
Implementation of an Iteration Macro

Bill van Melle
Xerox P A R C

3333 Coyo te Hill Rd.
PMo Alto, CA 94304

vanMel l e@Xerox .Com

Apri l 19, 1990

This article describes the implementat ion of a
set of i teration macros. These macros are found
in the Portable Common Loops (PCL) imple-
menta t ion of the Common Lisp Object System,
though they are not dependent on PCL in any
way. The macros were designed to be more
functional than the small set of i teration macros
found in Common Lisp (e.g., do), while still hav-
ing a "Lisp-like" syntax that is easy to under-
s tand and extend. Pavel Curtis is responsible
for the essential insights about program trans-
formation tha t make feasible an efficient imple-
menta t ion of this conceptually simple iteration
form. The implementat ion makes extensive use
of the PCL code walker, which was described in
the previous issue of Lisp Pointers.

There are two major macros: i t e r a t e , which
defines an iteration, and g a t h e r i n g , which de-
fines a context in which to accumulate one or
more results. For example,

(gathering ((result (collecting)))
(iterate

((e (list-elements mylist))
(i (interval :from I)))

(when (interesting-p e)
(gather e result)
(format t

"'D: collected "S'~,"
i e))))

maps over the elements of a list, collecting the
interesting ones into a new list and reporting
the index of each one collected.

The first subform to i t e r a t e is a list of
clauses, looking much like l e t bindings, each
of which specifies an iteration variable and a
form that is evaluated to produce a generator.
A generator is a function tha t produces the next
in a sequence of values each t ime it is called;
it indicates it is exhausted by calling its first
and only argument , a closure that terminates
the iteration. The i t e r a t e form binds the iter-
ation variables, and executes the remainder of
the i t e r a t e form in a loop, at the beginning of
which it sets each variable to the output of the
corresponding generator.

The first subform to g a t h e r i n g is also a list
of clauses, but in this case, the variable in each
pair is thought of as an abstract accumulat ion
site, and the second element of the pair is a gath-
erer expression. This expression returns two
values: the first is a function tha t when ca/led
with an argument incorporates the argument
into its accumulat ing value, the second is a func-
tion that when ca/led returns the accumulated
result, g a t h e r is a function tha t applies the
gatherer associated with its second argument to
its first argument . The body of the g a t h e r i n g
form can thus call g a t h e r in as many places
as it likes, as long as they are lexically appar-
ent. This is in contrast to such alternatives as
ZetaLisp loop, which permits an accumulation
in only one place, the top-level of the i teration
construct. In fact, g a t h e r i n g need not appear
within an iteration at all. The g a t h e r i n g form
returns (as multiple values) the accumulated re-

111-2.29

(multiple-value-bind (result ~finisher)
(collecting)

(flet ((gather (value accumulator) (funcall accumulator value)))
(block %itloop

(let* ((~istgen (list-elements mylist))
(~intgen (interval :from 1))
e i)

(loop (setq e (funcall ~istgen #'(lambda () (return-from ~itloop))))
(setq i (funcall ~intgen #'(lambda () (return-from ~itloop))))
~(when (interesting-p e)

'(gather e result)
(format t "'D: collected "S'~" i e)))))

(values (funcall %finisher))))

Figure h The formal expansion of anSiezerate/gathering form.

(defmacro list-elements (list &key (by '#'cdr))
'(let ((tail ,list))

#'(lambda (finish)
(progl (if (endp tail)

~(/funcall finish)
(first tail))

(setq tail (funcall ,by tail))))))

Figure 2: The definition of the generator list-elements.

sults of all of the gatherers.

Thus, the formal meaning of the example
above is shown in Figure 1 (the "7." identifiers
in this and other examples should be thought
of as gensyms that have been given suggestive
names for readability). And that is all you
need to know to understand what an i t e r a t e or
g a t h e r i n g form does, and nearly all you need
to know to write new generators and gatherers.

