it might  have been his intention tha t  any excess 
values of  numbers be ignored. I f  tha t  were the case, there 
would be no need for the function to be off-line. An on-line 
version could be wri t ten by using the function co t runca te  
as shown below. 

(defun on-line-weighted-sum (numbers weights) 
(declare (optimizable-series-function)) 

(multiple-value-b£nd (numbers weights) 
(cotruncate numbers weights) 

(values (collect-sum numbers) 
(collect-sum (#M* numbers weights)) ))) 

(on-line-weighted-sum #Z(I 2 3) #Z(3 2)) =~ 3 and 7 

Features That Facilitate Debugging 
The Series macro package supports  a number  of  features 

tha t  facili tate debugging. One example of this is the fact 
tha t  the macro  package tries to use the variable names that  
are bound by a l e t  in the code produced. Since the macro 
package is forced to use variable renaming to implement 
variable scoping, it cannot  guarantee tha t  these variable 
names will be used. However, there is a high probabili ty 
tha t  they will. I f  a break occurs in the middle of a series 
expression, these variables can be inspected to determine 
what  is going on. I f  a l e t  variable holds a series, then the 
variable will contain the current element of the series. For 
example,  the series expression below is t ransformed into 
the loop shown. (For a discussion of how this transforma- 
tion is performed see [6].) 

( l e t *  ((x (scan ' ( v e c t o r  i n t ege r )  v ) ) )  
(collect-sum x) ) 

(let ((#:index-9 O) (#:limit-8 0) (#:sum-2 O) (x 0)) 
(declare (type fixnum #:index-9 #:limit-8) 

(type number #:sum-2) 
(type integer x)) 

(tagbody (setq #:index-9 -I) 
(setq #:limit-8 (length v)) 
(setq #:sum-2 O) 

#:L-I (incf #:index-9) 
(if (not (< #:index-9 #:limit-8)) 

(go series : : end) ) 
(setq x (aref v #:index-9)) 
(setq #:sum-2 (+ #:sum-2 x)) 
(go #:L-l) 

series : : end) 
#:sum-2) 

*last-series-loop* 

This variable contains the loop most  recently produced 
by the Series macro  package. After evaluating (or macro- 
expanding) a series expression, this variable can be in- 
spected to see the code produced. 

*last-series-error* 

This variable contains the most  recently printed warning 
or error message produced by the Series macro package. 
The information in this variable can be useful for tracking 
down errors. 
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