
Efficient Implementation of Bit-vector Operations
in Common Lisp

Henry G. Baker -

Nimble Computer Corporation
16231 Meadow Ridge Way

Encino, CA 91436
(818) 501-4956

(818) 986-1360 FAX

This work was supported in part by the U.S. Department of Energy
Contract No. DE-AC03-88ER80663

In this paper we show various techniques for the efficient implementation of the various functions of
Common Lisp involving bit-vectors and bit-arrays. Bit-vectors are extremely useful for computing
everything from the Sieve of Eratosthenes for finding prime numbers, to the representation of sets
and relations, to the implementation of natural language parsers, to the performance of flow analysis
in an optimizing compiler, to the manipulation of complex communication codes like those used in
facsimile machines. However, the efficient manipulation of bit-vectors on modem computers
represents a curious point on the spectrum of data processing tasks. On the one hand, the possibility
of packing many bits within a single computer word and operating on all of them in parallel offers a
potential for speedup not usually available for other types of tasks. On the other hand, the lack of the
ability to efficiently manipulate single bits because of addressing schemes tuned for larger objects can
actually reduce the speed of operating on bits. As a result of these observations, it should be obvious
that no simple, automatic techniques such as "in-lining" (procedure integration) or "loop unrolling" of
the obvious serial algorithms will produce the kinds of efficiency we are seeking. For these reasons,
the efficient implementation of bit-vector operations requires special-case code, and is an interesting
challenge in ingenuity and engineering

We show how to organize the wide variety of bit-vector operations in Common Lisp into a few
genetic types of processing, and show how word-wide parallelism can be utilized for almost all of
these operations to achieve speedups over similar character operations of approximately the size of the
word. The major exception to our presentation will be Common Lisp's "SEARCH" function for
bit-vectors, which can also be speeded up [Baker89], but the subtlety and complexity of its
implementation is outside the scope of this paper.

Introduction

The manipulation of bit-vectors and bit-arrays is an important implementation technique of symbolic
processing, because bit-vectors allow for the efficient implementation of very complex and relatively
unstructured relations. Bit-vectors and bit-arrays therefore offer an efficient method for representing
and manipulating certain complex relationships that are so unstructured that they cannot be further
decomposed, and yet are also so dense that the alternative pointer techniques would require more
space and time. For example, the LINGOL natural language understanding system [Pratt73] utilizes
bit-vectors in the implementation of the Cocke-Kasami-Younger parsing algorithm, and [Baker90]
shows the use of bit-vectors for effectively determining "subtypep" for the relatively unstructured
type system of Common Lisp.

Symbolic processing can be roughly compared with numeric processing, where there are dense

© 1989,1990 by Nimble Computer Corporation.
111-2.8

matrix techniques and sparse matrix techniques. Dense matrix techniques are best suited for relatively
small matrices, where the underlying physical model is very closely coupled. Sparse matrix
techniques are best suited for larger matrices where the underlying physical model is very loosely
coupled. Dense matrix techniques assume that most matrix elements are non-zero, and hence that
most operations involving those matrix elements are non-trivial. Sparse matrix techniques try to take
advantage of the fact that a large fraction of the matrix elements are zero, and hence operations
involving these elements are trivial. However, sparse matrices may still have relatively complex
structure, even though a large portion of their elements are zero, so flexible methods must be used to
represent and manipulate these sparse matrices. Most sparse matrix techniques, therefore, make use
of pointers and linked structures which are much more reminiscent of symbolic than of numeric
processing.

In symbolic processing, the underlying relationships are almost always sparse, hence the
predominance of pointers and linked structures. Nevertheless, there are occasions where the
relationships are so unstructured or so dense that pointer techniques are not optimal for symbolic
processing. For example, the transitive closure of a binary relation is often dense, even ff the original
relation is not. In cases such as these, bit-vectors and bit-arrays can often be useful, if their
implementation is efficient enough. ([Ait-Kaci89] performs transitive closures of object-oriented
hierarchies using bit-vector techniques.)

Below is a straight-forward implementation in Common Lisp of the "or-and" multiplication of a
bit-matrix by a bit-vector, which is useful in computing the image set resulting from the application of
a binary relation to a domain set.

(defun mult-mat-vec (a v)
"Post-multiply bit-matrix a by bit-vector v."
(declare (type (array bit 2) a) (bit-vector v))
(assert (= (array-dimension a i) (length v))
(let* ((m (array-dimension a 0))

(result (make-sequence 'bit-vector m :initial-element 0)))
(dotimes (i m)

(when (intersection-test (nmatrix-row a i) v)
(setf (elt result i) I)))

result))

(defun nmatrix-row (a i)
"Returns a vector displaced to the i'th row of a matrix a."
(declare (type (array * 2) a))
(let ((n (array-dimension a I)))

(make-array n :displaced-to a :displaced-index-offset (* i n))))

(defun intersection-test (vl v2)
"Returns true if bit-vectors intersect one
(declare (bit-vector vl v2))
(assert (= (length vl) (length v2))
(some #'logtest vl v2))

another. "

© 1989,1990 by Nimble Computer Corporation.
III-2.9

Below is an implementation of Warshall's famous "in-place" algorithm for computing the transitive
closure of a bit-matrix in Common Lisp. (Unfortunately, due to bugs in the implementation of
displaced bit-arrays, this elegant program will not run on some Common Lisp implementations.)

