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This article describes the implementat ion of a 
set of i teration macros. These macros are found 
in the Portable Common Loops (PCL) imple- 
menta t ion of the Common Lisp Object System, 
though they are not dependent on PCL in any 
way. The macros were designed to be more 
functional than  the small set of i teration macros 
found in Common Lisp (e.g., do), while still hav- 
ing a "Lisp-like" syntax that  is easy to under- 
s tand and extend. Pavel Curtis is responsible 
for the essential insights about program trans- 
formation tha t  make feasible an efficient imple- 
menta t ion of this conceptually simple iteration 
form. The implementat ion makes extensive use 
of the PCL code walker, which was described in 
the previous issue of Lisp Pointers. 

There are two major  macros: i t e r a t e ,  which 
defines an iteration, and g a t h e r i n g ,  which de- 
fines a context in which to accumulate one or 
more results. For example, 

(gathering ((result (collecting))) 
(iterate 

((e (list-elements mylist)) 
(i (interval :from I))) 

(when (interesting-p e) 
(gather e result) 
(format t 

"'D: collected "S'~," 
i e)))) 

maps over the elements of a list, collecting the 
interesting ones into a new list and reporting 
the index of each one collected. 

The first subform to i t e r a t e  is a list of 
clauses, looking much like l e t  bindings, each 
of which specifies an iteration variable and a 
form that  is evaluated to produce a generator. 
A generator is a function tha t  produces the next 
in a sequence of values each t ime it is called; 
it indicates it is exhausted by calling its first 
and only argument ,  a closure that  terminates 
the iteration. The i t e r a t e  form binds the iter- 
ation variables, and executes the remainder  of 
the i t e r a t e  form in a loop, at the beginning of 
which it sets each variable to the output  of the 
corresponding generator.  

The first subform to g a t h e r i n g  is also a list 
of clauses, but  in this case, the variable in each 
pair is thought  of as an abstract  accumulat ion 
site, and the second element of the pair is a gath- 
erer expression. This expression returns two 
values: the first is a function tha t  when ca/led 
with an argument  incorporates the argument  
into its accumulat ing value, the second is a func- 
tion that  when ca/led returns the accumulated 
result, g a t h e r  is a function tha t  applies the 
gatherer  associated with its second argument  to 
its first argument .  The body of the g a t h e r i n g  
form can thus call g a t h e r  in as many  places 
as it likes, as long as they are lexically appar- 
ent. This is in contrast  to such alternatives as 
ZetaLisp loop,  which permits an accumulation 
in only one place, the top-level of the i teration 
construct.  In fact, g a t h e r i n g  need not appear 
within an iteration at all. The g a t h e r i n g  form 
returns (as multiple values) the accumulated re- 
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(multiple-value-bind (result ~finisher) 
(collecting) 

(flet ((gather (value accumulator) (funcall accumulator value))) 
(block %itloop 

(let* ((~istgen (list-elements mylist)) 
(~intgen (interval :from 1)) 
e i) 

(loop (setq e (funcall ~istgen #'(lambda () (return-from ~itloop)))) 
(setq i (funcall ~intgen #'(lambda () (return-from ~itloop)))) 
~(when (interesting-p e) 

'(gather e result) 
(format t "'D: collected "S'~" i e))))) 

(values (funcall %finisher)))) 

Figure h The formal expansion of anSiezerate/gathering form. 

(defmacro list-elements (list &key (by '#'cdr)) 
'(let ((tail ,list)) 

#'(lambda (finish) 
(progl (if (endp tail) 

~(/funcall finish) 
(first tail)) 

(setq tail (funcall ,by tail)))))) 

Figure 2: The definition of the generator list-elements. 

sults of all of the gatherers. 

Thus,  the formal meaning of the example 
above is shown in Figure 1 (the "7." identifiers 
in this and other examples should be thought  
of as gensyms that  have been given suggestive 
names for readability). And that  is all you 
need to know to understand what an i t e r a t e  or 
g a t h e r i n g  form does, and nearly all you need 
to know to write new generators and gatherers. 

A generator expression can be any Lisp form 
that  returns a funcallable object, but is typi- 
caily written as a macro that  produces a closure. 
For example, the definition of l i s t - e l e m e n t s  is 
shown in Figure 2. 

