
The Series Macro Package

by

Richard C. Waters

MIT Artificial Intelligence Laboratory
545 Technology Sq.; Cambridge MA 02139

INTERNET: dick@ai.mit.edu

A b s t r a c t

The benefits of programming in a functional style are
well known. Algorithms that are expressed as compositions
of functions operating on series/vectors/streams of data
elements are much easier to understand and modify than
equivalent algorithms expressed as loops. Unfortunately,
many programmers hesitate to use series expressions. In
part, this is due to the fact that series expressions are
typically implemented very inefficiently.

A portable Common Lisp macro package (called Series)
has been implemented that can evaluate a wide class of se-
ries expressions very efficiently by transforming them into
iterative loops. When using this class of series expressions,
programmers can obtain the advantages of expressing com-
putations as series expressions without incurring any run-
time overhead.

O v e r v i e w

The main body of this paper briefly summarizes every-
thing you need to know to star t using the Series macro
package. It includes a detailed example of how series are
intended to be used and information about how to obtain
the macro package over the INTERNET.

A concise reference manual for the Series macro pack-
age is included as an appendix. This manual is excerpted
from [5], which describes the macro package in full detail.
A companion paper [6] gives an overview of the theory
underlying the macro package and compares the macro
package with related systems.

Series combine aspects of sequences, streams, and loops.
Like sequences, series represent totally ordered multi-sets.
In addition, the series functions have the same flavor as the
sequence functions--namely, they operate on whole series,
rather than extracting elements to be processed by other
functions. For instance, the series expression below com-
putes the sum of the positive elements in a list.

(c o l l e c t - s u m (c h o o s e - i f # ' p l u s p (s can ' (1 -2 3 - 4))))
:=~4

Like streams, series can represent unbounded sets of el-
ements and are supported by lazy evaluation: The ith el-
ement of a series is not computed until it is needed. For
instance, the series expression below returns a list of the
first five even natural numbers and their sum. The call on
scan-range returns a series of all the even natural numbers.

However, since no elements beyond the first five are ever
used, no elements beyond the first five are ever computed.

(let ((x (subseries (scan-range :from 0 :by 2) 0 5)))
(values (collect x) (collect-sum x)))

(0 2 4 6 8) and 20

Like sequences and unlike streams, the act of accessing
the elements of a series does not alter the series. For in-
stance, both users of x above receive the same elements.

In a loop, a totally ordered multi-set of elements can be
represented by the successive values of a variable. This is
extremely efficient, because it avoids the need to store the
elements as a group in any kind of data structure. In most
situations, series expressions achieve this same high level of
efficiency, because they are automatically transformed into
loops before being evaluated or compiled. For instance, the
first expression above is transformed into a loop like the
following.

(let ((sum 0))
(dolist (i '(I-2 3-4) sum)

(if (plusp i) (setq sum (+ sum i))))) ~ 4

A wide variety of algorithms can be expressed clearly
and succinctly using series expressions. In particular, most
of the loops programmers typically write can be replaced
by series expressions that are much easier to understand
and modify, and just as efficient. From this perspective,
the key feature of series is that they are supported by a rich
set of functions. These functions more or less correspond
to the union of the operations provided by the sequence
functions, the loop clauses, and the vector operations of
APL.

Unfortunately, some series expressions cannot be trans-
formed into loops. This matters because, while trans-
formable series expressions are much more efficient than
equivalent expressions involving sequences or streams, non-
transformable series expressions are much less efficient.
Whenever a problem comes up that blocks the transfor-
mation of a series expression, a warning message is issued.
Based on the information in the message, it is usually easy
to provide an efficient fix for the problem.

Fortunately, most series expressions can be transformed
into loops. In particular, pure expressions (ones that do
not store series in variables) can always be transformed.
As a result, the best approach for programmers to take is
to simply write series expressions without worrying about
transformability. When problems come up, they can he

III-l.7

ignored (since they cannot lead to the computation of in-
correct results) or dealt with on an individual basis.