(defun nwarshall (a)
"Implements Warshall's algorithm for the transitive closure."
"Transitively closes the square bit matrix a in place."
"[Baase, p.223]"
(declare (type (array bit 2) a))
(assert (= (array-dimension a 0) (array-dimension a i)))
(let ((n (array-dimension a 0)))

(dotimes (k n)
(let ((ak (nmatrix-row a k)))

(dotimes (i n)
(let ((ai (nmatrix-row a i)))

(unless (zerop (bit a i k))
(bit-ior ai ak t)))))))

a)

Common Lisp provides a number of representations and operations for bit vectors and arrays. The
most obvious is the "BIT-VECTOR" datatype, which is a subtype of "ARRAY" in which the
elements are restricted to "BIT"'s, i.e., the integers zero and one, and in which the array rank
(number of dimensions) is one. Bit-vectors of this type (which we will call "array" bit-vectors) are
also Common Lisp "sequences" because they are one-dimensional arrays, so they inherit all of the
operations of the Common Lisp sequence functions. However, there are a number of additional
Common Lisp functions which operate on all "bit-arrays"Di.e., arrays of bits. Cun0usly, even
though Common Lisp has an abbreviation for "(ARRAY BIT (*))" D "BIT-VECTOR, - - and an
abbreviation for "(SIMPLE-ARRAY BIT (*))" ~ "SIMPLE-BIT-VECTOR" ~ it does not provide
a standard abbreviation for "(ARRAY BIT *)", for which the obvious abbreviation would be
"BIT-ARRAY". Finally, there is an extensive treatment of integers as bit-vectors (which we will call
"integer" bit-vectors) through their 2's-complement notation, including "logand", "integer-length",
etc. (Logical operations on Maclisp bignums were first implemented to support LINGOL [Pratt73]
through the BBOOLE package [Baker75], and eventually found their way into the MIT Lisp Machine
and Common Lisp.)

Unfortunately for a potential user of bit-vectors in a Common Lisp program, these different
representations and function suites have not been rationalized, so it may be difficult to decide a priori
which representation to use in an application. To make things worse, some Common Lisp vendors
provide such inefficient implementations of some of the bit-vector functions that they are useless for
real programming.

Before delving into the efficient implementation of the various bit-vector operations, we first give
some perspective on the relationships among these different operations through the following chart,
which compares the operations available for "integer" bit-vectors with those available for "array"
bit-vectors. (See [Eliot89] for a discussion of various representations for sets in Common Lisp; note
particularly the chart in his Figure 3.)

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 0

Ot~erafion Inteeer Version ~ Seauence Version
Copy v unnecessary make-array :initial-contents v copy-seq
Make-all-zeros 0 make-array :initial-element 0 make-sequence :initial-element 0
Make-all-ones -1 make-array :initial-element 1 make-sequence :initial-element 1
Test all zeros zerop, not ldb-test N/A not find 1
Test all ones eq1-1 N/A not find 0
Size integer4ength array-dimension(s) length
Access i'th bit logbitp bit, sbit elt
Boolean functions boole N/A N/A

logand bit-and map #'logand
logior bit-ior map #'logior
logxor bit-xor map #'logxor
logeqv bit-eqv map #'logeqv
lognand bit-nand map #'lognand
lognor bit-nor map #'lognor
logandc 1 bit-andc 1 map #'logandc 1
logandc2 bit-andc2 map #'logandc2
logorcl bit-orcl map #'logorcl
logorc2 bit-orc2 map #'logorc2
lognot bit-not map #'lognot

Intersect test logtest N/A some #'logtest
Subset test N/A N/A every #'<=
Select portion ldb,ash make-array :displaced subseq
Count bits logcount N/A count
Leftmost 1 integer-length N/A position
Mask a field mask-field N/A :start, :end
Reverse a bit-vector N/A N/A reverse, nreverse
Concatenate bit-vectors logior+ash N/A concatenate
Compare bit-vectors --, equal, equalp equal, equalp mismatch
Search for subsequence N/A N/A search
Block initialize N/A :initial-element ? fill
"BL'F' block transfer dpb :initial-contents ? replace, setf-subseq

Chart of analogous operations for integers, bit-arrays and bit sequences.

