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A b s t r a c t  

The benefits of  programming in a functional style are 
well known. Algorithms that are expressed as compositions 
of functions operating on series/vectors/streams of data  
elements are much easier to understand and modify than 
equivalent algorithms expressed as loops. Unfortunately, 
many programmers hesitate to use series expressions. In 
part, this is due to the fact that series expressions are 
typically implemented very inefficiently. 

A portable Common Lisp macro package (called Series) 
has been implemented that can evaluate a wide class of se- 
ries expressions very efficiently by transforming them into 
iterative loops. When using this class of series expressions, 
programmers can obtain the advantages of  expressing com- 
putations as series expressions without incurring any run- 
time overhead. 

O v e r v i e w  

The main body of this paper briefly summarizes every- 
thing you need to know to star t  using the Series macro 
package. It includes a detailed example of how series are 
intended to be used and information about  how to obtain 
the macro package over the INTERNET. 

A concise reference manual for the Series macro pack- 
age is included as an appendix. This manual is excerpted 
from [5], which describes the macro package in full detail. 
A companion paper [6] gives an overview of the theory 
underlying the macro package and compares the macro 
package with related systems. 

Series combine aspects of sequences, streams, and loops. 
Like sequences, series represent totally ordered multi-sets. 
In addition, the series functions have the same flavor as the 
sequence functions--namely,  they operate on whole series, 
rather than extracting elements to be processed by other 
functions. For instance, the series expression below com- 
putes the sum of the positive elements in a list. 

( c o l l e c t - s u m  ( c h o o s e - i f  # ' p l u s p  ( s can  ' ( 1  -2  3 - 4 ) ) ) )  
:=~4 

Like streams, series can represent unbounded sets of el- 
ements and are supported by lazy evaluation: The ith el- 
ement of a series is not computed until it is needed. For 
instance, the series expression below returns a list of the 
first five even natural  numbers and their sum. The call on 
scan-range returns a series of all the even natural  numbers. 

However, since no elements beyond the first five are ever 
used, no elements beyond the first five are ever computed. 

(let ((x (subseries (scan-range :from 0 :by 2) 0 5))) 
(values (collect x) (collect-sum x))) 

(0 2 4 6 8) and 20 

Like sequences and unlike streams, the act of accessing 
the elements of a series does not alter the series. For in- 
stance, both users of x above receive the same elements. 

In a loop, a totally ordered multi-set of elements can be 
represented by the successive values of a variable. This is 
extremely efficient, because it avoids the need to store the 
elements as a group in any kind of data  structure. In most 
situations, series expressions achieve this same high level of 
efficiency, because they are automatically transformed into 
loops before being evaluated or compiled. For instance, the 
first expression above is transformed into a loop like the 
following. 

(let ((sum 0)) 
(dolist (i '(I-2 3-4) sum) 

(if (plusp i) (setq sum (+ sum i))))) ~ 4 

A wide variety of algorithms can be expressed clearly 
and succinctly using series expressions. In particular, most 
of the loops programmers typically write can be replaced 
by series expressions that  are much easier to understand 
and modify, and just  as efficient. From this perspective, 
the key feature of series is that  they are supported by a rich 
set of functions. These functions more or less correspond 
to the union of the operations provided by the sequence 
functions, the loop clauses, and the vector operations of 
APL. 

Unfortunately, some series expressions cannot be trans- 
formed into loops. This matters  because, while trans- 
formable series expressions are much more efficient than 
equivalent expressions involving sequences or streams, non- 
transformable series expressions are much less efficient. 
Whenever a problem comes up that  blocks the transfor- 
mation of a series expression, a warning message is issued. 
Based on the information in the message, it is usually easy 
to provide an efficient fix for the problem. 

Fortunately, most series expressions can be transformed 
into loops. In particular, pure expressions (ones that  do 
not store series in variables) can always be transformed. 
As a result, the best approach for programmers to take is 
to simply write series expressions without worrying about 
transformability. When problems come up, they can he 
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ignored (since they cannot lead to the computation of in- 
correct results) or dealt with on an individual basis. 