The macro binds some state (the tail of the 
list being iterated over), and returns a function 
closed over that  state. When the function is 
called, it checks whether the list is exhausted. 
If so, it calls its argument (the exit function); 

otherwise, it returns the head of the list and sets 
the state to the rest of the list. The macro takes 
an optional :by keyword argument  that  lets you 

walk  down the list by some other accessor than 
cdr.  ;The i t e r a t e  module also supplies defini- 
tions for interval, list-tails, and elements 
(of a generic sequence); it is clearly easy for a 
user to define additional ones. 

Similarly, generators are typically written as 
macros that produce two closures as values. The 
definition of collecting is shown in Figure 3. 
Again, the macro binds some state and returns 
two functions closed over that state. Addi- 
tional gatherers already defined are summing~ 
maximizing, and minimizing. 

If you expand these two macros (and the ob- 
vious one for interval as well) in the "formal 
meaning" example given above, you get some 
obviously inefficient code. However, the actual 
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(defmacro collecting () 
'(let (head tail) 

(values #'(lambda (value) 
(if (null head) 

(setq head (setq tail (list value))) 
(setq tail (cdr (rplacd tail (list value)))))) 

#'(lambda () head)))) 

Figure 3: The definition of the gatherer c o l l e c t i n g .  

( l e t  ( ~ l s t h e a d  ~ l s t t a i l )  
(b lock ~ i t l o o p  

( l e t *  ( ( X l s t s t a t e  m y l i s t )  
( ~ i n t s t a t e  1) 
e i )  

( loop ( s e t q  e (progl  ( i f  

Xlsthead) 

(endp ~iststate) 
(return-from Xitloop) 

(first ~iststate)) 
( s e tq  % l s t s t a t e  (cdr  % l s t s t a t e ) ) ) )  

( s e t q  i (progl  X i n t s t a t e  ( s e tq  X i n t s t a t e  (+ X i n t s t a t e  1 ) ) ) )  
(when ( i n t e r e s t i n g - p  e) 

(let ((value e)) 
(if (null Xlsthead) 

(setq Xlsthead (setq Xlsttail (list va~ne))) 
(setq Xlsttail (cdr (rplacd Xlsttail (list value)))))) 

(format t "'d: collected "s'%" i e))))) 

Figure 4: The actual expansion of the iterate/gathering example. 

implementation of i t e r a t e ,  which uses pro- 
gram transformation techniques, produces code 
more like that shown in Figure 4. This is about 
as good as the code you might produce by hand, 
or that might be produced by other iteration fa- 
cilities, such as loop. And thatds, what gives us 
anything interesting to write in this article. 

To understand the program transformations 
involved, let us work through a subset of the 
previous example: 

(iterate ((e (list-elements i))) 
body) 

whose naive expansion is~ shown in Figure 5. 

The first transff)rmation is something we call' 

let eversion. Abstractly, it is permissible to re- 
place 

(let ((var (let (bindings) value))) 
body) 

with 

(let: Cbindings ) 
(let ((var value)) 

body) ) 

as long as none of the variables bound by bind- 
ings is special, and none is used in body. Given 
the former, it is easy to insure the latter: the 
variables bound by bindings are only known 
within t he  lexical scope of the internal let, so 
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(block %itloop 
(let* ((%Istgen (let ((tail i)) 

#'(lambda (finish) 
(progl (if (endp tail) 

(funcall finish) 
(first tail)) 

(setq tail (funcall #'cdr tail)))))) 
e) 

( loop  ( s e t q  e ( f u n c a l l  ~ l s t g e n  # ' ( l a m b d a  ()  
body))) 

(return-from %itloop)))) 

Figure 5: The naive expansion of a one-generator iterate example. 

(block ~itloop 
(let* ((~Isttail I) 

(~istgen #'(lambda (finish) 
(progl (if (endp ~Isttail) 

(funcall finish) 
(first ~isttail)) 

(setq %Isttail (funcall #'cdr %isttail))))) 
e) 

(loop (setq e (funcall %istgen #'(lambda () 
body))) 

(return-from %itloop)))) 

Figure 6: Example after applying let eversion. 

we can just rename them all to gensyms, a com- 
piler t ransformation known as alpha conversion. 
This t ransformation is an easy task for the code 
walker, as we will describe below. There is one 
more tweak to let eversion that  we make solely 
for cosmetic reasons: having renamed all the 
variables, it is clear that  the t ransformation is 
valid even if l e t  becomes l e t *  (because none 
of the initialization forms in the l e t  can refer 
to any of the renamed variables), so we can col- 
lapse all the bindings into one l e t * .  

