
I s } . - o
Ravel Curtis, editor

Xerox PARC
3333 Coyote Hill Rd.
Palo Alto, CA 94304

Pavel.pa@Xerox.Com

Now that Lisp Pointers is being sponsored by
SIGPLAN, it seems worthwhile to repeat the
charter of this department . The (algorithms)
department consists of articles that fit into one
or more of three broad categories:

Annota ted implementations of interesting
and relevant algorithms; they should make
particularly good or novel use of the unique
features of the Lisp family of program-
ruing languages (e.g., closures, continua-
tions, code as data, polymorphism),

Annota ted implementations of algorithms
whose subject mat te r is the Lisp family of
languages (e.g., code analysis tools, itera-
tion facilities, generic arithmetic), and

Discussion of performance issues, bench-
marking, or implementation experiences for
interesting algorithms written in or about
the Lisp fanfily of languages.

So far, (a l g o r i t h m s) has included articles on
the o x t o n d - s y n t a x macro definition facility, an
elegant hidden-line elimination program, Com-
mon Lisp s o t f methods, and a higher-order
programndng solution to the infamous xp l puz-

zle. Of these, two were written by me and two
by contributing authors.

If you've been hacking on an interesting piece
of code that ufight fit intu the (a l g o r i t h m s)
department , please send me a note at one of
the addresses above. If I agree that tile code is
appropriate, then either ,you or I (or the two of
us working together) will put an article about it
in this space. Don't be shy, send me your ideas!

One of the most well-known and widely-
used pieces of Corrmaon Lisp code is Gregor
Kiczales' portable implementat ion of the Com-
mon Lisp Object System, PCL. 1 Among the
many interesting algorithms and implementa-
tion tricks employed in that code is a very gen-
eral program-analysis tool known as the "code
walker". Though it is distributed along with
PCL, the walker is a separate utility, and the
subject of this issue's colunm. Gregor's walker
is based, in part, on earlier code-analysis tools
writ ten by Larry Masinter, David Moon and
Gary Drescher.

t The name PCL originally stood for "Portable Com-
monLoops', one of the precursors to CLOS.

III-1.48

The code walker is perhaps best understood
in comparison to the Common Lisp function
mapcar. Mapcar takes a function and a fist as
arguments and returns a list of the results of
applying that function to the elements of the
input fs t . The nice thing about mapcar is that
it abstracts away all of the details of visiting
each element of the input fist and constructing
the result list.

The main entry point into the code-walker, a
function named walk-form, is quite similar. It
takes a function (called the walk funct ion) and
a Common Lisp expression as arguments and
returns a new expression whose subexpressions
are the results of applying the walk function to
each of the subexpressions of the input expres-
sion. That is, the walker recursively visits all
of the subexpressions in a piece of code, apply-
ing the walk function to each of them, and puts
the results of the walk function back together
into new expressions. The nice thing about the
walker is that it abstracts away the complex de-
tails of Common Lisp expression syntax and se-
mantics and the reconstruction of the resulting
expression.

For example, suppose that the walk function
mapped every variable reference into the string
"Foo", but left other expressions alone. Then
the walker would transform

(let ((x (list y)))
(tagbody
top

(setq x (cons ' x x))
(if (< (length x) 8)

(go t o p)))
(print x))

into the new expression

(let ((x (list "Foo")))
(tagbody
top

(s e t q x (cons 'x " F o o "))
(i f (< (l o n g t h "Foo") 8)

(go t o p)))
(p r i n t " F o o "))

Note that it didn't change every symbol into the
string "Foo", just the ones that were variable
references.

This is a nice abstract model of what the
walker does, but some questions arise to muddy
the water a bit. First, there is the question of
just what constitutes a "subexpression". Con-
sider this expression:

(let ((x 17))
(setq z (cons 1 2))
((lambda (y) (funcall f g))

' f o o))

I think it is easy to agree on most cases; cer-
tainly 17, (cons 1 2), and the entire l o t -
expression itself should be considered subex-
pressions. Similarly, it is pret ty clear that the
syntactic keywords l o t and s e t q are not subex-
pressions by themselves.