The series data type. The Series macro package sup- 
ports the series data type and a suite of functions oper- 
ating on this data type. Series are self-evaluating objects. 
In analogy with #(items), the # macro character syntax 
#z(items) is provided for writing literal series. This same 
syntax is used when series are printed. If *print-length* 
is not nil, then long (or unbounded) series are abbreviated 
using "... ", as in the second example below. 

#Z(a (b c) d) ~ #Z(a (b c) d) 
#Z(a b . #1=(c d . #I#)) ~ #Z(a b c d c d ...) 

Predefined series functions. The heart of the Se- 
ries macro package is a set of several dozen functions that 
operate on series. These functions divide naturally into 
three classes. Scanners produce series without consuming 
any. Transducers compute series from series. Collectors 
consume series without  producing any. 

Predefined scanners include: s e r i e s  which creates a se- 
ries indefinitely repeating a given value, scan which enu- 
merates the elements in a sequence, scan-range which enu- 
merates the integers in a range, and s c a n - p l i s t  which cre- 
ates a series of  the indicators in a property list along with 
a second series containing the corresponding values. The 
first argument of scan specifies the type of sequence to he 
scanned. If  omitted,  the type defaults to l i s t .  

(series 'a) ~ #Z(a a a . . . )  
(scan '(a b c)) ~ #Z(a b c) 
(scan 'vector '#(a b c)) ~ #Z(a b c) 
(scan-range :from 1 :upto 3) ~ #Z(I 2 3) 
(scan-plist '(a I b 2)) ~ #Z(a b) and #Z(I 2) 

Predefined transducers include: positions which returns 
the positions of the non-null elements in a series and choose 
which selects the elements of its second argument that cor- 
respond to non-null elements of its first argument. 

(positions #Z(a nil b c nil nil)) ~ #Z(0 2 3) 
(choose #Z(nil T T nil) #Z(I 2 3 4)) ~ #Z(2 3) 

Predefined collectors include: collect which combines 
the elements of a series into a sequence, collect-sum which 
acids up the elements of a series, collect-length which 
computes the length of a series, and collect-first which 
returns the first element of a series. The first argument of 
collect specifies the type of the sequence to be produced. 
If omitted, the type defaults to list. 

(collect #Z(a b c)) ~ (a b c) 
(collect 'simple-vector #Z(1 2 3)) ~ #(I 2 3) 
(collect-sum #Z(I 2 3)) ~ 6 
(collect-length #Z(a b c)) =~ 3 
(collect-first #Z(a b c)) ~ a 

H i g h e r - O r d e r  se r ies  f u n c t i o n s .  The Series macro 
package provides a number of higher-order functions, 
which support general classes of series operations. For 
example, the function (map-fn type function items) sup- 
ports the generic transduction operation of mapping a 
function over a series. The type argument specifies the 
type of the elements in the series being created. Each el- 
ement of the output  is computed by applying function to 
the corresponding element of items. 

(map-fn T #'sqrt #Z(4 9 16)) ~ #Z(2 3 4) 

Scanning is supported by (scan-fn type init step test). 
The type argument specifies the type of the elements in the 
series being created. The function init is called to obtain 
the first element of the output. Subsequent elements are 
obtained by applying the function step to the previous el- 
ement. The series consists of the elements up to, but not 
including, the first element for which the function test re- 
turns non-null. 
(scan-fn 'integer #'(lambda () 3) #'1- #'minusp) 
=~ #z(3 2 1 o) 

Collecting is supported by (collect-fn type init func- 
tion items). The elements of the series items are combined 
together using function. The quantity returned by init is 
used as an initial seed value for the accumulation. The 
type argument specifies the type of the summary value re- 
turned. 