We can see by this chart that there is a great deal of overlap between the types of operations available
for the various forms of bit-vectors. However, there are also some obvious holes, such as the lack of
a quick intersection test for "array" bit-vectors, the lack of a subset test, and the lack of a reverse
operation on integers. (A reverse operation on integers would come in handy for the implementation
of FFT's, and would also aid in certain other recursive decomposition tasks.)

The largest difference, however, between array-type bit vectors and integer-type bit vectors is in the
fact that integer bit-vectors are functional, while array bit-vectors allow for side-effects. Thus, if n
different pointers exist to an integer bit-vector, and one applies the "lognot" function to that bit-vector,
then this operation only affects the result, and not any of the n existing pointers to the integer. On the
other hand, "bit-not" with a second argument of "t" will flip all of the bits in the bit-vector given as its
first a rgumentmnot only for the result bit-vector, but also for every other holder of a pointer to that
argument bit-vector. Therefore, integer bit-vectors are better for functional programming, while array
bit-vectors are better for state-oriented programming.

(Those in the functional programming camp may argue that the functional integer bit-vectors are good
enough for all purposes. However, I am not aware of any Lisp compilers which are smart enough to

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 1

solve the "aggregate update problem" for integer bit-vectors [Schwartz75][Hudak86], and therefore
the manipulation of integer bit-vectors results in quite a bit more cons'ing than might be used when
programming in a more imperative style utilizing array bit-vectors. Without a generational garbage
collector [Moon84], the excellent efficiency of the integer bit-vector operations is nullified by the large
amount of garbage collection that results from their use.)

Given that we would like a complete complement of bit-vector operations for either style of
programming, there are two ways to fill the holes in our chart--add additional operations for both
types of bit-vectors and/or add a conversion function which offers the efficient conversion of one type
into the other. Since we want to allow for the widest possible flexibility in the use of the Common
Lisp language, we suggest doing both--fill ing the holes in the chart with new functions and
providing for the interconvertability of integers and array bit-vectors (see also [Eliot89] for a similar
proposal).

(There are often other differences between integer bit-vectors and array bit-vectors due to the vagaries
of an implementation. E.g., because Coral Common Lisp on the Macintosh allocates temporary space
from the run-time stack for all integer operations, its operations are very fast, but its integers are also
limited to 32K bytes, which is quite large enough for most integer calculations, but not large enough
for many multi-dimensional bit-array applications.)

Some languages other than Common Lisp offer bit-vector facilities for bit-vectors which exceed the
word length of the underlying hardware. The original Pascal implementation offered "sets" up to size
60, thanks to Control Data. The Ada language [AdaLRM] offers the equivalent of Common Lisp's
bit-not, bit-and, bit-ior, bit-xor, equal, subseq, copy, concatenate,fill, and replace as builtin
capabilities for arbitrary-length bit-vectors. Interestingly enough, efficient Ada compilers must deal
with the full complexity of packed bit-vectors which can occur with any bit-offset to a word
boundary, just as we describe below. Ada also offers one builtin capability not available in Common
Lispwa lexicographic comparison, although such a comparison can easily be emulated using
mismatch. Of course, the APL language--as the inspiration for many Common Lisp
functions offers many interesting and useful functions for manipulating bit-vectors, some of which
are missing in Common Lisp--scan and bit-vector-reduce--which can often be quite useful.

Efficient Implementation of Sequence and Array Functions on Bit-vectors

Because "array" bit-vectors have a wider variety of operations, are more complex to implement, and
are usually implemented with less efficiency than "integer" bit-vectors, we will focus on the efficient
implementation of the various operations on array-type bit-vectors. The implementation of "integer"
bit-vector operations can then utilize the same machinery, except that automatically extending and
contracting the length of these bit-vectors requires some care (see [White86] for a discussion of the
efficient implementation of the various algebraic ring operations on bignums).

By efficient, we mean that we would like to take advantage of the SIMD-type "word parallelism" that
exists on all modern serial computers. In other words, if we can operate on 16-bit words at a time
(called "Whiz-Along-By-Words" in [White86]) instead of single bits, we would like to achieve a
16-fold speedup over the fully serial operation operating on only a single bit at a time. Clearly, the
larger the word size that we can utilize, the faster these operations should go.

There are some complications, however. Very few computers offer addressing capabilities down to
the individual bit, and demand that words be addressed on "word boundaries", so there are the
possibilities that incomplete words need to be processed, and that two bits which are to be combined
may reside at different bit locations within a word. Both of these complications will require additional
processing time, and add substantial complexity to the task of efficient implementation. Yet the

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 2

payoff of 16-64 X speedups is far too important to ignore.

Virtually all processing of bit-vectors in Common Lisp is stream-like, involving one or more input
streams of bits, and zero or one output streams of bits. (One can easily conceive of interesting
operations involving multiple output streams of bits, such as a dual complement/reverse complement
operation which treats the bit-vectors as sets, but none of the standard Common Lisp bit-vector
operations requires more than one output bit stream.) Depending upon the operation, these
bit-streams are derived from the bit-vector by processing from the start of the vector to the end, or
from the end of the vector to the start. The bit-stream may also need to be inverted in the process of
being read or written.