Some other cases are less clear-cut, though.
What about the binding uses of x and y? In the
walker, these are not considered subexpressions
because no evaluation takes place when the in-
terpreter encounters them; binding occurrences
serve only to estabhsh meanings for identifiers
as opposed to making use of those meanings.

On the other hand, the use of z in the so tq-
expression is considered a subexpression bv the
walker, albeit in a different sense than, say, the
use of f.

Finally, what about those forms in functional
context: cons, f u n c a l l , foo, and the lambda-
expression? Certainly they involve some evalu-
ation, but once again in a different sense than
other subexpressions.

The walker handles the variety of kinds of
subexpressions by passing a "context" argument
to the walk function along with each subex-
pression, noting whether it appeared in : ova l ,
: so t , or : call position.

There is a more significant difference, though,
between the hsts manipulated by mapcar and
the expressions given to walk- form. The ele-
ments of a hst are completely separate; while
they may share structure, elements are not
nested within each other. Thus, if the input

III-1.49

function has no side-effects, it does not mat ter
in what order mapcar examines the elements.
This is not the case for Common Lisp expres-
sions, the subexpressions of which are frequently
and necessarily nested. There are two interest-
ing orders in which walk-form nfight apply the
walk function to the subexpressions.

The walk function might be applied to each
expression before any of its subexpressions. Let
E be the original expression and let E ' be the
result of applying the walk function to E. Since
the walker is supposed to return the results of
applying the walk function to every expression,
it must traverse the subexpressions of E', not
the original, E.

For example, suppose that E was (c a r x)
and E ' was (+ a b). If the walker were to apply
the walk function to ca r and x, what could it
do with the results? It should instead walk +,
a, and b; it is easy to see how to combine those
results to return them.

Alternatively, the walk function might be ap-
plied to each expression only after visiting each
of its subexpressions. As in the other case, we
need a way for all of the results of the walk
function to have some effect on the final result
of the walk.

Suppose that the walk function maps the ex-
pressions E1 and E2 into E~ and EL, and maps
cons into l i s t when it appears in : c a l l po-
sition. If the walker is presented with the ex-
pression (cons E1 E2) it must first visit cons,
E1 and E2. Having done so, it would be useless
to apply the walk function to (cons E1 E2).
Instead, of course, it must be applied to (l i s t

EL).
Neither of these orders is obviously best for all

possible uses of a code walker. As it turns out,
the first order is most convenient for the uses
Gregor had in nfind when he wrote the walker,
so that is the one implemented. At the end
of the article, we examine a possible change,
suggested by Gregor, that enables both orders
(and, indeed, any combination of the two) in a
simple and natural fashion.

Speaking of possible uses for a walker, it be-
hooves me to show you one or two. Before doing
so, though, we need some more of the details of
the walker's contract.

The function wa lk - fo rm takes three argu-
ments: a Common Lisp expression to walk, an
environment (such as is provided by an ~ en v i -
ronment argument to a macro expander), and
the wall< function itself; it returns the new ex-
pression resulting from the walk. The environ-
ment argmnent is necessary so that the walker
can correctly recognize and expand any macros
it might encounter.

The walk function takes three arguments: the
current expression in the walk, the evaluation
context of that expression (one of : eva l , : s e t ,
or : c a l l) , and the environment of the expres-
sion. The environment is provided so that the
walk function can discover certain facts about
the bindings around the expression. We'll come
back to this possibility later. The walk function
should return two values: the new expression
and a flag indicating whether or not the walker
should continue walking this expression. If the
flag is true, the walker will not continue; this
makes the usual case a bit more concise since
the walk function can simply return the new
expression, letting the flag default to n i l .