A generator expression can be any Lisp form
that returns a funcallable object, but is typi-
caily written as a macro that produces a closure.
For example, the definition of l i s t - e l e m e n t s is
shown in Figure 2.

The macro binds some state (the tail of the
list being iterated over), and returns a function
closed over that state. When the function is
called, it checks whether the list is exhausted.
If so, it calls its argument (the exit function);

otherwise, it returns the head of the list and sets
the state to the rest of the list. The macro takes
an optional :by keyword argument that lets you

walk down the list by some other accessor than
cdr. ;The i t e r a t e module also supplies defini-
tions for interval, list-tails, and elements
(of a generic sequence); it is clearly easy for a
user to define additional ones.

Similarly, generators are typically written as
macros that produce two closures as values. The
definition of collecting is shown in Figure 3.
Again, the macro binds some state and returns
two functions closed over that state. Addi-
tional gatherers already defined are summing~
maximizing, and minimizing.

If you expand these two macros (and the ob-
vious one for interval as well) in the "formal
meaning" example given above, you get some
obviously inefficient code. However, the actual

111-2.30

(defmacro collecting ()
'(let (head tail)

(values #'(lambda (value)
(if (null head)

(setq head (setq tail (list value)))
(setq tail (cdr (rplacd tail (list value))))))

#'(lambda () head))))

Figure 3: The definition of the gatherer c o l l e c t i n g .

(l e t (~ l s t h e a d ~ l s t t a i l)
(b lock ~ i t l o o p

(l e t * ((X l s t s t a t e m y l i s t)
(~ i n t s t a t e 1)
e i)

(loop (s e t q e (progl (i f

Xlsthead)

(endp ~iststate)
(return-from Xitloop)

(first ~iststate))
(s e tq % l s t s t a t e (cdr % l s t s t a t e))))

(s e t q i (progl X i n t s t a t e (s e tq X i n t s t a t e (+ X i n t s t a t e 1))))
(when (i n t e r e s t i n g - p e)

(let ((value e))
(if (null Xlsthead)

(setq Xlsthead (setq Xlsttail (list va~ne)))
(setq Xlsttail (cdr (rplacd Xlsttail (list value))))))

(format t "'d: collected "s'%" i e)))))

Figure 4: The actual expansion of the iterate/gathering example.

implementation of i t e r a t e , which uses pro-
gram transformation techniques, produces code
more like that shown in Figure 4. This is about
as good as the code you might produce by hand,
or that might be produced by other iteration fa-
cilities, such as loop. And thatds, what gives us
anything interesting to write in this article.

To understand the program transformations
involved, let us work through a subset of the
previous example:

(iterate ((e (list-elements i)))
body)

whose naive expansion is~ shown in Figure 5.

The first transff)rmation is something we call'

let eversion. Abstractly, it is permissible to re-
place

(let ((var (let (bindings) value)))
body)

with

(let: Cbindings)
(let ((var value))

body))

as long as none of the variables bound by bind-
ings is special, and none is used in body. Given
the former, it is easy to insure the latter: the
variables bound by bindings are only known
within t he lexical scope of the internal let, so

111-2.31

(block %itloop
(let* ((%Istgen (let ((tail i))

#'(lambda (finish)
(progl (if (endp tail)

(funcall finish)
(first tail))

(setq tail (funcall #'cdr tail))))))
e)

(loop (s e t q e (f u n c a l l ~ l s t g e n # ' (l a m b d a ()
body)))

(return-from %itloop))))

Figure 5: The naive expansion of a one-generator iterate example.

(block ~itloop
(let* ((~Isttail I)

(~istgen #'(lambda (finish)
(progl (if (endp ~Isttail)

(funcall finish)
(first ~isttail))

(setq %Isttail (funcall #'cdr %isttail)))))
e)

(loop (setq e (funcall %istgen #'(lambda ()
body)))

(return-from %itloop))))

Figure 6: Example after applying let eversion.

we can just rename them all to gensyms, a com-
piler t ransformation known as alpha conversion.
This t ransformation is an easy task for the code
walker, as we will describe below. There is one
more tweak to let eversion that we make solely
for cosmetic reasons: having renamed all the
variables, it is clear that the t ransformation is
valid even if l e t becomes l e t * (because none
of the initialization forms in the l e t can refer
to any of the renamed variables), so we can col-
lapse all the bindings into one l e t * .