(collect-fn 'integer #'(lambda () 3) #'+ #Z(1 2 3)) 
=~.9 

Convenient support for mapping. Mapping is by far 
the most commonly used series operation. In cognizance 
of this fact, the Series macro package provides three mech- 
anisms that make it easy to express particular kinds of 
mapping. The # macro character syntax #Rf converts a 
function f into a transducer that maps f 
(#Msqrt #Z(4 16)) ~ (map-fn T #'sqrt #Z(4 16)) 
=~ #z(2 4) 

The form mapping can be used to specify the mapping 
of a complex expression over one or more series without 
having to write a literal lambda expression. For example, 
(mapping ((x (scan '(2 -2 3)))) 

(expt (abs x) 3)) =~ #Z(8 8 27) 

is the same as 

(map-fn T #'(lambda (x) (expt (abs x) 3)) 
(scan ' (2  -2 3 ) ) )  ~ #Z(8 8 27) 

The form iterate is the same as mapping except that the 
value nil is always returned. 
(iterate ((x (scan '(2 -2 3)))) 

(if (plusp x) (prinl x))) ~ nil <after printing "23"> 

To a first approximation, iterate and mapping differ in 
the same way as mapc and mapcar. In particular, like mapc, 
iterate is intended to be used in situations where the body 
is being evaluated for side effect rather than for its result. 
However, due to the lazy evaluation semantics of series, the 
difference between iterate and mapping is more than just 
a question of efficiency. If mapping is used in a situation 
where the output is not used, no computation is performed, 
because series elements are not computed until they are 
used. 

U s e r - d e f i n e d  se r ies  f u n c t i o n s .  As shown by the def- 
initions of simplified versions of col lec t -sum and mapping 
shown below, the s tandard Lisp forms defun and defmacro 
can be used to define new series functions. However, 
when a series function is defined with defun, the Series 
macro package is not capable of optimizing series ex- 
pressions containing this new function unless the declara- 
tion opt imizable-series-function is specified in the defun. 
This declaration is not required when using defmacro. 
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(defun simple-collect-sum (numbers) 
(declare (optimizab!e-series-function)) 

(collect-In 'number #'(lambda () O) #'+ numbers)) 

(defmacro simple-mapping (var-value-pair-list &body b) 
(leG* ((pairs (scan var-value-pair-list)) 

(arg-list (collect (#Mcarpairs))) 
(value-list (collect (#Mcadrpairs)))) 

'(map-In T #'(lambda ,arg-list ,@ b) 
,@ value-list))) 

B e n e f i t s .  The  advantage of series expressions is that  
they retain most of the virtues of loop-free, functional pro- 
gramming, while eliminating most of the costs. However, 
given the fact tha t  optimization is not always possible, 
the question natural ly arises as to whether optimization is 
possible in a wide enough range of situations to be of real 
pragmatic benefit. 

An informal s tudy [3] was undertaken of the kinds of 
loops programmers actually write. This study suggests 
tha t  approximately 80% of the loops programmers write 
are constructed by combining a few common kinds of loop- 
ing algorithms in a few simple ways. The Series macro 
package is designed so that  all of these loops can be triv- 
ially expressed as optimizable series expressions. Many 
more loops can be expressed as optimizable series expres- 
sions with only minor modification. 

Moreover, the benefits of using series expressions go be- 
yond replacing individual loops. A major shift toward 
using series expressions would be a significant change in 
the way programming is done. At the current time, most 
programs contain one or more loops and most of the in- 
teresting computat ion in these programs occurs in these 
loops. This is quite unfortunate,  since loops are generally 
acknowledged to be one of the hardest things to understand 
in any program. If series expressions were used whenever 
possible, most programs would not contain any loops. This 
would be a major  step forward in conciseness, readability, 
verifiability, and maintainability. 

It should also be noted that ,  while this paper concen- 
trates on the Lisp implementation of series, the ideas be- 
hind the Series macro package have nothing to do with the 
Lisp language per  se. A Pascal implementation of series is 
described in [2, 4]. 

E x a m p l e  

The following example shows what it is like to use se- 
ries expressions in a realistic programming context. The  
example consists of two parts: a pair of functions that  con- 
vert between sets represented as lists and sets represented 
as bits packed into an integer and a graph algorithm that  
uses the integer representation of sets. 