Applying let eversion to our example yields 
the code shown in Figure 6. 

The next t ransformation is a fairly s tandard 
compiler optimization called beta reduction-- 
substi tuting the value of a bound variable for 
every reference to tha t  variable. This transfor- 
mat ion is permitted if (1) the variable is not 
side-effected between the binding and its use, 

(2) the value expression has no side effects, 
and (3) the value expression references no vari- 
ables whose bindings appear between the origi- 
nal binding and the reference. 

In the case of an i t e r a t e  form, we want to 
substi tute the generator  body # '  ( lambda . . .  ) 
for its occurrence in the f u n c a l l  in the loop 
body. Condition (1) is obviously met ,  because 
the bound variable is an invisible gensym with a 
single read-only reference ( the f u n c a l l ) .  Con- 
dition (2) is met ,  because the special form 
f u n c t i o n  has no side effects. 

Condition (3) is met  if the generator  function 
makes no free reference to any i terat ion vari- 
ables tha t  follow it in the main l e t *  (those be- 
ing the only visible variables between the bind- 
ing and the funcall at the top of the loop). We 
certainly expect this to be the case normal ly - -  
most generators have no free references at all 
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(block ~itloop 
(let* ((~isttail i) 

e) 
(loop (setq e 

(funcall #'(lambda (finish) 
(progl (if (endp ~Isttail) 

(funcall finish) 
(first ~isttail)) 

(setq ~isttail (funcall #'cdr ~isttail)))) 
#'(lambda () (return-from ~itloop)))) 

body))) 

Figure 7: Example after applying beta reduction. 

(block ~itloop 
(let* ((~Isttail i) 

e) 
(loop (setq e (progl (if 

body) ) ) 

(endp ~isttail) 
(return-from ~itloop) 

(first ~isttail)) 
(setq ~Isttail (funcall #'cdr ~isttail)))) 

Figure 8: Example after funcall and beta reductions. 

outside of the variables they're closed over--  
but it is possible to construct perverse forms 
that violate this condition, so our i t e r a t e  im- 
plementation must check for it. Applying beta 
reduction to our example yields the code shown 
in Figure 7. 

The final transformation, a trivial one per- 
formed by any Lisp compiler worthy of the 
name, we'll call funcall reduction: transform 
( f u n c a l l  #' fn  . args) into the simpler form 
(fn . args). We need to perform this trans- 
formation explicitly, however, in order to ap- 
ply beta reduction a second time, substituting 
for the f i n i s h  argument in the generator. Fi- 
nally, we apply funcall reduction a second time 
to pretty up the use of this argument. These 
transformations yield the final expansion shown 
in Figure 8. 

Of course, not all i t e r a t e  forms are optimiz- 
able in this way, since we permit a generator 

to be any Lisp form. It can be a function call, 
which we can't touch in any way, or it can be an 
arbitrarily complex macro that doesn't match 
the pattern ( l e t  ( . . . )  # ' ( l ambda  . . . ) ) .  For 
these generators, the expansion of i t e r a t e  is 
just the formal meaning we outlined at the be- 
ginning of this article. However, the vast ma- 
jority of useful generators can be written in the 
optimizable form. 

A similar application of these same transfor- 
mations allows us to optimize the g a t h e r i n g  
macro. First, we apply alpha conversion to 
each gatherer's body; this allows us to ap- 
ply let eversion to lift its state bindings past 
the multiple-value-bind at the top of the 
ga the r ing .  If we're lucky, we now have some- 
thing of the form 

(multiple-value-bind (gather finish) 
(values ...) 