The first example is a simpleminded (and not
quite correct) macro implementat ion of a new
special form, planned for inclusion in the ANSI
Conunon Lisp s tandard when it appears. The
form is called s y m b o l - m a c r o l o t and has the fol-

lowing syntax:

(symbol-macrolet ((name form)
. . .)

body)

The idea is that the symbol name should be
replaced by the expression form wherever it is
referenced within body; you can think of it as
a kind of "inline" definition of a new lexical
variable name. If name appears in an assign-
ment expression, (s e t q name ezpr), that ex-
pression should be interpreted as (s e r f form
expr). A similar t ransformation should be

III-i .50

(defmacro symbol-macrolet (bindings abody body aenvironment env)
(walk-form '(progn ,@body) env

#'(lambda (form context env)
(sm-walk-fn form context env bindings))))

(defun sm-walk-fn (form contex¢ env b i n d i n g s)
(cond ((no t (eq con t ex t ' : o v a l))

form)
((symbolp form)
(let ((entry (assoc form bindings)))

(if entry
(cadr entry)
fo rm)))

((a tom form)
form)
((member (car form) '(sotq serf))
(lot ((kind (car form)))

(labels ((scan-pairs (tail)
(if (null tail)

nil
(let ((entry (assoc (car tail) bindings)))

(list*
(if entry

(progn (setq kind 'serf)
(cadr entry))

(car tail))
(cadr tail)
(scan-pairs (cddr tail)))))))

(let ((new-tail (scan-pairs (cdr form))))
(cons kind now-tail)))))

((eq (car form) 'multiple-value-sotq)
(lot* ((vars (cadr form))

(gensyms (mapcar #'(lambda (i)
(declare (ignore i))
(gensym))

v a t s)))
' (m u l t i p l e - v a l u e - b i n d ,gensyms

, (c a d d r form)
,@(mapcar #'(lambda (v g) '(serf ,v ,g))

vars
gensyms))))

(¢ form)))

Figure 1: A simpleminded macro implementation of symbol -macro lo t .

III-l.51

(defmacro symbol-macrolet (bindings Ebody body &environment env)
(let ((bindings (mapcar

#'(lambda (binding)
(list (car binding)

(cadr binding)
(variable-binding env (car binding))))

bindings)))
(walk-form '(progn ,@body) env

#'(lambda (form context env)
(sm-walk-fn form context env bindings)))))

Figure 2: A more correct implementation of symbol -macro le t .

made if it appears in a m u l t i p l e - v a l u e - s e t q
form. The implementation appears in Figure t.

This code is pret ty straightforward; the walk
function only transforms expressions in : o v a l
context, and not all of those. It simply tests
for the ones it affects and returns the others
unchanged. There are a few problems with this
code however:

• The f o r m should only be substi tuted for
name over the scope of a normal lexical
binding. Thus

(symbol-macrolot ((x (car y)))
(list x

(let ((x (1+ x)))
x)))

should be equivalent to

(progn
(l i s z (c a r y)

(l o t ((x (1+ (c a r y))))

x)))

but this code would return

(progn
(l i s t (c a r y)

(l e t ((x (1+ (c a r y))))
(c a r y))))

• If tile (',onmton Lisp implementation ex-
pands uses of m u l Z i p l e - v a l u e - b i n d into

a use of m u l ~ i p l e - v a l u e - s e t q , this code
will loop forever, walking and rewalking the
same expression. This doesn't seem very
likely, however.

• According to the official specification of
symbol-macrole% the environment used
for macro expansion inside the body of the
form is supposed to contain the bindings
of the new symbol macros, so that other
macros used in the body can correctly ex-

pand them.

Solving the last two problems is beyond the
scope of this article, but the first one is more
relevant; this kind of issue is the reason that
the environment is passed to the walk function.

We would like to be able to tell if one of
the names in the s y m b o l - m a c r o l e t form is re-
bound during the walk and then avoid any sub-
stitutions inside that new binding. The walker
provides a utility function, v a r i a b l e - b i n d i n g ,
that takes an environment and a symbol and
returns a representation of the binding of that
symbol in that environment. Nothing is guar-
anteed about the representation except that it
is different from the representation of any other
bindings of that variable.

Figure 2 shows a new definition of symbol-
m a c r o l e t which uses this facility to help fix
the problem described earlier. The function
sm-walk - fn must also change, of course, but
the differences are small. In both places where

III-1.52

(defmacro w i t h - c o n s C a n t - f o l d i n g (abody body aenvironmen~ env)
(wa lk - fo rm ' (p r o g n ,©body) env

' (l a m b d a (form concexz env)
(i f (and (eq c o n t e x t ' : o v a l)

(consp form)
(member (car form) ' (+ - * /))
(every #'conscantp (cdr form)))

(eval form)
form))))

Figure 3: A naive implementation of with-consZan~-folding.