B i t  se ts .  Small sets can be represented very efficiently 
as binary integers where each 1 bit in the integer represents 
an element in the set. Here, sets represented in as binary 
integers are referred to as bit sets. 

Common Lisp provides a number of bitwise operations 
on integers, which can be used to manipulate bit sets. In 
particular,  l og io r  computes the union of two bit sets while 
logand computes their intersection. 

(defunbset->list (bset universe) 
(collect (choose (#Mlogbitp (scan-range :from O) 

(series bset)) 
(scan universe)))) 

(defunlist->bset (items universe) 
(collect-In 'integer #'(lambda () O) #'logior 

(mapping ((item (scan items))) 
(ash 1 (bit-position item universe))))) 

(defunbit-position (item universe) 
(or (collect-first 

( p o s i t i o n s  
(#Meq ( s e r i e s  item) (scan u n i v e r s e ) ) ) )  

(1- ( length  ( n c o n c u n i v e r s e  ( l i s t  i t e m ) ) ) ) ) )  

Figure 1: Converting between lists and bit sets. 

The  functions in Figure 1 convert between sets repre- 
sented as lists and bit sets. To perform this conversion, a 
mapping has to be established between bit positions and 
potential  set elements. This mapping is specified by a uni- 
verse. A universe is a list of elements. If a bit set integer b 
is associated with a universe u, then the ith element in u is 
in the set represented by b if and only if the ith bit in b is 
1. For example, given the universe (a b c d e),  the inte- 
ger #b01011 represents the set {a,b,d}.  (By Common Lisp 
convention, the 0th bit in an integer is the least significant 
bit.) 

Given a bit set and its associated universe, the function 
b s e t - > l i s t  converts the bit set into a set represented as a 
list of its elements. It does this by scanning the elements 
in the universe along with their positions and constructing 
a list of the elements which correspond to ls in the inte- 
ger representing the bit set. (When no :upto argument is 
supplied, scan-range counts up forever.) 

The function l i s t - > b s e t  converts a set represented as a 
list of its elements into a bit set. Its second argument is the 
universe that  is to be associated with the bit set created. 
For each element of the list, the function b i t - p o s i t i o n  is 
called to determine which bit position should be set to 1. 
The function ash is used to create an integer with the cor- 
rect bit set to 1. The function c o l l e c t - I n  is used to com- 
bine the integers corresponding to the individual elements 
together into a bit set corresponding to the list. 

The  function b i t - p o s i t i o n  takes an item and a universe 
and returns the bit position corresponding to the item. 
The function operates in one of two ways depending on 
whether or not the i tem is in the universe. The first line of 
the function contains a series expression that  determines 
the position of the i tem in the universe. If the item is not 
in the universe, the expression returns n i l .  (The function 
c o l l e c t - f i r s t  returns n i l  if it is passed a series of length 
zero.) 

If the i tem is not in the universe, the second line of the 
function adds the i tem onto the end of the universe and 
returns its position. The extension of the universe is done 
by side effect so that  it will be permanently recorded in 
the universe. 

Figure 2 shows the definition of two collectors that  op- 
erate on series of bit sets. The  first function computes the 
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(defun collect-logior (bsets) 
(declare (optimizable-series-function)) 

(collect-fn 'integer #'(lambda () 0) 
#'logior bsets)) 

(defun collect-logand (bsets) 
(declare (optimizable-series-function)) 

(collect-fn 'integer #'(lambda () -I) 
#'logand bsets)) 

Figure 2: Operations on series of bit sets. 

union of a series of bit sets, while the second computes 
their intersection. 

L ive  v a r i a b l e  ana lys i s .  As an illustration of the way 
bit sets might be used, consider the following. Suppose 
that  in a compiler, program code is being represented as 
blocks of straight-line code connected by possibly cyclic 
control flow. The top par t  of Figure 3 shows the data  
structure tha t  represents a block of code. Each block has 
several pieces of information associated with it. Two of 
these pieces of information are the blocks that  can branch 
to the block in question and the blocks it can branch to. 
A program is represented as a list of blocks that  point to 
each other through these fields. 