The series data type. The Series macro package sup-
ports the series data type and a suite of functions oper-
ating on this data type. Series are self-evaluating objects.
In analogy with #(items), the # macro character syntax
#z(items) is provided for writing literal series. This same
syntax is used when series are printed. If *print-length*
is not nil, then long (or unbounded) series are abbreviated
using "... ", as in the second example below.

#Z(a (b c) d) ~ #Z(a (b c) d)
#Z(a b . #1=(c d . #I#)) ~ #Z(a b c d c d ...)

Predefined series functions. The heart of the Se-
ries macro package is a set of several dozen functions that
operate on series. These functions divide naturally into
three classes. Scanners produce series without consuming
any. Transducers compute series from series. Collectors
consume series without producing any.

Predefined scanners include: s e r i e s which creates a se-
ries indefinitely repeating a given value, scan which enu-
merates the elements in a sequence, scan-range which enu-
merates the integers in a range, and s c a n - p l i s t which cre-
ates a series of the indicators in a property list along with
a second series containing the corresponding values. The
first argument of scan specifies the type of sequence to he
scanned. If omitted, the type defaults to l i s t .

(series 'a) ~ #Z(a a a . . .)
(scan '(a b c)) ~ #Z(a b c)
(scan 'vector '#(a b c)) ~ #Z(a b c)
(scan-range :from 1 :upto 3) ~ #Z(I 2 3)
(scan-plist '(a I b 2)) ~ #Z(a b) and #Z(I 2)

Predefined transducers include: positions which returns
the positions of the non-null elements in a series and choose
which selects the elements of its second argument that cor-
respond to non-null elements of its first argument.

(positions #Z(a nil b c nil nil)) ~ #Z(0 2 3)
(choose #Z(nil T T nil) #Z(I 2 3 4)) ~ #Z(2 3)

Predefined collectors include: collect which combines
the elements of a series into a sequence, collect-sum which
acids up the elements of a series, collect-length which
computes the length of a series, and collect-first which
returns the first element of a series. The first argument of
collect specifies the type of the sequence to be produced.
If omitted, the type defaults to list.

(collect #Z(a b c)) ~ (a b c)
(collect 'simple-vector #Z(1 2 3)) ~ #(I 2 3)
(collect-sum #Z(I 2 3)) ~ 6
(collect-length #Z(a b c)) =~ 3
(collect-first #Z(a b c)) ~ a

H i g h e r - O r d e r se r ies f u n c t i o n s . The Series macro
package provides a number of higher-order functions,
which support general classes of series operations. For
example, the function (map-fn type function items) sup-
ports the generic transduction operation of mapping a
function over a series. The type argument specifies the
type of the elements in the series being created. Each el-
ement of the output is computed by applying function to
the corresponding element of items.

(map-fn T #'sqrt #Z(4 9 16)) ~ #Z(2 3 4)

Scanning is supported by (scan-fn type init step test).
The type argument specifies the type of the elements in the
series being created. The function init is called to obtain
the first element of the output. Subsequent elements are
obtained by applying the function step to the previous el-
ement. The series consists of the elements up to, but not
including, the first element for which the function test re-
turns non-null.
(scan-fn 'integer #'(lambda () 3) #'1- #'minusp)
=~ #z(3 2 1 o)

Collecting is supported by (collect-fn type init func-
tion items). The elements of the series items are combined
together using function. The quantity returned by init is
used as an initial seed value for the accumulation. The
type argument specifies the type of the summary value re-
turned.