Applying let eversion to our example yields
the code shown in Figure 6.

The next t ransformation is a fairly s tandard
compiler optimization called beta reduction--
substi tuting the value of a bound variable for
every reference to tha t variable. This transfor-
mat ion is permitted if (1) the variable is not
side-effected between the binding and its use,

(2) the value expression has no side effects,
and (3) the value expression references no vari-
ables whose bindings appear between the origi-
nal binding and the reference.

In the case of an i t e r a t e form, we want to
substi tute the generator body # ' (lambda . . .)
for its occurrence in the f u n c a l l in the loop
body. Condition (1) is obviously met , because
the bound variable is an invisible gensym with a
single read-only reference (the f u n c a l l) . Con-
dition (2) is met , because the special form
f u n c t i o n has no side effects.

Condition (3) is met if the generator function
makes no free reference to any i terat ion vari-
ables tha t follow it in the main l e t * (those be-
ing the only visible variables between the bind-
ing and the funcall at the top of the loop). We
certainly expect this to be the case normal ly - -
most generators have no free references at all

111-2.32

(block ~itloop
(let* ((~isttail i)

e)
(loop (setq e

(funcall #'(lambda (finish)
(progl (if (endp ~Isttail)

(funcall finish)
(first ~isttail))

(setq ~isttail (funcall #'cdr ~isttail))))
#'(lambda () (return-from ~itloop))))

body)))

Figure 7: Example after applying beta reduction.

(block ~itloop
(let* ((~Isttail i)

e)
(loop (setq e (progl (if

body)))

(endp ~isttail)
(return-from ~itloop)

(first ~isttail))
(setq ~Isttail (funcall #'cdr ~isttail))))

Figure 8: Example after funcall and beta reductions.

outside of the variables they're closed over--
but it is possible to construct perverse forms
that violate this condition, so our i t e r a t e im-
plementation must check for it. Applying beta
reduction to our example yields the code shown
in Figure 7.

The final transformation, a trivial one per-
formed by any Lisp compiler worthy of the
name, we'll call funcall reduction: transform
(f u n c a l l #' fn . args) into the simpler form
(fn . args). We need to perform this trans-
formation explicitly, however, in order to ap-
ply beta reduction a second time, substituting
for the f i n i s h argument in the generator. Fi-
nally, we apply funcall reduction a second time
to pretty up the use of this argument. These
transformations yield the final expansion shown
in Figure 8.

Of course, not all i t e r a t e forms are optimiz-
able in this way, since we permit a generator

to be any Lisp form. It can be a function call,
which we can't touch in any way, or it can be an
arbitrarily complex macro that doesn't match
the pattern (l e t (. . .) # ' (l ambda . . .)) . For
these generators, the expansion of i t e r a t e is
just the formal meaning we outlined at the be-
ginning of this article. However, the vast ma-
jority of useful generators can be written in the
optimizable form.

A similar application of these same transfor-
mations allows us to optimize the g a t h e r i n g
macro. First, we apply alpha conversion to
each gatherer's body; this allows us to ap-
ply let eversion to lift its state bindings past
the multiple-value-bind at the top of the
ga the r ing . If we're lucky, we now have some-
thing of the form

(multiple-value-bind (gather finish)
(values ...)

°..)