The key to the efficient processing of bit-vectors is in the ability to process more than one bit at a
time. Therefore, these bit streams need to be able to read or write more than one bit at a time (White
calls these chunks "bigits" [White86]). Ideally, one would like to specify the number of bits to be
processed---or "byte size"--perhaps 8 bits at a time for one operation, or 32 bits at a time for another
operation. The complications of word boundaries occurs when processing multiple bits--sometimes
one must process less than the full word width, and sometimes the word to be processed straddles a
word boundary.

(By word, we mean the smallest unit which can be efficiently read and written to memory. This does
not necessarily mean the smallest addressable unit, as many modem "CISC" chips can address a
32-bit word occurring on any 8-bit boundary, but the maximum efficiency is reached when 32-bit
words are read and written on 32-bit boundaries. By byte, we mean some number of bits which has
been chosen as convenient for a particular type of processing; our bytes do not necessarily have 8
bits.)

Vanilla Common Lisp already has an excellent model for bit streams which could theoretically be used
for these purposes--the "binary" file. Binary files in Common Lisp are homogeneous sequences of
"bytes", but since the byte size need not remain the same for all uses of the file, the only portable
implementation is as a sequence of bits. One could conceive of setting up a binary file associated with
each bit-vector which needed to be processed, which would in turn set up a "byte-stream" which
could be read or written, queried for end-of-file, etc. Such a stream could easily be set up to read
either from the beginning or the end, and to perform on-the-fly complementation.

A true Common Lisp "stream" implementation of the bit-vector operations would be very easy to
write code for, and the code would be quite readable. However, such an implementation would be
even more inefficient than a straight-forward serial implementation of the same functions. This is
because most implementations of streams in Common Lisp systems implement stream operations as
function calls, and expect to perform quite a bit of processing per byte read or written, so the relative
overhead of the stream operations is not normally objectionable. However, in the implementation of
bit-vector operations, such overhead would be intolerable, since the cost of a bit-operation is
essentially free compared with the cost of reading and writing the data.

However, rather than "throw out the baby with the bath water", we can keep the "byte stream" model
of processing, but implement it with some extremely efficient macros instead of true Common Lisp
streams, and thereby achieve intellectual economy together with high execution speed.

(A problem occurs in trying to implement these byte stream macros in portable Common Lisp---there
is no efficient way to access the representation of a bit-vector where the actual bits are stored. Coral
Common Lisp offers an escape--some open-coded "sub-primitives" which enable us to access 8-bit,
16-bit and 32-bit "bytes" at any offset within an object--irrespective of the type of the object. While
using these operations involves delving unnecessarily deeply into the gory details of the

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 3

representation of bit-vectors, Common Lisp provides no other intermediate level access to the actual
bits. The basic nature of these routines is roughly equivalent to ldb for a particular subset of sizes and
positions, except that we operate on bit-vectors instead of integers. Perhaps a future Common Lisp
revision can incorporate such an operation.)

At the same time that we implement a new set of specialized and efficient byte-stream macros, we can
also handle one of the complications of word addressing at the same time. While it is obvious that the
last byte of a sequence may sometimes not be a full byte, but only a partial byte, there are times when
it is more efficient to also process thefirst byte as only a partial byte. This is for "synchronization"
reasons, when the processing of the middle (neither first nor last) bytes is thereby speeded up. Since
we expect that bit-vectors will sometimes be quite long, it is important that the middle bytes be
processed in the most efficient manner. Therefore, in the setting up of such a byte stream, we must
separately specify both the offset within a byte of the beginning of the first byte as well as the length
of the first byte.

What different capabilities will be required of our "byte-streams"? We will obviously need to read
and write them, but less obvious is the need to "update" them in place. Due to the possibility of the
"t" argument in the "bit-xxx" bit-array logical operations, it will be necessary to be able to read, then
write back into the same location, the result of an operation. We will also have to read backwards
(although we will keep the order of the bits within the byte the same asthe forwards order), and we
may also want to be able to complementa byte after reading or before writing.

Due to the fact that during any builtin Common Lisp bit-vector operation, at most one bit stream will
be written (or updated), we can always "synchronize" all of the bit streams being read to the one
being written. Once this synchronization has been performed, we can always write words on word
boundaries, and thereby avoid a large amount of complexity and inefficiency, because writing across
word boundaries entails more inefficiency than reading across word boundaries. Therefore, only the
first and last byte on a write (or update) stream will be less than a full byte, and even that byte will
never cross a word boundary. Thus, for implementing just the standard Common Lisp bit-vector
functions, we need not implement the most general possible write/update stream.