(collect-fn 'integer #'(lambda () 3) #'+ #Z(1 2 3))
=~.9

Convenient support for mapping. Mapping is by far
the most commonly used series operation. In cognizance
of this fact, the Series macro package provides three mech-
anisms that make it easy to express particular kinds of
mapping. The # macro character syntax #Rf converts a
function f into a transducer that maps f
(#Msqrt #Z(4 16)) ~ (map-fn T #'sqrt #Z(4 16))
=~ #z(2 4)

The form mapping can be used to specify the mapping
of a complex expression over one or more series without
having to write a literal lambda expression. For example,
(mapping ((x (scan '(2 -2 3))))

(expt (abs x) 3)) =~ #Z(8 8 27)

is the same as

(map-fn T #'(lambda (x) (expt (abs x) 3))
(scan ' (2 -2 3))) ~ #Z(8 8 27)

The form iterate is the same as mapping except that the
value nil is always returned.
(iterate ((x (scan '(2 -2 3))))

(if (plusp x) (prinl x))) ~ nil <after printing "23">

To a first approximation, iterate and mapping differ in
the same way as mapc and mapcar. In particular, like mapc,
iterate is intended to be used in situations where the body
is being evaluated for side effect rather than for its result.
However, due to the lazy evaluation semantics of series, the
difference between iterate and mapping is more than just
a question of efficiency. If mapping is used in a situation
where the output is not used, no computation is performed,
because series elements are not computed until they are
used.

U s e r - d e f i n e d se r ies f u n c t i o n s . As shown by the def-
initions of simplified versions of col lec t -sum and mapping
shown below, the s tandard Lisp forms defun and defmacro
can be used to define new series functions. However,
when a series function is defined with defun, the Series
macro package is not capable of optimizing series ex-
pressions containing this new function unless the declara-
tion opt imizable-series-function is specified in the defun.
This declaration is not required when using defmacro.

III-l.8

(defun simple-collect-sum (numbers)
(declare (optimizab!e-series-function))

(collect-In 'number #'(lambda () O) #'+ numbers))

(defmacro simple-mapping (var-value-pair-list &body b)
(leG* ((pairs (scan var-value-pair-list))

(arg-list (collect (#Mcarpairs)))
(value-list (collect (#Mcadrpairs))))

'(map-In T #'(lambda ,arg-list ,@ b)
,@ value-list)))

B e n e f i t s . The advantage of series expressions is that
they retain most of the virtues of loop-free, functional pro-
gramming, while eliminating most of the costs. However,
given the fact tha t optimization is not always possible,
the question natural ly arises as to whether optimization is
possible in a wide enough range of situations to be of real
pragmatic benefit.

An informal s tudy [3] was undertaken of the kinds of
loops programmers actually write. This study suggests
tha t approximately 80% of the loops programmers write
are constructed by combining a few common kinds of loop-
ing algorithms in a few simple ways. The Series macro
package is designed so that all of these loops can be triv-
ially expressed as optimizable series expressions. Many
more loops can be expressed as optimizable series expres-
sions with only minor modification.

Moreover, the benefits of using series expressions go be-
yond replacing individual loops. A major shift toward
using series expressions would be a significant change in
the way programming is done. At the current time, most
programs contain one or more loops and most of the in-
teresting computat ion in these programs occurs in these
loops. This is quite unfortunate, since loops are generally
acknowledged to be one of the hardest things to understand
in any program. If series expressions were used whenever
possible, most programs would not contain any loops. This
would be a major step forward in conciseness, readability,
verifiability, and maintainability.

It should also be noted that , while this paper concen-
trates on the Lisp implementation of series, the ideas be-
hind the Series macro package have nothing to do with the
Lisp language per se. A Pascal implementation of series is
described in [2, 4].

E x a m p l e

The following example shows what it is like to use se-
ries expressions in a realistic programming context. The
example consists of two parts: a pair of functions that con-
vert between sets represented as lists and sets represented
as bits packed into an integer and a graph algorithm that
uses the integer representation of sets.

B i t se ts . Small sets can be represented very efficiently
as binary integers where each 1 bit in the integer represents
an element in the set. Here, sets represented in as binary
integers are referred to as bit sets.

Common Lisp provides a number of bitwise operations
on integers, which can be used to manipulate bit sets. In
particular, l og io r computes the union of two bit sets while
logand computes their intersection.