111-2.33

(defun expand-into-let (form env)
(prog ((expansion form)

expandedp binding-type let-bindings let-body)
expand

(multiple-value-setq (expansion expandedp)
(macroexpand-1 expansion env))

(cond
((not (consp expansion)) ; Not an expression
)
((symbolp (setq binding-type (first expansion)))
(case binding-type

((let let*)
(setq let-bindings (second expansion))
(setq let-body (cddr expansion))
(go handle-let))))

((and (consp binding-type)
(eq (first binding-type) 'lambda)
(null (intersection lambda-list-keywords

(setq let-bindings (second binding-type))))
(eql (length let-bindings)

(length (rest expansion))))
;; Treat ((lambda (. . .) . . .) args) as a l e t
(setq let-body (cddr binding-type))
(setq let-bindings (mapcar #'list let-bindings (rest expansion)))
(setq binding-type 'let)
(go handle-let)))

;; Fall thru ~ not a let or lambda
(if expandedp ; Try expanding again

(go expand)
(return :abort))

handle-let
(return

(if (find-if #'variable-globally-special-p
(variables-from-let let-bindings))

;; ~ binds specialvars
:abort

(values (if (and (consp let-body)
(null (cdr let,body)))

(first let-body)
.:abort) ; M o r e than one expression, or malformed

binding-type let-bindings)))))

Figure 9: The function expand-into-let.

111-2.34

which we can turn into the obvious l e t . We
then apply beta reduction to the f l e t binding
of g a t h e r , and then to each gatherer and fin-
isher binding. Satisfying the preconditions of
be ta reduction is a little more demanding this
time, however, as we have no control over where
g a t h e r appears in the body. So we must walk
the entire body of the g a t h e r i n g form, substi-
tut ing for g a t h e r calls that satisfy the precon-
ditions (no conflicting bindings between the top
level binding and the g a t h e r call), and making
sure tha t there is no code that sets a gatherer 's
site variable. For simplicity, we also abort the
optimization if we discover a reference to a gath-
erer's site outside of a g a t h e r call, or a use of
' g a t h e r . And, of course, we can't optimize
any ga therer expression that isn't a macro call,
or whose expansion is more complex than the
expected form

(let . . .
(values #' (lambda . . .)

#' (lambda ...)))

Let us now look at the implementat ion of
i t e r a t e and g a t h e r . We'll begin with a sim-
plified version of i t e r a t e . Although we de-
scribed the optimization of i t e r a t e above as
a sequence of program transformations, the im-
plementat ion proceeds more in parallel. We
know what we are aiming for: a form that binds
some variables around a loop that updates the
variables and performs the i teration body. Each
i t e r a t e clause contributes an iteration variable
and some number of bindings for its generator 's
state, as well as a form to evaluate at the top of
the loop to set the i teration variable to its new
value.

The first step in processing a clause is to
macro-expand the generator to see if it is of
the desired form. This task is handled by the
function expand-into-let (Figure 9). It takes
a form and a macro-expansion environment,
and a t tempts to expand the form into an ex-
pression tha t looks like (l e t [*] bindings body).
When it finds the l e t , it verifies that none of
the bindings is of a special variable, since that
would preclude let eversion. If successful, it re-

turns three values: the body, the symbol let
or l e t * , and the list of bindings. If unsucess-
ful, it returns : a b o r t . Since calls to simple
lambda forms (those without lambda-list key-
words) are equivalent to l e t , and some Lisp im-
plementations macro-expand l e t into lambda,
e x p a n d - i n t o - l e t also treats such a call as the
equivalent l e t .

If the expansion into l e t succeeded, we now
have a set of bindings (variables and initial-
ization expressions) and a body. We check
that the body is of the desired form, viz.,
' (lambda (finisharg) . . .) . Next, we prepare
for alpha conversion by choosing some gensyms
for the variables. If the binding form was l e t * ,
we must also substi tute for variable references
in the second and subsequent initialization ex-
pressions. This task is handled by the function
r e n a m e - l e t - b i n d i n g s (Figure 10), and is the
first use we make of the code walker. The func-
tion returns the renamed bindings, along with
an association list mapping old to new names.