(Note that even if a computer offered hardware addressing to the single bit, and allowed the hardware
reading and writing of words at any bit boundary, it would still be much more efficient for the
software to operate on full-word boundaries. This is because while the hardware reduces the
software complexity in terms of the number of instructions executed, it is still slower, due to the
larger number of cache misses and memory accesses.)

Synchronization of different byte streams is the process of choosing a stream which will be processed
(except for its first and last bytes) on a word boundary, and then computing the appropriate offsets
for the other streams so that the corresponding bits become aligned for processing. With a single
stream, we can always synchronize the stream to itself, while if there are two streams, we can
synchronize one to the other. (As we pointed out above, we will always synchronize to the write
stream because wnting unaligned streams is more expensive than reading unaligned streams.) With
the possibility of up to two streams for reading and one stream for writing required to implement
some Common Lisp bit-vector operations, we have the possibility that all three streams will have
different alignments, so we force both read streams to synchronize to the write stream. We call the
case of similar alignments "aligned" in our benchmarks, and the case of different alignments
"unaligned".

Many implementors who first approach Common Lisp bit-arrays assume that because the definition of
the "bit-xxx" functions (e.g., "bit-and", "bit-ior") require the same rank and the same dimensions,
that they will always be "synchronized" in the sense that corresponding bits from the different arrays

© 1989,1990 by Nimble Computer Corporation. 111-2.14

will occur at the same location within a word. However, this is not the case when one or more of the
arrays is "displaced", as the "index-offset" of a displaced array can be any non-negative integer,
which can therefore position the first element of the array at any bit within a word. In addition, these
functions must also be careful not to disturb bits earlier in the word before the first element or later in
the last word, because the underlying simple-array may also be accessible to the user, and bits which
are not participating in the "bit-xxx" function should not be affected. The "nwarshalr' algorithm
shown above depends cntically upon the correct implementation of "bit-xxx" functions on displaced
arrays.

(We note that most modern workstations already have extremely efficient implementations of the
"bit-xxx-t" functions under the guise of the "bitblt" function used to manipulate the two-dimensional
bitmap of the screen. In fact, Symbolics Common Lisp utilizes these functions to implement the
"bit-xxx" functions, and they are very fast; curiously, Symbolics sequence functions on bit-vectors
are abysmally slow (ca.Rel. 7.0). However, bitblt (at least as originally envisioned by the Xerox
Alto) is a two-dimensional operation involving only two arguments, and translating its use to a single
dimension and three arguments for use within Common Lisp can require some care. Coral Common
Lisp, for example, does not handle the case of unafigned arguments correctly. When special purpose
bitblt hardware is available for use within normal memory, its could provide the effect of an array
processor for these Common Lisp functions. One must be careful, however, of potentially long
startup overheads for these 2-dimensional operations; Common Lisp bit-vectors which are short also
want to be efficiently manipulated.)

We note that several proposals [Moon] have been made to modify the nature of the standard Common
Lisp bit-vector functions. We feel that our techniques will not be affected in any major way by these
proposals, so we have retained the original 1984 Common Lisp semantics [Steele].

Efficient irnplementation--general comments

We implement the Common Lisp operations on a substrate made up of primitives in which only
simple-bit-vectors are supported. We strip out displaced arrays and higher-order dimensions in the
upper levels of the implementation. Furthermore, all of the primitives come with explicit "start" and
"end" parameters so that arbitrary bit offsets can be represented. While simple-bit-vector operations
(without the "start/end" parameters) could be done, and would be slightly simpler, the general case
needs to be as efficient as possible, since it occurs more often than one might expect---due to
programming styles exhibited by our "nmatrix-row" routine at the start of this paper.

We will now go through the Common Lisp bit-vector functions in turn and indicate how they can be
efficiently implemented. All times given are for Coral Common Lisp 1.2 running on a Macintosh
Plus with a 16MHz Radius 68020 Accelerator card and 4Mbytes of main memory.

Find. Position

Find returns the item being sought if it occurs in the stream, while position returns the bit-position of
the item found. Both functions return nil if the item is not found within the bit-vector. Both
functions are essentially the same process, and differ only in the information returned to the caller.
The implementation involves one "read" stream, synchronized to itself. The basic operation of
"find1" or "positionl" is to find the first non-zero byte within the stream (after appropriate masking
on first and last bytes). "Find0" and "position0" utilize a complemented byte stream. Once a
non-zero byte is found, position determines the first bit within the byte by using a lookup table (on
8-bit bytes). The "with-end" versions read the stream in reverse.

Our implementation of find~position in Coral Common Lisp utilizes a byte-size of 16 bits (hence

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 5

processes the bit-vector 16 bits at a time), and operates in about .5t.tsec/bit processed.