(defunbset->list (bset universe)
(collect (choose (#Mlogbitp (scan-range :from O)

(series bset))
(scan universe))))

(defunlist->bset (items universe)
(collect-In 'integer #'(lambda () O) #'logior

(mapping ((item (scan items)))
(ash 1 (bit-position item universe)))))

(defunbit-position (item universe)
(or (collect-first

(p o s i t i o n s
(#Meq (s e r i e s item) (scan u n i v e r s e))))

(1- (length (n c o n c u n i v e r s e (l i s t i t e m))))))

Figure 1: Converting between lists and bit sets.

The functions in Figure 1 convert between sets repre-
sented as lists and bit sets. To perform this conversion, a
mapping has to be established between bit positions and
potential set elements. This mapping is specified by a uni-
verse. A universe is a list of elements. If a bit set integer b
is associated with a universe u, then the ith element in u is
in the set represented by b if and only if the ith bit in b is
1. For example, given the universe (a b c d e), the inte-
ger #b01011 represents the set {a,b,d}. (By Common Lisp
convention, the 0th bit in an integer is the least significant
bit.)

Given a bit set and its associated universe, the function
b s e t - > l i s t converts the bit set into a set represented as a
list of its elements. It does this by scanning the elements
in the universe along with their positions and constructing
a list of the elements which correspond to ls in the inte-
ger representing the bit set. (When no :upto argument is
supplied, scan-range counts up forever.)

The function l i s t - > b s e t converts a set represented as a
list of its elements into a bit set. Its second argument is the
universe that is to be associated with the bit set created.
For each element of the list, the function b i t - p o s i t i o n is
called to determine which bit position should be set to 1.
The function ash is used to create an integer with the cor-
rect bit set to 1. The function c o l l e c t - I n is used to com-
bine the integers corresponding to the individual elements
together into a bit set corresponding to the list.

The function b i t - p o s i t i o n takes an item and a universe
and returns the bit position corresponding to the item.
The function operates in one of two ways depending on
whether or not the i tem is in the universe. The first line of
the function contains a series expression that determines
the position of the i tem in the universe. If the item is not
in the universe, the expression returns n i l . (The function
c o l l e c t - f i r s t returns n i l if it is passed a series of length
zero.)

If the i tem is not in the universe, the second line of the
function adds the i tem onto the end of the universe and
returns its position. The extension of the universe is done
by side effect so that it will be permanently recorded in
the universe.

Figure 2 shows the definition of two collectors that op-
erate on series of bit sets. The first function computes the

III-l.9

(defun collect-logior (bsets)
(declare (optimizable-series-function))

(collect-fn 'integer #'(lambda () 0)
#'logior bsets))

(defun collect-logand (bsets)
(declare (optimizable-series-function))

(collect-fn 'integer #'(lambda () -I)
#'logand bsets))

Figure 2: Operations on series of bit sets.

union of a series of bit sets, while the second computes
their intersection.

L ive v a r i a b l e ana lys i s . As an illustration of the way
bit sets might be used, consider the following. Suppose
that in a compiler, program code is being represented as
blocks of straight-line code connected by possibly cyclic
control flow. The top par t of Figure 3 shows the data
structure tha t represents a block of code. Each block has
several pieces of information associated with it. Two of
these pieces of information are the blocks that can branch
to the block in question and the blocks it can branch to.
A program is represented as a list of blocks that point to
each other through these fields.

In addition to control flow information, each structure
contains information about the way variables are accessed.
In particular, it records the variables tha t are written by
the block and the variables tha t are used by the block (i.e.,
either read without being writ ten or read before they are
written). An additional field (computed by the function
de te rmine- l ive discussed below) records the variables that
are live at the end of the block. (A variable is live if it
has to be saved, because it can potential ly be used by a
following block.) Finally, there is a temporary data field,
which is used by functions (such as determine-live) that
perform computations involved with the blocks.