The procedure r e n a m e - v a r i a b l e s takes a
form, an environment, and an association list
mapping old to new variable names, and sub-
stitutes the new variables for all references to
the old variables that refer to the binding vis-
ible in the environment. This is just like the
Common Lisp function s u b l i s , except that we
must be smart and substi tute only for variable
references, not function calls or literals, and
only in contexts where a variable isn't shad-
owed by another binding form. So we use the
code walker to traverse the form. Every time we
are offered a symbol that appears in the a-list
we return the corresponding new variable, but
only if the symbol refers to the binding we're
interested in. The function v a r i a b l e - s a m e - p
tests whether the bindings of a variable visi-
ble in each of two environments are the same.
It uses v a r i a b l e - l e x i c a l - p , a function in the
code walker that tests whether a variable is lexi-
cal in an environment, and if so returns a unique
object representing the instance of the binding
visible in the environment.

Finally, we perform two transformations on

111-2.35

(defun rename-let-bindings (let-bindings binding-type env)
(let (renamed-vats)

(values (mapcar #'(lambda (binding)
(let ((n e . v a r (gensym))

(valueform (cond
((no t (consp b i n d i n g)) ; No initial value
nil)
((or (eq binding-type ~let)

(null renamed-vars))
(second binding))

(t ; For l e t * , do all previous renamings
; in the initialization form.

(rename-variables (second binding)
renamed-vats env)))))

(push (cons (if (consp binding) (first binding) binding)
newvar)

renamed-vars)
(list newvar valueform)))

let-bindings)
renamed-vat s)))

(defun rename-variables (form alist env)
(walk-form form env

#~ (lambda (form context subenv)
(let (pair)

(if (and (symbolp form)
(setq pair (assoc form alist))
(variable-same-p form subenv env))

(cdr pair)
form)))))

(defun variable-same-p (vat envl env2)
(eq (variable-lexica1-p vat envl)

(v a r i a b l e - l e x i c a l - p v a t env2)))

Figure 10: Renaming the bindings of a let or l e t * .

the generator body in one pass of the code
walker (Figure 11): alpha conversion on the
body, using the association list returned from
r e n a m e - l e t - b i n d i n g s , and beta reduction and
funcall reduction for the generator's finish argu-
ment.

At the same time, we verify that the require-
ment for beta reduction is met (no reference to
subsequent iteration variables), and that there
is no reference to the generator's finish argu-

ment other than funcalls to it.

At this point, we have finished the transfor-
mation of the generator body into code that we
can evaluate inside the loop to update the iter-
ation variable.

If any of the transformation requirements was
not met, however, we instead produce an update
expression that reflects the formal semantics of
i t e r a t e : a call to the generator, with the gen-
erator being computed in the list of bindings

III-2.36

(defun iterate-transform-body (let-body iterate-env renamed-vars
finish-arg finish-form bound-vars)

(walk-form let-body iterate-env
#' (lambda (form context env)

(cond
((symbolp form)
(let (renaming)

(cond
((and (eq form finish-arg)

(variable-same-p form env iterate-env))
;; An occurrence of the finish arg outside of f u n c a l l
(return-from iterate-transform-body :abort))

((and (setq renaming (assoc form renamed-vars))
(variable-same-p form env iterate-env))

;; Reference to a variable to rename

(cdr renaming))
((and (member form bound-vars)

(variable-same-p form env iterate-env))
;; Reference to a var bound later in same i t e r a t e
(r e t u r n - f r o m i t e r a t e - t r a n s f o r m - b o d y : a b o r t))

(t form))))
((and (consp form)

(eq (first form) 'funcall)
(eq (second form) finish-arg)
(variable-same-p (second form) env iterate-env))

;; (f u n c a l l finish-arg) ~ finish-form
finish-form)

(t form)))))

Figure l h The function i t e r a t e - t r a n s f o r m - b o d y .

produced for this clause.

After we repeat this process for all the itera-
tion clauses, we assemble the accumulated bind-
ings and update forms into the complete expan-
sion, and we're done.