Our implementation of "findl" in Coral Common Lisp utilizes a byte-size of 16 bits (hence processes
the bit-vector 16 bits at a time), and operates in .46ktsec/bit processed, while "find0" requires
.62~sec/bit processed.

Eoual. mismatch

Equal and mismatch both compare two bit-vectors, except that equal returns t or nil, while mismatch
returns the first position of the mismatch, or nil. Since the comparison can proceed either from the
start or the end of the bit-vector, we require both normal and "from-end" versions of this process.

Equal~mismatch requires two read streams, with the second being synchronized to the first, so that at
least one stream is processed on word boundaries. When a non-equality is found, then mismatch
calls "positionl" on the logxor of the two words to find the position of mismatch.

Our implementation of equal~mismatch requires .82~sec/bit for aligned streams, and 1.41~sec/bit for
unaligned streams.

Fill. :initial-element

Fill fills a subsequence of a given bit-vector with either all O's or all l's. Presumably, make-array
and make-sequence call upon fill when the keyword ":initial-element" is present. Fill utilizes a single
write-stream which is synchronized to itself, and always operates from the start to the end (since
every element must be processed, there is no reason for a "from-end" version).

Our implementation offill requires .45ktsec/bit processed.

Reolace. :initial-contents

Replace replaces a subsequence of one bit-vector with a subsequence of another bit-vector.
However, replace is defined such that it "still works" even if the two bit-vectors are the same, and the
source and destination subsequences overlap. In this case, replace acts as though the bits were first
transferred from the source to a "scratch" temporary bit-vector, and then transferred to the destination.

Replace is the closest operation Common Lisp has to a "bitblt" or "bit-block-transfer" operation.
Since Common Lisp requires that replace "work correctly" even when source and destination overlap,
we will require both a normal and a "from-end" version of replace, since when we need to move a
subsequence of a bit-vector up within the same vector, and the destination overlaps the source, we
will lose information ff we transfer information from the start rather than from the end.

Whether replace-ing from the start or from the end, we always synchronize the source to the
destination.

Both versions of replace take the same amount of time in our implementation: .781.tsec/bit when
source and destination are aligned, and 1.3ktsec/bit when unaligned.

Bit-not

Bit-not comes in three flavors: bit-not-t inverts a bit-vector in-place; bit-not-2 inverts one bit-vector
into another, and bit-not-new is bit-not-2 into a new bit-vector. Bit-not-t utilizes a single update
stream synchronized to itself, which can always process upwards because all bits must be processed.

© 1989,1990 by Nimble Computer Corporation. 111-2.16

Bit-not-2, on the other hand, can have the same kinds of overlap as in replace, and therefore requires
both a from-start and a from-end version, with the second being chosen if the vector is being shifted
upwards in-place. Bi t -no t -2 utilizes both a read and a write stream, with the read stream
synchronized to the write-stream. On both bit-not-t and bit-not-2, the read stream is complemented.

Bit-not-t takes .89~sec/bit, while bit-not-2 takes .991.tsec/bit aligned and 1.571xsec/bit unaligned.

Bit-xxx

The bit-xxx functions (bit-and, bit-ior, etc.) come in several forms, due to the possible overlaps of
sources and destination. The bit-xxx-t functions always put the result back into the first argument,
and therefore use both an update stream (for the first argument) and a read stream (for the second
argument); the read stream is always synchronized to the update stream. Due to the possibility of
overlaps between the first and second arguments, we must provide for both from-start and from-end
versions of the bit-xxx-t functions, with the from-end versions being used when the destination
overlaps with the second argument, and is higher than the second argument.

The bit-xxx-3 functions have two read streams and a write stream, and come in both from-start and
from-end versions. If a source overlaps with the destination, and both sources are higher than the
destination, then we use the from-end version. The worst case occurs when the destination overlaps
both sources, and yet lies in between them. In this case, we can neither process from the beginning
or from the end without getting into trouble. Therefore, we either allocate a temporary on the stack or
on the heap (depending upon the size), and move the offending source to the temporary location
(using replace) and then utilize the bit-xxx-3 function on the now-tractable situation.

(We note that it is theoretically possible to perform bit-xxx-3 in-place without using additional storage
even in the worst case of overlap of both sources and the destination when the destination is between
the two sources. However, this algorithm requires a group-theoretic approach to performing the
updates in certain cycles, in a manner similar to algorithms which have been proposed for transposing
non-square matrices in place without additional storage [Brenner]. Such a method is far too
complicated (and slow, since it tends to operate on a single element at a time) for use in a real
Common Lisp implementation.)

Bit-and-t takes 1.04~sec/bit for aligned sources and 1.551.tsec/bit for unaligned sources. Bit-and-3
takes 1.1~sec/bit for aligned sources and destination and 2.16~tsec/bit for all three unaligned. Add an
additional .781.tsec/bit for the additional copy for the worst case.