(i f e n t r y . . .) is tested, the predicate should
change to

(and e n t r y
(eq (cadd r e n t r y)

(v a r i a b l e - b i n d i n g env f o r m)))

We thus arrange to perform the substitution
only when the name is in the same binding con-
tour as the s y m b o l - m a c r o l e t form, fixing the
bug.

Let's move on to another example. Con-
sider a macro named w i C h - c o n s c a n t - f o l d i n g
whose meaning is the same as progn except that
arithmetic subexpressions involving constants
are evaluated at expansion time. Thus,

(wizh-constanZ-folding
(s e t q x (+ 2 (* 3 4)))
(/ (- y (* 24 7))

(, 60 60)))

should expand into

(progn (setq x 14)
(/ (- y 168) 3600))

One might have a use for such a macro in some
particularly lazy implementation of Common
Lisp. For simplicity, we assume that the macro
only affects calls to the four functions used in
the example.

At first sight, it rtfight appear that the walker
cannot be used for this purpose because of the
order in which it walks subexpressions. A naive

implementation, shown in Figure 3, indeed fails
to produce the desired expansion. The example

above expands into

(progn (s e t q x (+ 2 12))
(/ (- y 168) 3600))

in which the expression in the setq is not fully
folded. The problem is, when the walk function
is apphed to the form (+ 2 (* 3 4)) , not all
of the arguments are constants yet, so nothing
gets folded. The walk function never gets to
look at the form after the arguments have been
walked and so never performs the second level

of folding.
We can, however, fix the problem even in the

current walker. The trick is to have the walk
function do its own recursive walk of the argu-
ments before deciding whether or not to fold.

Of course, the easiest way to do the recursive
walk is simply to call wa lk- fo rm again. This so-
lution is in Figure 4. Note that , for efficiency's
sake, the walk function in this implementation
returns a second value of z whenever it has al-
ready walked the arguments. Walking the ar-
guments again wouldn't hurt, but it won't help
either.

Now that we have a feel for how one aright
use the walker, let's move on to consider its im-

plementation.
The walker examines the form recursively,

keeping track of the appropriate environment
and evaluation context. This recursive function
is walk-form-internal, which walk-form calls

III-1.53

(defmacro with-constant-folding (&body body &environment env)
(labels ((each-form (form context env)

(if (and (eq context ':eval)
(consp form)

(member (car form) '(+ - * /)))

(let* ((arEs (mapcar #'(lambda (expr)

(walk-form expr env #'each-form))
(car form)))

(new-form (cons (car form) args)))

(values (if (every #'constantp ares)
(eval new-form)
new-form)

t))

(values form nil))))
(walk-form C(progn ,@body) env #'each-form)))

Figure 4: A better implementat ion of w i t h - c o n s t a n t - f o l d i n g .

(defun walk-form-internal (form context env walk-fn)

(multiple-value-bind (new-form walk-no-more?)

(funcall walk-fn form context env)
(cond (walk-no-more? new-form)

((not (eq form new-form))

(walk-form-internal new-form context env walk-fn))
((atom new-form)
new-form)
(t

;; Walk the subexpressions of new-form
. . .))))

Figure 5: The easy part of walk-form-internaL

immediately, establishing : e v a l as the initial
context:

(de fun wa lk - fo rm (form env w a l k - f n)
(walk-form-internal

form ' :eval env walk-fn))

The first part of walk-form-internal is pretty

straightforward and appears in Figure 5. If the
walk function somehow did not return the form
it was given, the walker starts over again with
the new form. This allows the walk function to
perform its mapping in convenient cases; when

one case reduces to the input of another, the
walk function can simply return the new form,
knowing that it will get another look at the re-
sult.

There are many ways one could imagine for
finding the subexpressions of a given form. In
particular, the simplest way might be to ca se
on the ca r of the form and invoke a special-
form-specific walking routine.