The complete implementation of the i t e r a t e
macro is shown in Figure 12.

The variables bindings and update-forms
are accumulators for the bindings of generator
state variables and iteration variables and for
the update forms, respectively. In the variable
bound-varg, we maintain a list of all the it-
eration variables from the clauses we have not
yet processed, so that the beta reduction step

(i t e r a t e - t r a n s f o r m - b o d y) can check that no
generator uses them conflictingly. The proce-
dure func t ion - l ambda -p is a simple pattern-
matching function that tests that its argument
is of the form #' (lambda . . .) and returns the
lambda subexpression on success.

The actual implementation of iterate is a
bit more complicated in several ways omitted
from the discussion above for clarity:

• It does a more thorough job of checking the
syntax of the iterate form, e.g., that each
iteration clause is a list of exactly two ele-
ments, and that there are no duplications
among the iteration variables.

111-2.37

(defmacro iterate (clauses &body body ~environment env)
(let* ((block-name (gensym))

(finish-form '(return-from ,block-name))
(bound-vats (mapcar #'car clauses))
update-forms bindings)

(dolist (clause clauses)
(multiple-value-bind (let-body binding-type let-bindings)

(expand-into-let (second clause) env)
(let ((iv (first clause))

gen-arg renamed-vats)
(cond

((eq let-body :abort) ; Were alreadyfai~d
)

((null (setq let-body (function-lambda-p let-body 1)))
(setq let-body :abort)) ; Not of the expected form

(t ;; Generator body is of the form #' (lambda (fin~harg) . . .) .
;; let-body ~ now the lambda form.
(setq gen-arg (f i r s t (second let-body)))
(setq let-body '(progn ,@(cddr let-body)))
(when let-bindings ; Begin renamingfor let eversion.

(multiple-value-setq (let-bindings renamed-vars)
(rename-let-bindings let-bindings binding-type env)))

;; A~ha-convert generator body and expand (funcall fin~harg)
(setq let-body (iterate-transform-body let-body env

renamed-vars gen-arg finish-formbound-vars))))
;; let-body is now the updateformfor the iteration variable.
(when (eq let-body :abort)

;;Optimizat ionfai le~use the formal semantics
(let ((gvar (gensym))

(generator (second clause)))
(setq let-bindings (list (list gvar generator)))
(setq let-body

'(funcall ,gvar #'(lambda nil ,finish-form)))))
(pop bound-vars) ;Needn~ watch out for th~ variab~ anymore.
(push ' (setq ,iv ,let-body) update-forms)
(setq bindings (nconc bindings let-bindings (list iv))))))

;; All clauses now processed, so emit the code.
'(block ,block-name

(let* ,bindings
(loop ,~(nreverse update-forms)

,@body)))))

Figure 12: Top level implementation of the iterate macro.

III-2.38

• It issues optional warnings when it is un-
able to fully optimize a form, e.g., when a
generator fails to expand into the expected
form, or doesn't expand at all. A user-
settable flag controls whether warnings are
issued for aU suboptimal forms, for only
those that could be influenced by chang-
ing "user" code, or never. Issuing helpful
warnings requires passing around the orig-
inal clause to some of the functions that
don't otherwise need access to it in the sim-
plified implementation described above.

• It handles declarations. The complete syn-
tax for i t e r a t e permits declarations to
follow the iteration clauses. These decla-
rations must be moved out of the itera-
tion body and placed immediately after the
let* bindings in the iterate expansion,
so that they are in the correct place to de-
scribe the iteration variable bindings.

Declarations can also appear in the expan-
sion of a generator, both in its top-level l e t
and in the closure body. These are slightly
trickier to handle. Those that refer to vari-
ables in the leg have to migrate as part of
the let eversion transformation to the outer
l e t * in the i t e r a t e expansion (and have
their variables renamed); others, such as
i n l i n e declarations, must remain with the
generator body, which then becomes

'(locally
,@decOrations
,@let-body)

in optimize-iterate-form.