Reverse. nreverse

Reverse returns a new bit-vector which is a reversed copy of the given bit-vector, while nreverse
returns the same bit-vector, except that the bits have been reversed in-place.

Despite their similar names, a different technique is required in order to perform reverse and nreverse.
We actually denote the functions "reverse-2" and "reverse-t". Reverse-2 is called to move and reverse
a bit-vector to a destination known not to overlap with the source. One "from-end" stream is used to
read, while a normal "from-start" stream is used to write the destination. The read stream is
synchronized to the write stream. A 256-element table is used to reverse the bits within an 8-bit byte,
and this table is used twice to reverse the bits in a 16-bit word.

Reverse-t requires a subsidiary function which reverses a byte-vector in place. We first save the
non-participating bits from the first and the last bytes, then reverse the entire byte-vector in place.
However, the bits in this vector may not be properly aligned, so we then call replace to shift the

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 7

appropriate bits up or down, if required. Finally, the non-participating bits are restored.

Reverse-2 takes 1.81.tsec/bit for word-aligned bit-vectors and 2.41xsec/bit for non-word-aligned
bit-vectors. Reverse-t takes 1.7~sec/bit for byte-aligned bit-vectors and 3.11xsec/bit for
non-byte-aligned bit-vectors.

Intersection Test (proposed name "BIT-DISJOINTF')

An intersection test determines whether the logical "and" of two bit-vectors is non-zero. In other
words, whether "(some #'logtest bvl by2)" is true. While there is no primitive Common Lisp
sequence function to perform an intersection test quickly on array bit-vectors, there should be,
because it is such a common and important operation. There is such an operation for bit-vectors
represented as integers called "logtest". (The array language APL, for example, offers the "inner
product" capability to express such things.)

We utilize two read streams similar to equal or mismatch, with the second stream synchronized to the
first. Whenever the logical and of the two bytes read is non-zero, then we immediately stop. In the
case where the intersection is likely to occur towards the end of the vectors, there may be a
requirement for a "from-end" version.

Our test-bit-vector requires .95~sec/bit for aligned bit-vectors, and 1.411.tsec/bit for unaligned
bit-vectors.

Subset Test (DroDosed name "BIT-SUBSETP")

This operation is the same as the intersection test, except that the second stream is complemented. Its
speed is similar.

Count

Count of a bit-vector is the number of items that occur within the bit-vector, where an item is either 0
or 1. Clearly, countO is equal to length minus countl, so we can make do with only count1 without
any loss of speed. Count is easily implemented using a single bit-stream synchronized to itself. Our
implementation uses 16-bit bytes together with two lookups of a 256-byte table which indicates the
number of bits within an 8-bit byte.

Our implementation of count in Coral Common Lisp requires .467-1.53 ~sec/bit processed.

Remove. remove-duplicates, substitute

These functions produce modified copies of their input sequences. Remove returns a copy of the
given bit-vector, except that certain elements are left out. The elements removed must all lie within
the subsequence delimited by the ":start" and ":end" keywords, and only ":count" of these elements
will have been deleted. Furthermore, the ":from-end" parameter indicates whether the elements are to
be deleted from the right or the left of the subsequence. Similarly, remove-duplicates and substitute
return copies of their input bit-vectors, except that the subsequence indicated has been modified in the
appropriate way. Note that in all three cases, the portions of the input bit-vector prior to ":start" and
after ":end" are copied without change. These considerations complicate the descriptions of the
operations, but are easy to accommodate, so we ignore the situation with ":start/:end" in our
presentation.

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 8

Remove-duplicates

Remove-duplicates of a bit-vector first determines whether the bit-vector is all zeros or all ones or
mixed; if all zeros, the result is #*0, if all ones the result is #*1, if mixed and the first element is 1
then the result is #*10, otherwise the result is #*01. Therefore, no new low-level bit-vector functions
are required for remove-duplicates.

Remove

Performing remove on a bit-vector requires counting the bits not to ' remove, followed by a
make-sequence to create a new vector of the appropriate length with :initial-element set of the element
not removed. Remove therefore requires no new low-level bit-vector functions.

Delete. delete-duolicates

We have not implemented these because they are not well-defined. These functions are the "in-place"
versions of remove and remove-duplicates, but since the result may be shorter than the original
bit-vector, there is a problem about how this shortening is to be accomplished. If the argument
bit-vector is a "simple" bit-vector, then by definition it cannot be displaced, it cannot have a "fill
pointer", and it is not "adjustable". Since the only two methods for changing the size of an array in
place in Common Lisp are setting its fill pointer or calling "adjust-array", one could conclude that
only those sorts of bit-vectors can participate in "delete". However, even when an array has a fill
pointer or can be adjusted, another array may share the same "base" array, because another array may
have used it as a displacement base, and therefore some thought has to be given to what happens to
the non-participating bits when such a vector is shortened--are the other elements shifted down?