°..) 
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(defun expand-into-let (form env) 
(prog ((expansion form) 

expandedp binding-type let-bindings let-body) 
expand 

(multiple-value-setq (expansion expandedp) 
(macroexpand-1 expansion env)) 

(cond 
((not (consp expansion)) ; Not an expression 
) 
((symbolp (setq binding-type (first expansion))) 
(case binding-type 

((let let*) 
(setq let-bindings (second expansion)) 
(setq let-body (cddr expansion)) 
(go handle-let)))) 

((and (consp binding-type) 
(eq (first binding-type) 'lambda) 
(null (intersection lambda-list-keywords 

(setq let-bindings (second binding-type)))) 
(eql (length let-bindings) 

(length (rest expansion)))) 
;; Treat ((lambda ( . . . )  . . . )  args) as a l e t  
(setq let-body (cddr binding-type)) 
(setq let-bindings (mapcar #'list let-bindings (rest expansion))) 
(setq binding-type 'let) 
(go handle-let))) 

;; Fall thru ~ not a let or lambda 
(if expandedp ; Try expanding again 

(go expand) 
(return :abort))  

handle-let 
(return 

(if (find-if #'variable-globally-special-p 
(variables-from-let let-bindings)) 

;; ~ binds specialvars 
:abort 

(values (if (and (consp let-body) 
(null (cdr let,body))) 

(first let-body) 
.:abort) ; M o r e  than one expression, or malformed 

binding-type let-bindings))))) 

Figure 9: The function expand-into-let. 
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which we can turn  into the obvious l e t .  We 
then apply beta  reduction to the f l e t  binding 
of g a t h e r ,  and then to each gatherer  and fin- 
isher binding. Satisfying the preconditions of 
be ta  reduction is a little more demanding this 
time, however, as we have no control over where 
g a t h e r  appears in the body. So we must  walk 
the entire body of the g a t h e r i n g  form, substi- 
tut ing for g a t h e r  calls that  satisfy the precon- 
ditions (no conflicting bindings between the top 
level binding and the g a t h e r  call), and making 
sure tha t  there is no code that  sets a gatherer 's  
site variable. For simplicity, we also abort  the 
optimization if we discover a reference to a gath- 
erer's site outside of a g a t h e r  call, or a use of 
# ' g a t h e r .  And, of course, we can't  optimize 
any ga therer  expression that  isn't a macro call, 
or whose expansion is more complex than the 
expected form 

(let . . .  
(values #' (lambda . . . )  

#' (lambda ...))) 

Let us now look at the implementat ion of 
i t e r a t e  and g a t h e r .  We'll begin with a sim- 
plified version of i t e r a t e .  Although we de- 
scribed the optimization of i t e r a t e  above as 
a sequence of program transformations,  the im- 
plementat ion proceeds more in parallel. We 
know what  we are aiming for: a form that  binds 
some variables around a loop that  updates the 
variables and performs the i teration body. Each 
i t e r a t e  clause contributes an iteration variable 
and some number  of bindings for its generator 's  
state, as well as a form to evaluate at the top of 
the loop to set the i teration variable to its new 
value. 

The first step in processing a clause is to 
macro-expand the generator  to see if it is of 
the desired form. This task is handled by the 
function expand-into-let (Figure 9). It takes 
a form and a macro-expansion environment,  
and a t tempts  to expand the form into an ex- 
pression tha t  looks like ( l e t [* ]  bindings body). 
When it finds the l e t ,  it verifies that  none of 
the bindings is of  a special variable, since that  
would preclude let eversion. If successful, it re- 

turns three values: the body, the symbol let 
or l e t * ,  and the list of  bindings. If unsucess- 
ful, it returns : a b o r t .  Since calls to simple 
lambda forms (those without  lambda-list key- 
words) are equivalent to l e t ,  and some Lisp im- 
plementations macro-expand l e t  into lambda, 
e x p a n d - i n t o - l e t  also treats  such a call as the 
equivalent l e t .  

If the expansion into l e t  succeeded, we now 
have a set of bindings (variables and initial- 
ization expressions) and a body. We check 
that  the body is of the desired form, viz., 
# '  ( lambda (finisharg) . . . ) .  Next, we prepare 
for alpha conversion by choosing some gensyms 
for the variables. If the binding form was l e t * ,  
we must  also substi tute for variable references 
in the second and subsequent initialization ex- 
pressions. This task is handled by the  function 
r e n a m e - l e t - b i n d i n g s  (Figure 10), and is the 
first use we make of the code walker. The func- 
tion returns the renamed bindings, along with 
an association list mapping old to new names. 