The problem is that this leads to a lot of fairly
tedious code, since there are many similarities

III-1.54

(dofino-walkor-tomplate function
(dofino-walker-tomplate go
(dofino-walkor-tomplato throw

(dofino-walkor-tomplato sotq
(dofino-walkor-tomplato block
(dofino-walkor-tomplato progv

(dofino-walkor-tomplato if
(dofino-walkor-tompla¢o t agbody
(d o f i n o - w a l k o r - t o m p l a t o l o t

(nil :call))
(nix nil))
(nil :oval :oval))

(nil :repeat (:sot :oval)))
(nil nil :repeat (:oval)))
(nil :oval :oval :repeat (:oval)))

walk-if)
walk-tagbody)
walk-lot)

Figure 6: The walker templates for some of the special forms.

in the syntax of the various Common Lisp ex-
pressions. Instead, the walker employs a simple
but reasonably powerful language of w a l k e r t e m -

p la tes , patterns that can describe the syntax of *
most special forms.

A walker template acts as a kind of road map
to a particular kind of expression. For each sub-
form, it specifies the evaluation context of that
sub-form, or n i l if the sub-form is not evalu-
ated. For example, Figure 6 shows the template
definitions for some of the Common Lisp special
forms. The n i l at the front of several of these
represents the fact that the syntactic keywords
at the front of each of these forms (i.e., the sym-
bols f u n c t i o n , so tq , etc.) are not themselves

evaluated.

The syntax of several of the special forms al-
low certain kinds of sub-forms can be repeated
arbitrarily many times. To handle this, walker
templates may contain the construction

: ropoa¢ (template t e m p l a t e . . .)

meaning that the sequence of templates in
the parentheses may be repeated zero or more
times. Of course, only one : r o p o a t is allowed
at each level of parenthesis nesting; if there were
more, it wouldn't be clear when to stop repeat-
ing the first one and go on to the next.

As expressive as this template language is, it
is insufficient to describe a few of the Common

Lisp special forms. There are three kinds of
forms not handled this way:

The last sub-form of if and roturn-from
expressions is optional. One could imagine
adding a : o p t i o n a l construct to the tem-
plate language to handle these two cases,
but it is probably easier to handle them
specially. Neither form is very complicated,
after all.

The t agbody special form has a very id-
iosyncratic syntax, definitely easier to han-
dle in a special way.

While inside the various binding forms,
such as l o t , lambda, m a c r o l o t , and l a -
b e l s , the walker must arrange to augment
the syntactic environment that is passed to
the walk function; the environment must
reflect the fact that new bindings of one
kind or another are in effect.

For these special forms that are undescribable
in the template language (there are only ten of
them, out of the original 24), the code specifies
a form-specific walker function.

We can now unders tand the rest of walk-
form-intornal, whose complete definition ap-
pears in Figure 7.

G o t - w a l k o r - t o m p l a ¢ o takes the c a r of a ~
form and returns the appropriate template, or

III-1.55

(dofun walk-form-internal (form context onv walk-fn aaux template fn)
(mulziple-value-bind (new-form walk-no-more?)

(funcall walk-fn form context env)
(cond (walk-no-more? new-form)

((n o t (eq form new-form))
(walk-form-internal now-form context onv walk-fn))

((a%om now-form)
now-form)

((sotq template (got-walker-template (car now-form)))
(if (symbolp %omplato)

(funcall %ompla%o now-form context onv walk-fn)
(walk-template now-form template env walk-fn)))

(%

(multiple-value-bind (exp-form expanded?)

(macroexpand-i now-form onv)
(if expanded?

(walk-form-internal oxp-form context onv walk-fn)

(walk-template now-form '(:call :repeat (:oval))
onv walk-fn)))))))

Figure 7: All of the function w a l k - f o r m - i n t e r n a l .

nil if none was defined. If the argument
is a lambda-expression, it returns the tem-
plate (: c a l l : r o p o a t (: o v a l)) , representing
a function call. Walk- tompla to is the walker
function that interprets the template language;
we'll consider it in a moment.

If an expression has no template, the walker
checks to see if it is a call to a macro; if so, the
process starts over again with the expansion.

Finally, for normal function calls, the walker
calls wa lk - t omp la to with the form and an ap-
propriate template.