In addition to control flow information, each structure 
contains information about  the way variables are accessed. 
In particular,  it records the variables tha t  are written by 
the block and the variables tha t  are used by the block (i.e., 
either read without being writ ten or read before they are 
written).  An additional field (computed by the function 
de te rmine- l ive  discussed below) records the variables that  
are live at the end of the block. (A variable is live if it 
has to be saved, because it can potential ly be used by a 
following block.) Finally, there is a temporary  data  field, 
which is used by functions (such as determine-live) that 
perform computations involved with the blocks. 

The rest of Figure 3 shows the function determine-live 
which, given a program represented as a list of blocks, 
determines the variables that are live in each block. To 
perform this computation efficiently, the function uses bit 
sets. The function operates in three steps. The first step 
(convert-to-bsets) looks at each block and sets up an aux- 
iliary data structure containing bit set representations for 
the written variables, the used variables, and an initial 
guess that there are no live variables. This auxiliary struc- 
ture is defined by the third form in Figure 3 and is stored 
in the temp field of the block. The integer 0 represents an 
empty bit set. 

The second step (perform-relaxation) determines which 
variables are live. This is done by relaxation. The initial 
guess that there are no live variables in any block is suc- 
cessively improved until the correct answer is obtained. 

The third step (convert-from-bsets) operates in the re- 
verse of the first step. Each block is inspected and the bit 
set representation of the live variables is converted into a 
list, which is stored in the live field of the block. 

On each cycle of the loop in perform-relaxation, a block 
is examined to determine whether its live set has to be 
changed. To do this (see the function live-estimate), the 
successors of the block are inspected. Each successor needs 

(defs t ruct  (block (:cone-name nil)) 
predecessors ;Blocks that can branch to this one. 
successors ;Blocks this one can branch to. 
written ;Variables written in the block. 
used ;Variables read before written. 
live ;Variables needed at exit. 
temp) ;Temporary storage location. 

(defundetermine-live (program-graph) 
(let ((universe (list nil))) 

(convert-to-bsets program-graphuniverse) 
(perform-relaxation program-graph) 
(convert-from-bsets program-graphuniverse)) 

program-graph) 

(defstruct (temp-bsets (:cone-name bset-)) 
used written live) 

(defunconvert-to-bsets (program-graphuniv) 
(iterate ((block (scan program-graph))) 
(setf (temp block) 

(make-temp-bsets 
:used (list->bset (used block) univ) 
:written (list->bset (written block) 

univ) 
:live 0)))) 

(defunperform-relaxation (program-graph) 
(let ((to-do program-graph)) 

(loop 
(when (null to-do) (return (values))) 
(let* ((block (pop to-do)) 

(estimate (live-estimate block))) 
(when (not (= estimate 

(bset-live (temp block)))) 
(setf (bset-live (temp block)) estimate) 
(iterate ((prey (scan (predecessors block)))) 

(pushnew prey to-do))))))) 

(defunlive-estimate (block) 
(collect-logior 

(mapping ((next (scan (successors block)))) 
(logior (bset-used (temp next)) 

(logandc2 (bset-live (temp next)) 
(bset-written (temp next))))))) 

(defunconvert-from-bsets (program-graphuniv) 
(iterate ((block (scan program-graph))) 

(setf (live block) 
(bset->list (bset-live (temp block)) univ)) 

(serf (temp block) nil))) 

Figure 3: Live variable analysis. 

to have available to it the variables it uses, plus the vari- 
ables tha t  are supposed to be live after it, minus the vari- 
ables it writes. (The function logandc2 takes the difference 
of two bit sets.) A new estimate of the total  set of variables 
needed by the successors as a group is computed by using 
co l l ec t - log ior .  