The procedure r e n a m e - v a r i a b l e s  takes a 
form, an environment,  and an association list 
mapping old to new variable names, and sub- 
stitutes the new variables for all references to 
the old variables that  refer to the binding vis- 
ible in the  environment.  This is just like the 
Common Lisp function s u b l i s ,  except that  we 
must  be smart  and substi tute only for variable 
references, not function calls or literals, and 
only in contexts where a variable isn't shad- 
owed by another  binding form. So we use the 
code walker to traverse the form. Every time we 
are offered a symbol that  appears in the a-list 
we return the corresponding new variable, but 
only if the symbol refers to the binding we're 
interested in. The function v a r i a b l e - s a m e - p  
tests whether  the bindings of a variable visi- 
ble in each of two environments  are the same. 
It uses v a r i a b l e - l e x i c a l - p ,  a function in the 
code walker that  tests whether  a variable is lexi- 
cal in an environment,  and if so returns a unique 
object representing the instance of the binding 
visible in the environment.  

Finally, we perform two transformations on 
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(defun rename-let-bindings (let-bindings binding-type env) 
(let (renamed-vats) 

(values (mapcar #'(lambda (binding) 
(let ( ( n e . v a r  (gensym)) 

(valueform (cond 
( (no t  (consp b i n d i n g )  ) ; No initial value 
nil) 
((or (eq binding-type ~let) 

(null renamed-vars)) 
(second binding) ) 

( t  ; For l e t * ,  do all previous renamings 
; in the initialization form. 

(rename-variables (second binding) 
renamed-vats env) ) ) ) ) 

(push (cons (if (consp binding) (first binding) binding) 
newvar) 

renamed-vars) 
(list newvar valueform))) 

let-bindings) 
renamed-vat s) ) ) 

(defun rename-variables (form alist env) 
(walk-form form env 

#~ (lambda (form context subenv) 
(let (pair) 

(if (and (symbolp form) 
(setq pair (assoc form alist)) 
(variable-same-p form subenv env)) 

(cdr pair) 
form) ) ) ) ) 

(defun variable-same-p (vat envl env2) 
(eq (variable-lexica1-p vat envl) 

( v a r i a b l e - l e x i c a l - p  v a t  env2) ) )  

Figure 10: Renaming the bindings of a let or l e t * .  

the generator body in one pass of the code 
walker (Figure 11): alpha conversion on the 
body, using the association list returned from 
r e n a m e - l e t - b i n d i n g s ,  and beta reduction and 
funcall reduction for the generator's finish argu- 
ment.  

At the same time, we verify that  the require- 
ment  for beta reduction is met (no reference to 
subsequent iteration variables), and that  there 
is no reference to the generator's finish argu- 

ment other than funcalls to it. 

At this point, we have finished the transfor- 
mation of the generator body into code that  we 
can evaluate inside the loop to update  the iter- 
ation variable. 

If any of the transformation requirements was 
not met,  however, we instead produce an update  
expression that  reflects the formal semantics of 
i t e r a t e :  a call to the generator, with the gen- 
erator being computed in the list of bindings 
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(defun iterate-transform-body (let-body iterate-env renamed-vars 
finish-arg finish-form bound-vars) 

(walk-form let-body iterate-env 
#' (lambda (form context env) 

(cond 
( (symbolp form) 
(let (renaming) 

(cond 
((and (eq form finish-arg) 

(variable-same-p form env iterate-env)) 
;; An  occurrence of the finish arg outside of f u n c a l l  
(return-from iterate-transform-body :abort)) 

((and (setq renaming (assoc form renamed-vars)) 
(variable-same-p form env iterate-env)) 

;; Reference to a variable to rename 

(cdr  renaming) ) 
( (and (member form bound-vars)  

(variable-same-p form env iterate-env)) 
;; Reference to a var bound later in same i t e r a t e  
( r e t u r n - f r o m  i t e r a t e - t r a n s f o r m - b o d y  : a b o r t ) )  

(t form)))) 
((and (consp form) 

(eq (first form) 'funcall) 
(eq (second form) finish-arg) 
(variable-same-p (second form) env iterate-env)) 

;; ( f u n c a l l  finish-arg) ~ finish-form 
finish-form) 

(t form))))) 

Figure l h  The function i t e r a t e - t r a n s f o r m - b o d y .  

produced for this clause. 

After we repeat this process for all the itera- 
tion clauses, we assemble the accumulated bind- 
ings and update forms into the complete expan- 
sion, and we're done. 