The rest of Figure 3 shows the function determine-live
which, given a program represented as a list of blocks,
determines the variables that are live in each block. To
perform this computation efficiently, the function uses bit
sets. The function operates in three steps. The first step
(convert-to-bsets) looks at each block and sets up an aux-
iliary data structure containing bit set representations for
the written variables, the used variables, and an initial
guess that there are no live variables. This auxiliary struc-
ture is defined by the third form in Figure 3 and is stored
in the temp field of the block. The integer 0 represents an
empty bit set.

The second step (perform-relaxation) determines which
variables are live. This is done by relaxation. The initial
guess that there are no live variables in any block is suc-
cessively improved until the correct answer is obtained.

The third step (convert-from-bsets) operates in the re-
verse of the first step. Each block is inspected and the bit
set representation of the live variables is converted into a
list, which is stored in the live field of the block.

On each cycle of the loop in perform-relaxation, a block
is examined to determine whether its live set has to be
changed. To do this (see the function live-estimate), the
successors of the block are inspected. Each successor needs

(defs t ruct (block (:cone-name nil))
predecessors ;Blocks that can branch to this one.
successors ;Blocks this one can branch to.
written ;Variables written in the block.
used ;Variables read before written.
live ;Variables needed at exit.
temp) ;Temporary storage location.

(defundetermine-live (program-graph)
(let ((universe (list nil)))

(convert-to-bsets program-graphuniverse)
(perform-relaxation program-graph)
(convert-from-bsets program-graphuniverse))

program-graph)

(defstruct (temp-bsets (:cone-name bset-))
used written live)

(defunconvert-to-bsets (program-graphuniv)
(iterate ((block (scan program-graph)))
(setf (temp block)

(make-temp-bsets
:used (list->bset (used block) univ)
:written (list->bset (written block)

univ)
:live 0))))

(defunperform-relaxation (program-graph)
(let ((to-do program-graph))

(loop
(when (null to-do) (return (values)))
(let* ((block (pop to-do))

(estimate (live-estimate block)))
(when (not (= estimate

(bset-live (temp block))))
(setf (bset-live (temp block)) estimate)
(iterate ((prey (scan (predecessors block))))

(pushnew prey to-do)))))))

(defunlive-estimate (block)
(collect-logior

(mapping ((next (scan (successors block))))
(logior (bset-used (temp next))

(logandc2 (bset-live (temp next))
(bset-written (temp next)))))))

(defunconvert-from-bsets (program-graphuniv)
(iterate ((block (scan program-graph)))

(setf (live block)
(bset->list (bset-live (temp block)) univ))

(serf (temp block) nil)))

Figure 3: Live variable analysis.

to have available to it the variables it uses, plus the vari-
ables tha t are supposed to be live after it, minus the vari-
ables it writes. (The function logandc2 takes the difference
of two bit sets.) A new estimate of the total set of variables
needed by the successors as a group is computed by using
co l l ec t - log ior .

If this new estimate is different from the current estimate
of what variables are live, then the estimate is changed. In
addition, if the estimate is changed, per form-re laxa t ion
has to make sure tha t all of the predecessors of the current
block will be examined to see if the new estimate for the
current block requires tha t their live estimates be changed.
This is done by adding each predecessor onto the list to-do
unless it is already there. As soon as the estimates of
liveness stop changing, the computat ion stops.

Summary. The function determine-live is a partic-
ularly good example of the way series expressions are in-

III-l.lO

tended to be used in two ways. First, series expressions are
used in a number of places to express computations which
would otherwise be expressed less clearly as loops or less
efficiently as sequence function expressions. Second, the
main relaxation algorithm is expressed as a loop. This is
done, because neither optimizable series expressions (nor
Common Lisp sequence function expressions) lend them-
selves to expressing the relaxation algorithm. This high-
lights the fact that series expressions are not intended to
render iterative programs entirely obsolete, but rather to
provide a greatly improved method for expressing the vast
majority of loops.

Setting Up the Series Macro Package
The Series macro package is written in standard Com-

mon Lisp and has been tested in several different versions
of Common Lisp. To use the Series macro package, the file
containing it has to be loaded.