• It allows a generator's l e t to have a larger
body. In the simple implementation, we
insisted that a generator expand into a
l e t with a single expression in its body,
#' (lambda (finisharg) . . .) .

Let eversion still works if there are more
forms in the l e t , because we know that
Common Lisp provides no way to exit from

the straight-line computation in a l e t body
without also exiting some parent form.

Thus, we can generalize let eversion to
transform

(let ((vat (let (bindings)
computation
value)))

body)

into

(l e t (bindings)
computation
(l e t ((var value))

body))

In order to collapse this into a single l e t * ,
we simply defer the computation until the
next variable's initialization form, enclos-
ing it in a suitable progn.

It permits a generator to return multiple
values, bound to multiple iteration vari-
ables. For example,

(iterate (((indicator value)
(plist-elements

(symbol-plist s))))
(format t "'S: "S'~"))

prints out a nice display of the property
list of a symbol. The most significant
change this makes to the implementation
is that the iteration variables are set via
mult i p l e - v a l u e - s e tq to the output of the
generator.

The special case where, after all the trans-
formations, the body of the generator is a
call on va lues is explicitly optimized to
multiple se tq 's for the benefit of the few
compilers that wouldn't do that automati-
cally.

There is one further transformation one could
make to the i t e r a t e expansion that would
make it essentially indistinguishable from the

111-2.39

(block Xitloop
(let* ((~isttail I)

e)
(loop (setq e (if (endp ~isttail)

(return-from ~itloop)
(first ~Isttail)))

body
(setq Xlsttail (funcall #'cdr Xlsttail)))))

Figure 13: A possible further optimization of the iterate example.

code you would write by hand: explode the
prog l of the typical generator body into its first
subexpression now and the rest at the end of the
loop. This would turn our earlier example (Fig-
ure 8) into the code shown in Figure 13. For cor-
rectness, this transformation requires that the
tail of the p rog l have no side effects other than
to the generator state (in this case, Y, l s t t a i l) ,
and in turn that it be unaffected by anything
in the body of the i t e r a t e . Although virtually
any reasonable generator satisfies both condi-
tions, it is difficult to verify this mechanically.
Thus, we have chosen not to attempt this addi-
tional optimization, leaving it instead to a "suf-
ficiently clever compiler," which would be in a
better position to verify these conditions.

As for the implementation of ga t he r i ng , the
processing of the clauses is similar to that of
i t e r a t e , and uses several of the subfunctions
described above. However, the beta reduction
step is a more complex task, as we must walk
the entire body of the g a t h e r i n g form in order
to substitute for calls on ga ther . This walk has
a few more things to worry about:

Given the possibility that there are nested
g a t h e r i n g forms, we must be prepared to
encounter a gather referring to an accu-
mulation site in a parent form, rather than
in the one we are currently expanding. We
could ignore such occurrences, relying on
the macro expansion of the parent to han-
dle it, but then we'd be unable to issue
warnings at compile time about an unrec-
ognized second argument to ga ther . So in-

stead, we maintain a special variable that
records all the active accumulation sites.
The macro expander for g a t h e r i n g rebinds
this variable with its own sites consed onto
the front.

When analyzing each gatherer during the
alpha conversion step, we must additionally
note any free variable references. Later,
when walking the g a t h e r i n g body, we
check each occurrence of g a t h e r to make
sure that no variable referenced freely by
the corresponding gatherer has been re-
bound in the meantime. This test is again
made by variable-same-p.

We check that there is no reference to an
accumulation site variable outside of a call
to gather.

The interested reader is invited to peruse the
PCL sources for the complete implementations
of both i t e r a t e and g a t h e r i n g . To get a copy,
either send electronic mail to "CommonLoops-
Coordinator.pa@Xerox.Com" or send normal
mail to

CommonLoops Coordinator
Xerox PARC
3333 Coyote Hill Rd.
Pale Alto, CA 94304

They can give you information on the options
available to you for receiving the code. []

111-2.40