The complete implementation of the i t e r a t e  
macro is shown in Figure 12. 

The variables bindings and update-forms 
are accumulators for the bindings of generator 
state variables and iteration variables and for 
the update forms, respectively. In the variable 
bound-varg,  we maintain a list of all the it- 
eration variables from the clauses we have not 
yet processed, so that the beta reduction step 

( i t e r a t e - t r a n s f o r m - b o d y )  can check that no 
generator uses them conflictingly. The proce- 
dure func t ion - l ambda -p  is a simple pattern- 
matching function that tests that its argument 
is of the form #'  (lambda . . . )  and returns the 
lambda subexpression on success. 

The actual implementation of iterate is a 
bit more complicated in several ways omitted 
from the discussion above for clarity: 

• It does a more thorough job of checking the 
syntax of the iterate form, e.g., that each 
iteration clause is a list of exactly two ele- 
ments, and that there are no duplications 
among the iteration variables. 
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(defmacro iterate (clauses &body body ~environment env) 
(let* ((block-name (gensym)) 

(finish-form '(return-from ,block-name)) 
(bound-vats (mapcar #'car clauses)) 
update-forms bindings) 

(dolist (clause clauses) 
(multiple-value-bind (let-body binding-type let-bindings) 

(expand-into-let (second clause) env) 
(let ((iv (first clause)) 

gen-arg renamed-vats) 
(cond 

((eq let-body :abort) ; Were  alreadyfai~d 
) 

((null (setq let-body (function-lambda-p let-body 1))) 
(setq let-body :abort)) ; Not of the expected form 

( t  ;; Generator body is of the form #' (lambda (fin~harg) . . . ) .  
;; let-body ~ now the lambda form. 
(setq gen-arg ( f i r s t  (second let-body))) 
(setq let-body '(progn ,@(cddr let-body))) 
(when let-bindings ; Begin renamingfor let eversion. 

(multiple-value-setq (let-bindings renamed-vars) 
(rename-let-bindings let-bindings binding-type env))) 

;; A~ha-convert generator body and expand (funcall fin~harg) 
(setq let-body (iterate-transform-body let-body env 

renamed-vars gen-arg finish-formbound-vars)))) 
;; let-body is now the updateformfor the iteration variable. 
(when (eq let-body :abort) 

;;Optimizat ionfai le~use the formal semantics 
(let ((gvar (gensym)) 

(generator (second clause))) 
(setq let-bindings (list (list gvar generator))) 
(setq let-body 

'(funcall ,gvar #'(lambda nil ,finish-form))))) 
(pop bound-vars) ;Needn~ watch out for th~ variab~ anymore. 
(push ' (setq ,iv ,let-body) update-forms) 
(setq bindings (nconc bindings let-bindings (list iv)))))) 

;; All clauses now processed, so emit the code. 
'(block ,block-name 

(let* ,bindings 
(loop ,~(nreverse update-forms) 

,@body))))) 

Figure 12: Top level implementation of the iterate macro. 
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• It issues optional warnings when it is un- 
able to fully optimize a form, e.g., when a 
generator fails to expand into the expected 
form, or doesn't expand at all. A user- 
settable flag controls whether warnings are 
issued for aU suboptimal forms, for only 
those that could be influenced by chang- 
ing "user" code, or never. Issuing helpful 
warnings requires passing around the orig- 
inal clause to some of the functions that 
don't otherwise need access to it in the sim- 
plified implementation described above. 

• It handles declarations. The complete syn- 
tax for i t e r a t e  permits declarations to 
follow the iteration clauses. These decla- 
rations must be moved out of the itera- 
tion body and placed immediately after the 
let* bindings in the iterate expansion, 
so that they are in the correct place to de- 
scribe the iteration variable bindings. 

Declarations can also appear in the expan- 
sion of a generator, both in its top-level l e t  
and in the closure body. These are slightly 
trickier to handle. Those that refer to vari- 
ables in the leg  have to migrate as part of 
the let eversion transformation to the outer 
l e t *  in the i t e r a t e  expansion (and have 
their variables renamed); others, such as 
i n l i n e  declarations, must remain with the 
generator body, which then becomes 

'(locally 
,@decOrations 
,@let-body) 

in optimize-iterate-form. 