The source for the Series macro package can be obtained
over the INTER.NET by using FTP. Connection should be
made to the TRIX.AI.MIT.EDU machine (INTERNET n u m -

b e r 128.52.32.6). Login as 'anonymous' and copy the files
shown below. It is advisable to run the tests in s t e s t . l i s p
after compiling the Series macro package for the first time
on a new system. A comment at the beginning of the file
describes how to run the tests.

files on TRIX.AI.MIT.EDU,

/com/ftp/pub/series/s. lisp source code
/com/ftp/pub/series/st eat. lisp tes ts
/com/ftp/pub/series/sdoc. t x t br ief documenta t ion

As the series macro package is being made available free
of charge, it is being distributed as is, with no warrantee
of any kind either expressed or implied. Neither the au-
thor nor MIT accepts liability of any kind. In addition,
if you wish to use the Series macro package for anything
other than your own experimental use, you will have to get
a license from MIT. Information about obtaining a non-
exclusive, royalty-free license can be obtained by sending
a message to "d i ck@ai . m i t . e d u ' .

The functions and forms discussed in this manual are
defined in the package "ser ies" . To make these names
easily accessible, you must use the package "ser ies" . The
most convenient way to do this is to call the function
s e r i e s : : i n s t a l l , which also sets up some additional fea-
tures of the series macro package. The examples in this
manual assume that the form (ser ies : : i n s t a l l) has been
evaluated.

• series: :install &key (:pkg *package*) (:macro T)

(:shade. T) (:remove nil) :=~ T

Calling this function sets up Series for use in the pack-
age :pkg. The argument :pkg can either be a package, a
package name, or a symbol whose name is the name of a
package. It defaults to the current package.

The package "ser ies" is used in :pkg. If the :macro ar-
gument is not n i l , the # macro character syntax #z and #M
is set up. If the :shadow argument is not n i l , the symbols
series : : let, series : : let*, aeries : :multiple-value-bind,

series: :funcall, and series: :defun a re shadowing im-
ported into :pkg. These forms are identical to their stan-
dard counterparts, except that they support various fea-
tures of the Series macro package. When shadowing is not
done, you have to explicitly use se r ies : : le t , ser ies : :let*,
and ser ies : :multiple-value-bind when binding series in
an expression you want optimized; ser ies : :funcall when
funcall ing a series function you want optimized; and
s e r i e s : :defun when defining a series function with the dec-
laration opt imizable-series-function.

If :remove is not nil, the effects of having previously
installed the Series macro package are undone. In partic-

ular, the package is unused and any shadowing is undone.
However, any changes to the readtable are left in place.

A c k n o w l e d g m e n t s .

The Series macro package has benefited from the sug-
gestions of a number of people. In particular, A. Meyer,
C. Perdue, C. Rich, D. Wile, Y. Feldman, D. Chapman,
Y. Tan, and P. Anagnostopoulos made suggestions that
led to significant improvements. Financial Support for the
development of the Series macro package was provide by
the National Science Foundation, the Advanced Research
Projects Agency of the Department of Defense, and the
IBM, NYNEX, Siemens, and Microelectronics and Computer
Technology corporations.

Bibliography

[1] A. Aho, J. Hopcraft, and J. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley,
Reading MA, 1974.

[2] J. Orwant, Support of Obviously Synchronizable
Series Expressions in Pascal, MIT/AI/WP-312,
September 1988.

[3] It. Waters, "A Method for Analyzing Loop
Programs", IEEE Trans. on Software Engineering,
5(3):237-247, May 1979.

[4] R. Waters, "Using Obviously Synchronizable Series
Expressions Instead of Loops" Proc. 1988
International Conference on Computer Languages,
338-346, Miami FL, IEEE Computer Society press,
October 1988.

[5] R. Waters, Optimization of Series Expressions:
Part I: User's Manual for the Series Macro Package,
MIT/AIM-1083, January 1989.

[6] R. Waters, Optimization of Series Expressions:
Part II: Overview of the Theory and
Implementation, MIT/AIM-1083, January 1989.

Ill-l.ll