The code for walk-tompla%o is very nice; it
appears in Figure 8. The simple recursive struc-
ture of the template language is reflected in the
very simple structure of its interpreter. Note
how the final clause of the cond reconstructs
the results of the various sub-walks in a concise
way.

The only non-trivial part of the template in-
terpreter is the handling of the : ropoaz con-
struct. We must allow for the possibility that
there will be template pieces following a repe-

tition, so the tail of the form that must match
those pieces is computed and passed along to
w a l k - r e p e a t - t e m p l a t e , an auxilliary function
of the interpreter. The interpreter checks at
each step to see if it has reached this "stop-
form"; if so, it abandons the repetit ion and re-
turns to normal processing.

W a l k - r e p e a t - t e m p l a t e is responsible for it-
erating through the repetition for as long as nec-
essary. To do so, it keeps track of the template
pieces yet to be used in the current i teration
(the "repeat- template") as well as the template
as a whole. When the repeat- template runs
out, a new iteration is begun if appropriate, the
repeat-template being reinitialized from the full
template.

I think this template mechanism is the most
elegant part of the whole walker implementa-
tion.

Given the template walker as a model, it is
easy to see how to write the special-purpose
walker functions for the if, return-from, and
tagbody special forms. Of considerably more

III-1.56

(defun walk-template (form template env walk-fn)
(cond ((atom template)

(ecase template
((nil) form)
((:eval :set :call)
(walk-form-internal form template env walk-fn))))

((eq (car template) ':repeat)
(walk-repeat-template form (cdr template) '()

(nthcdr (- (length form)
(length (cddr template)))

form)
env
walk-fn))

((atom form)
(error "While walking template:'Z"

The template "S is longer than the form "S."
template form))

(t
(cons (walk-template (car form) (car template) env walk-fn)

(walk-template (cdr form) (cdr template) env walk-fn)))))

(defun walk-repeat-template (form template repeat-template
stop-form env walk-fn)

(cond ((null form)
(if (and (null repeat-template)

(null stop-form))
,()

(error "While handling :ropoat:'Z"
The form is shorter than the template.")))

((eq form stop-form)
(if (null repeat-template)

(walk-template form (cdr template) env walk-fn)
(error "While handling :repeat:'Z"

Ran into stop while still in repeat template.")))
((null repeat-template)
(walk-repeat-template form template (car template)

stop-form env walk-fn))
(t
(cons (walk-repeat-template (car form) template

(car repeat-template) env walk-fn)
(walk-repeat-template (cdr form) template

(cdr repeat-template) env walk-fn)))))

Figure 8: The functions walk-template and walk-repeag-templat~

III-I .57

(d e f v a r *wa lke r -da t a -name* (gensym))

(de fun e n v - w a l k e r - d a t a (env)

(l e t ((f n (m a c r o - f u n c ¢ i o n *wa lke r -da t a -name* e n v)))
(and fn (f u n c a l l f n ' () e n v))))

(de fun a u g m e n t - w a l k e r - e n v i r o n m e n t (env a r e s t k e y - a r g s

~key macro v a r i a b l e)
(l e t * ((o l d - d a t a (e n v - w a l k e r - d a c a env))

(new-daCa (append v a r i a b l e (c a r o l d - d a t a))))
(a p p l y # 'augmen¢-envi ronmen¢ env

:macro (cons (list *walker-data-name*

#'(lambda (form env) new-data))
macro)

key-args)))

(defun variable-binding (env var)
(member var (env-walker-daCa env)))

Figure 9: Environment-hacking trickery.

interest are the walk functions for forms that
affect the environment. I'll take the function
handling l e t forms as a representative exam-
pie; the others are more-or-less straightforward

derivatives. First, though, there is the mat ter
of environments.

Code walkers and other programs that ma-
nipulate syntactic environments cannot be writ-
ten portably i n the current definition of Com-
mon Lisp. This is because no procedures are
provided for interrogating environments or for
constructing new ones. In fact, all one can
do with an environment is pass it to either
macroexpand-1 or macroexpand. This situa-
tion is quite different in the new s tandard being
developed by the ANSI committee X3J13. 2

In the new standard, a number of functions
have been extended to accept an optional en-
vironment argument, macro - func ' e ion being a
notable example. In addition, a suite of new
functions have been defined for interrogating

2No ANSI s t a n d a r d has yet been publ i shed , so all
de ta i l s descr ibed here are sub jec t to change before the
draf t s t a n d a r d appears .

and constructing environments. For the pur-
poses of this article, only one of these new func-
tions is necessary.

