
Self-Reproducing Programs
in Common Lisp

Peter Norvig
Computer Science Division, University of California

Berkeley, CA 94720
n o r v i g @ t e a k , b e r k e l e y , e d u

May 7, 1990

This paper reviews the classic self-reproducing expressions in Lisp, and
presents some new ones that are unique to Common Lisp.

The Classic Self-Evaluating Expressions

The search for self-reproducing programsmprograms that print their own
sources--is a common exercise going back at least to [Bratley and Millo,
1972]. In Lisp, there is no such notion as a program per se, so the exercise
is instead to find self-reproducing or self-evaluating expressions. Of course,
there are many trivial self-evaluating atoms, such as these two:

t

2

Thus, it is traditional to limit the quest to non-atomic expressions. It is
well-known that the following expression fits the bill, and as it uses only the
most basic primitives, it will work in any dialect of Lisp:

((lambda (x) (list x (list (quote quote) x)))
(quote (l~mbda (x) (list x (list (quote quote) x)))))

111-2.3

There are a few interesting variations on this theme. In a modern Lisp with
backquote notation, a more succinct version is possible:

((lambda (x) (list x '',x)) '(lambda (x) (list x '',x)))

In Common Lisp (but not Scheme) it is possible to write an equivalent but
more obtuse version:

((lambda (list) (list list '',list))
'(lambda (list) (list list '',list)))

Conversely, in a Scheme where the printed representation of a function is the
source code of the function, we can simply say:

((lambda (x) (list x x))
(lambda (x) (list x x)))

This version is also self-reproducing in Common Lisp if you install the
following handy macro definition for l ambda , 1 and if your Common Lisp
prints macro expansions as the original source code.

(defmacro lambda (args &body body)
"Allow (lambda (x) . . .) instead of #'(lambda (x)
c#,(lambda ,args .,body))

• • ,) 1 1

Jon L White has suggested that the self-reference implicit in these self-
evaluating expressions is reminiscent of the self-reference done by the Y
combinator. The Y combinator is what one needs to add to the lambda
calculus to allow recursion (see [Field and Harrison, 1988, p. 133]). In a
normal-order reduction calculus with Scheme syntax, we can write Y as:

(d e f i n e (Y f)

((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

q f y o u hate those unsightly # ' marks as much as I do, you'll use this macro even when
you aren't playing with self-evaluating expressions.

111-2.4

Indeed, the body of Y looks just like the canonical self-evaluation expression
with l i s t replaced by f , and with an extra function call thrown in. We can
show that this is a proper definition of Y with the following proof of the
identity (Y f) = (f (Y f)):

(Y f) = ((lambda (x) (f (x x)))
(lambda (x) (f (x x))))

= (f ((lambda (x) (f (x x)))
(lambda (x) (f (x x)))))

= (f (Y f))

The key to this derivation is that (Y f) reproduces itself, along with an
additional call to f. Our self-evaluating expression reproduces itself in the
same way, but doesn't add an additional call. However, we can show that

(Y identity) = (identity (Y identity)) = (Y identity)

So (Y i d e n t i t y) is self-evaluating in the normal-order reduction calculus,
although in an applicative-order language like Lisp it results in infinite re-
cursion (see [Gabriel, 1988] for a discussion of applicative Y).

Some New Self-Evaluating Expressions

Let's return to the main point of this article: novel self-evaluating expres-
sions. Once the door is opened to the full lexical conventions of Common
Lisp, some very succinct new solutions are possible. Consider:

#1='#1#

This is the list whose first element is the symbol quote and whose second
element is the list itself. While the expression is certainly self-evaluating,
it does have the drawback that it is only self-reproducing in an environment
where * p r i n t - c i r c l e * is non-nil. That restriction is lifted with the following
version:

#1=(setq *print-circle* '#1#)

III-2.5

Those who complain that the goal should be to find a self-evaluating function
call can embed these solutions in lambda expressions:

#1=((lambda () '#I#))
#1=((lambda () (setq *print-circle* '#1#)))

An alternate approach makes use of the oft-forgotten variable -, which in
Common Lisp is bound to the current input to the read-eval-print loop (just
as * is bound to the previous result). Thus, the following two expressions
are self-reproducing when typed to a read-eval-print loop:

(identity -)

The first of these is the only non-constant atomic expression that is guar-
anteed to be self-evaluating, while the second is of course non-atomic.

As an aside, the following is one of the shortest infinite looping expression:

(eval -)

Richard Fateman provided a few more short infinite looping expression:

(loop)
#1=(progn #1#)

In fact, an infinite loop results when progn is replaced by any function, or b~
multiple-value-call, multiple-value-progl, tagbody, assert, unwind-protect,
case, progl, prog2, do, and, or, when or unless.

In summary, it has been assumed that the best way to write a self-
reproducing program is to bind a variable to part of the program, and then
output that variable twice, along with enough "glue" to comprise the rest
of the program. This short paper shows that it is also possible to get the
same results by circular reference using the Y combinator or Common Lisp's
unique #1= and - conventions.

111-2.6

R e f e r e n c e s

[1] Bratley, P. and Millo, J. Computer Recreations. Self-reproducing au-
tomata. Software Practice and Experience, 2, (1972) 397-400.

[2] Field, A.J. and Harrison, P.G. Functional Programming, Addison-Wesley,
(1988).

[3] Gabriek R. The Why of Y. Lisp Pointers, 2 2, (1988) 15-25.

Once upon a time, in a kingdom not far from here, a king summoned two
of his advisors for a test. He showed them both a shiny metal box
with two slots in the top, a control knob, and a lever. "What do you
think this is?"

One advisor, an engineer, answered first. "It is a toaster," he said.
The king asked, "How would you design an embedded computer for it?"
The engineer replied, "Using a four-bit microcontroller, I would write
a simple program that reads the darkness knob and quantizes its
position to one of 16 shades of darkness, from snow white to coal
black. The program would use that darkness level as the index to a
16-element table of initial timer values. Then it would turn on the
heating elements and start the timer with the initial value selected
from the table. At the end of the time delay, it would turn off the
heat and pop up the toast. Come back next week, and I'll show you a
working prototype."

The second advisor, a computer scientist, immediately recognized the danger of
such short-sighted thinking. He said, "Toasters don't just turn bread into
toast, they are also used to warm frozen waffles. What you see before you is
really a breakfast food cooker. As the subjects of your kingdom become more
sophisticated, they will demand more capabilities. They will need a breakfast
food cooker that'can also cook sausage, fry bacon, and make scrambled eggs. A
toaster that only makes toast will soon be obsolete. If we don't look to the
future, we will have to completely redesign the toaster in just a few years.

"With this in mind, we can formulate a more intelligent solution to
the problem. First, create a class of breakfast foods. Specialize
this class into subclasses: grains, pork, and poultry. The
specialization process should be repeated with grains divided into
toast, muffins, pancakes, and waffles; pork divided into sausage,
links, and bacon; and poultry divided into scrambled eggs, hard-boiled
eggs, poached eggs, fried eggs, and various omelet classes."

"The ham and cheese omelet class is worth special attention because it
must inherit characteristics from the pork, dairy, and poultry
classes. Thus, we see that ~he problem cannot be properly solved
without multiple inheritance. At run time, the program must create

III-2.7