• It allows a generator's l e t  to have a larger 
body. In the simple implementation, we 
insisted that a generator expand into a 
l e t  with a single expression in its body, 
#' (lambda (finisharg) . . . ) .  

Let eversion still works if there are more 
forms in the l e t ,  because we know that 
Common Lisp provides no way to exit from 

the straight-line computation in a l e t  body 
without also exiting some parent form. 

Thus, we can generalize let eversion to 
transform 

(let ((vat (let (bindings) 
computation 
value) ) ) 

body) 

into 

( l e t  (bindings) 
computation 
( l e t  ((var value)) 

body) ) 

In order to collapse this into a single l e t * ,  
we simply defer the computation until the 
next variable's initialization form, enclos- 
ing it in a suitable progn. 

It permits a generator to return multiple 
values, bound to multiple iteration vari- 
ables. For example, 

(iterate (((indicator value) 
(plist-elements 

(symbol-plist s) ) ) ) 
(format t "'S: "S'~")) 

prints out a nice display of the property 
list of a symbol. The most significant 
change this makes to the implementation 
is that the iteration variables are set via 
mult i p l e - v a l u e -  s e tq  to the output of the 
generator. 

The special case where, after all the trans- 
formations, the body of the generator is a 
call on va lues  is explicitly optimized to 
multiple se tq 's  for the benefit of the few 
compilers that wouldn't do that automati- 
cally. 

There is one further transformation one could 
make to the i t e r a t e  expansion that would 
make it essentially indistinguishable from the 
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(block Xitloop 
(let* ((~isttail I) 

e) 
(loop (setq e (if (endp ~isttail) 

(return-from ~itloop) 
(first ~Isttail))) 

body 
(setq Xlsttail (funcall #'cdr Xlsttail))))) 

Figure 13: A possible further optimization of the iterate example. 

code you would write by hand: explode the 
prog l  of the typical generator body into its first 
subexpression now and the rest at the end of the 
loop. This would turn our earlier example (Fig- 
ure 8) into the code shown in Figure 13. For cor- 
rectness, this transformation requires that the 
tail of the p rog l  have no side effects other than 
to the generator state (in this case, Y, l s t t a i l ) ,  
and in turn that it be unaffected by anything 
in the body of the i t e r a t e .  Although virtually 
any reasonable generator satisfies both condi- 
tions, it is difficult to verify this mechanically. 
Thus, we have chosen not to attempt this addi- 
tional optimization, leaving it instead to a "suf- 
ficiently clever compiler," which would be in a 
better position to verify these conditions. 

As for the implementation of ga t he r i ng ,  the 
processing of the clauses is similar to that of 
i t e r a t e ,  and uses several of the subfunctions 
described above. However, the beta reduction 
step is a more complex task, as we must walk 
the entire body of the g a t h e r i n g  form in order 
to substitute for calls on ga ther .  This walk has 
a few more things to worry about: 

Given the possibility that there are nested 
g a t h e r i n g  forms, we must be prepared to 
encounter a gather referring to an accu- 
mulation site in a parent form, rather than 
in the one we are currently expanding. We 
could ignore such occurrences, relying on 
the macro expansion of the parent to han- 
dle it, but then we'd be unable to issue 
warnings at compile time about an unrec- 
ognized second argument to ga ther .  So in- 

stead, we maintain a special variable that 
records all the active accumulation sites. 
The macro expander for g a t h e r i n g  rebinds 
this variable with its own sites consed onto 
the front. 

When analyzing each gatherer during the 
alpha conversion step, we must additionally 
note any free variable references. Later, 
when walking the g a t h e r i n g  body, we 
check each occurrence of g a t h e r  to make 
sure that no variable referenced freely by 
the corresponding gatherer has been re- 
bound in the meantime. This test is again 
made by variable-same-p. 

We check that there is no reference to an 
accumulation site variable outside of a call 
to gather. 

The interested reader is invited to peruse the 
PCL sources for the complete implementations 
of both i t e r a t e  and g a t h e r i n g .  To get a copy, 
either send electronic mail to "CommonLoops- 
Coordinator.pa@Xerox.Com" or send normal 
mail to 

CommonLoops Coordinator 
Xerox PARC 
3333 Coyote Hill Rd. 
Pale Alto, CA 94304 

They can give you information on the options 
available to you for receiving the code. [ ]  
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