The function augmen t -env i ronmen t takes an
existing environment and a number of keyword
arguments and returns a new enviromnent lay-
ering the information given in the keyword ar-
guments on top of the given environment. The
three key words we'll need here are : v a r i a b l e ,

: d e c l a r e , and :macro; their associated argu-
ments are as follows:

: v a r i a b l e A fist of symbols to be considered
as bound variables in the new environment.
All of the bindings are considered to be
lexical except those with a corresponding
s p e c i a l proclamation recorded in the en-
vironment or a s p e c i a l declaration given
with the : d e c l a r e keyword.

: d e c l a r e A list of decl-specs, the items that
can appear in the d e c l a r e special form.

:macro A list of lists, each of which has two
elements: a symbol naming a macro and

III-1.58

(defun walk-let (form context env walk-fn)
(multiple-value-bind (remaining-body decl-specs)

(parse-declarations (cddr form))
(let* ((bindings (cadr form))

(bindings-env (augment-environment env :declare decl-specs))
(walked-bindings

(mapcar #'(lambda (binding)
(if (symbolp binding)

binding
(cons (car binding)

(walk-form-internal (cadr binding)
':eval
bindings-env
walk-fn))))

bindings))
(names (mapcar #'(lambda (binding)

(if (symbolp binding)
binding
(car binding)))

bindings)))
(body-env (augment-walker-environment bindings-env

:declare decl-specs
:variable names))

(walked-body (walk-template remaining-body '(:repeat (:eval))
body-env walk-fn))

'(let ,walked-bindings
(declare ,@decl-specs)
,@walked-body))))

Figure 10: The special-purpose walker function for let-expressions.

an associated expansion function.

Functions have also been defined allowing
programs to discover information about vari-
able, function, and macro bindings, as well as
the declarations in force, all in any given envi-
ronment. Thus, tile walker goes to some trouble
to ensure that the environments passed to the
Walk function reflect the correct syntactic con-
text of the current form. W~lk functions can
then base their actions on the contents of the
environment.

Unfortunately, the v a r i a b l e - b i n d i n g func-
tion used in the walk function given earlier for

s y m b o l - m a c r o l e t cannot be written in terms of
the new facilities in the standard. The walker
must therefore implement that functionality it-
self. All that 's needed is a unique value associ-
ated with every variable binding. The walker,
though some subtle trickery, stores a fist of the
currently-bound variables in all of the environ-
ments it manipulates; the cons-cell whose ca r
contains a given variable is the unique value for
that binding. The code implementing the trick-
ery is in Figure 9.

The idea involves defining a macro in each
environment with a "secret" gensym-ed name,
stored in *wa lke r -da ta -name* . The expansion

III-1.59

(defunparse-declarations (body &optional doe-string-allowed?)
(labels ((scan (body decl-specs doe-string)

(let ((form (car body)))
(cond ((and (stringp form)

doe-string-allowed?
(null doe-string)
(not (null (cdr body))))

(scan (cdr body) decl-specs form))
((and (consp form)

(eq (car form) 'declare))
(scan (cdr body)

(append (cdr form) decl-specs)
doe-string))

(t

(values body decl-specs doe-string))))))
(scan body ' () '())))

Figure 11: The he lper func t ion parse-declarations.

funct ion for this secret mac ro ignores its argu-

ments a nd re turns a piece of "walker da t a " ; in
this case, the da t a is the list of bound-var iab le

names. Given an env i ronment , the funct ion

o n v - w a l k e r - d a t a re tu rns this piece of d a t a by

looking up the macro - func t ion for the secret

n a m e and then invoking it on some a rguments .

The function augment-walker-environment
is layered on top of augment-environment; it
adds any newly-bound variables to the list in the
walker da t a and redefines the secret macro in
addi t ion to any o ther new macros. The new se-

cret macro defini t ion will au tomat i ca l ly shadow

the old one, jus t as we desire.