If this new estimate is different from the current estimate 
of what variables are live, then the estimate is changed. In 
addition, if the estimate is changed, per form-re laxa t ion  
has to make sure tha t  all of  the predecessors of the current 
block will be examined to see if the new estimate for the 
current block requires tha t  their live estimates be changed. 
This is done by adding each predecessor onto the list to-do 
unless it is already there. As soon as the estimates of 
liveness stop changing, the computat ion stops. 

Summary. The function determine-live is a partic- 
ularly good example of the way series expressions are in- 
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tended to be used in two ways. First, series expressions are 
used in a number of places to express computations which 
would otherwise be expressed less clearly as loops or less 
efficiently as sequence function expressions. Second, the 
main relaxation algorithm is expressed as a loop. This is 
done, because neither optimizable series expressions (nor 
Common Lisp sequence function expressions) lend them- 
selves to expressing the relaxation algorithm. This high- 
lights the fact that series expressions are not intended to 
render iterative programs entirely obsolete, but rather to 
provide a greatly improved method for expressing the vast 
majority of loops. 

Setting Up the Series Macro Package 
The Series macro package is written in standard Com- 

mon Lisp and has been tested in several different versions 
of Common Lisp. To use the Series macro package, the file 
containing it has to be loaded. 

The source for the Series macro package can be obtained 
over the INTER.NET by using FTP. Connection should be 
made to the TRIX.AI.MIT.EDU machine (INTERNET n u m -  

b e r  128.52.32.6). Login as 'anonymous' and copy the files 
shown below. It is advisable to run the tests in s t e s t . l i s p  
after compiling the Series macro package for the first time 
on a new system. A comment at the beginning of the file 
describes how to run the tests. 

files on TRIX.AI.MIT.EDU, 

/com/ftp/pub/series/s. lisp source code 
/com/ftp/pub/series/st eat. lisp tes ts  
/com/ftp/pub/series/sdoc. t x t  br ief  documenta t ion  

As the series macro package is being made available free 
of charge, it is being distributed as is, with no warrantee 
of any kind either expressed or implied. Neither the au- 
thor nor MIT accepts liability of any kind. In addition, 
if you wish to use the Series macro package for anything 
other than your own experimental use, you will have to get 
a license from MIT. Information about obtaining a non- 
exclusive, royalty-free license can be obtained by sending 
a message to "d i ck@ai  . m i t .  e d u ' .  

The functions and forms discussed in this manual are 
defined in the package "ser ies" .  To make these names 
easily accessible, you must use the package "ser ies" .  The 
most convenient way to do this is to call the function 
s e r i e s :  : i n s t a l l ,  which also sets up some additional fea- 
tures of the series macro package. The examples in this 
manual assume that the form (ser ies  : : i n s t a l l )  has been 
evaluated. 

• series: :install &key (:pkg *package*) (:macro T) 

(:shade. T) (:remove nil) :=~ T 

Calling this function sets up Series for use in the pack- 
age :pkg. The argument :pkg can either be a package, a 
package name, or a symbol whose name is the name of a 
package. It defaults to the current package. 

The package "ser ies"  is used in :pkg. If the :macro ar- 
gument is not n i l ,  the # macro character syntax #z and #M 
is set up. If the :shadow argument is not n i l ,  the symbols 
series : : let, series : : let*, aeries : :multiple-value-bind, 

series: :funcall, and series: :defun a re  shadowing im- 
ported into :pkg. These forms are identical to their stan- 
dard counterparts, except that they support various fea- 
tures of the Series macro package. When shadowing is not 
done, you have to explicitly use se r ies :  : le t ,  ser ies :  :let*, 
and ser ies :  :multiple-value-bind when binding series in 
an expression you want optimized; ser ies :  :funcall  when 
funcall ing a series function you want optimized; and 
s e r i e s :  :defun when defining a series function with the dec- 
laration opt imizable-series-function. 

If :remove is not nil, the effects of having previously 
installed the Series macro package are undone. In partic- 

ular, the package is unused and any shadowing is undone. 
However, any changes to the readtable are left in place. 

A c k n o w l e d g m e n t s .  

The Series macro package has benefited from the sug- 
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