Given this machinery , we can finally under-

s t and the specia l -purpose walker for l e t - ex-
pressions; it appears in Figure 10. The func t ion

parse-declarations takes the body of a let-
or lambda-form and splits it up into declara-
tions, documen ta t i on - s t r i ng (if one is allowed)

and the b o d y itself. The code for it is s imple a

and appears in Figure 11. Because of the (some-
what un fo r tuna t e) semant ics of C o m m o n Lisp

3The code is made even simpler by the fact that,
in the new standard, macros may not expand into
declarations.

dec lara t ions , the b inding-express ions of a l e t

mus t be walked in an e n v i r o m n e n t in which

those dec lara t ions are in effect; b i n d i n g s - o n v is

t h a t env i ronment . A second new e n v i r o n m e n t ,

wi th b o t h declara t ions an d the new variable

bindings, is cons t ruc ted to walk to body. Walk-

l o t r e tu rns a r econs t ruc t ed l o t - e x p r e s s i o n , in-

co rpo ra t ing the results of all the walking.

As a final point concern ing the walker, I want

to go back to the issue of the o rde r in which a

given express ion is walked. As we saw much ear-

lier, there are good uses for b o t h orders (pa ren t

before chi ldren and vice-versa) bu t the walker

cu r ren t ly provides on ly one. Dur ing our conver-
sat ions on the walker while I was wri t ing this ar-

ticle, Gregor came up wi th an in te res t ing change
t h a t would no t only allow b o t h orders , b u t an

a r b i t r a r y m i x t u r e of the two.

Under the new idea, the in te r face of walk

func t ions would change slightly. Along with tile

fo rm, con tex t , and e n v i r o n m e n t , walk func t ions

would receive a " c o n t i n u a t i o n " a r g u m e n t . T h e

con t inua t ion , when passed an express ion , would
recurs ively walk all of the i m m e d i a t e subexpres -
sions of t ha t form, r e tu rn ing the r econs t ruc t ed

III-l.60

(defmacro with-constant-folding (abody body &environment env)
(walk-form '(progn ,@body) env

#'(lambda (form context env continuation)
(lot ((walked-form (funcall continuation form)))

(if (and (eq context ':oval)
(consp walked-form)
(member (car walked-form) '(+ - * /))
(every #'constanzp (cdr walked-form)))

(oval walked-form)
walked-form)))))

Figure 12: Implementing w i th - c o n s t a n t - f o l d i n g for a continuation-passing walker.

result. Also, walk functions would no longer re-
turn a second value indicating whether or not
to continue walking; if more walking should be
done, the walk function would have to call the
continuation argument.

In this way, walk functions have complete
control over the order in which subexpressions
are walked; it is completely determined by
when, whether, and even how often the continu-
ation argument is invoked. Figure 12 shows how
the correct implementation of with-constant-
f o l d i n g could be written for sucil a walker.
Note that the recursive calls to wa lk - fo rm are
gone; the code more closely resembles the sim-
plicity of the old, naive implementation.

You might find it interesting to try your hand
at changing the walker to work in this new
way; I think that wa lk - fo rm and w a l k - f o r m -
i n t e r n a l are the only functions needing mod-
ification. I 'm given to understand that this
change will probably be working its way into
the distributed code sometime in the near fu-
ture.

find yourself wishing you had the walker to help
out; fortunately, it's freely available.

If you'd like to get a copy of the PCL
code walker, or even the entire PCL system,
send either electronic mail to "CommonLoops-
Coordinator.pa@Xerox.Com" or normal mail to

CommonLoops Coordinator
Xerox PARC
3333 Coyote Hill Rd.
Pale Alto, CA 94304

They can send you information on tile options
available to you for receiving the code.

Next issue, the (a l g o r i t h m s) depar tment
will cover one of the largest clients of the code
walker: a clever implementation by Bill van
Melle of an elegant and powerful iteration facil-
ity. If you've got an idea for a article in this de-
partment for issues after that, please send them
along.

That just about covers the most important
ideas in the walker. It 's an interesting tool
that can serve as the basis for a wide variety of
other code-analysis applications. The next time
you're writing a hairy macro, you may very well

111-1.61