For these reasons, we do not perform in-place deletions, and "delete" and "delete-duplicates" are just
additional names for "remove" and "remove-duplicates", respectively.

Substitute. nsubstitute

Substitute either changes l's to O's or O's to l's. In the first case the result is all O's; in the second,
the result is all l's. Therefore, we can ignore the operation and simply make a new vector of the
appropriate length with the appropriate initial-element

Nsubstitute is easier than substitute, as we need only call "fill" on the affected portion of the bit-vector
to make the affected portion either all O's or all l's.

Han~lling :count parameters

The occurrence of a :count' parameter in one of the sequence functions remove, substitute, and
nsubstitute substantially affects our ability to perform these operations at high speed, since we do not
know in advance exactly what subsequence of the original bit-vector will be affected, because we
don't know where the count'th item is located. However, by defining a new subsidiary sequence
function which is a kind of "inverse count" function, which tells us the location of the n'th item, we
can precompute the subsequence affected by the :count parameter. We call this new function
"position÷l-count" because if the n'th item is found, the position+l of that item is returned as the
value. However, if the n'th item is not found (because there were fewer than n items within the
sequence), then the negative of the count of the sequence is returned. While "position+l-count"
appears to be a peculiar function, it provides exactly the information we need. If we wanted to save
space in our implementation, we could use this function to subsume the count function, since this
function provides the same information. However, we keep a separate function for count, because

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 1 9

the simpler count function is also faster than "position+ 1-count".

Sort. stable-sort, merge
w

Sorting is like remove of l 's concatenated with remove of O's if sorting in ascending order, and the
reverse of that if sorting in descending order. In any case, sort is trivially and efficiently computed
using the other primitives.

M e r g e of two bit-vectors is slightly more efficient, since we need only find the f i r s t 1 in each
sequence rather than count the l's before constructing the answer.

Search

The efficient implementation of this function on bit-vectors is covered in [Baker89].

Timing Tests

Our tests were performed on Coral Common Lisp v.l.2 on a 4 Mbyte Macintosh Plus with a 16 MHz
Radius 68020 accelerator card, using vectors of 100,000 to 4,000,000 bits. While this hardware
configuration is not common, the relative performance should hold for more common configurations.

CCL CCL
Operation simple disnlaced
subseq 105 112
copy-seq 86 94.2
reverse 3.4 84
nreverse 2.3 93
make-seq :initial 45 B
fill 46.8 56
replace 95.2 117
remove nothing 133 142
remove everything 94 106
remove-duplicates 635 665
substitute nothing 135 142
substitute everything 140 147
findl 90.2 100.3
find0 90.2 100.3
position 89.5 98.3
count 90.8 100.3
mismatch 154 175
equal 70.3 93
sort approx. 94onolog2n
intersection test 260 - - .95 1.4
bit-not-t .94 bad ans. .89 .89
bit-not-2 .94 bad ans. .99 1.57
bit-and-t .99 bad ans. 1.04 1.55
bit-and-3 1.0 bad ans. 1.1 2.16
mult-mat-vec 103x103 approx. 5 minutes
nwarshall 100xl00 bad ans.

Nimble Nimble Speedup
aligned unaligned Factor (X faster)
muses replace-- 78 - 144
Buses replace B 66-121
1.8 2.4 1.4-47
1.7 3.1 .74-55
Buses f i l lB 100
.45 .45 104-124
.78 1.3 73-150
.933-1.983 67-152
.467-1.533 61-227
.5-.733 866-1330
muses replace--
Buses fliP---
.46 .46
.62 .62
.5 .5
.467-1.53 .467-1.53
.917 1.43
.85 1.43
.92-n to 2.0on

1 second worst case
1.6 seconds worst case

196-218
145-162
179-197
59-215
107-191
49-109
103-infinite
186-274
1.06
.95
.95
.91

Timing Comparison of Coral Common Lisp (CCL 1.2) with Nimble bit-vector operations
(All times are in I.tsec/bit processed on 4Mbyte Mac+ w/16MHz 68020 accelerator)

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 2 0

Summarv

We have shown how to efficiently implement the bit-vector operations found in standard Common
Lisp. Using the techniques outlined here, we have achieved speedups over existing techniques of
upwards of a factor of one hundred. Normal techniques such as procedure integration and loop
unroUing account for a factor of 5-8, while changing the algorithm to handle multiple bits in parallel
accounted for the rest.

This implementation is not the fastest possible for the Macintosh hardware: perhaps an additional
factor of 5-8 could be accomplished through a combination of moving from a byte-size of 16 to a
byte-size of 32 and recoding in assembly language. On the new pipelined RISC processors,
additional factors can be gained through the proper scheduling of operations within the pipeline and
defeating the cache (which is no help when accessing FIFO streams). We estimate that the new
generation of 25+ mips serial processors now coming on stream should achieve times which are
100-1000 times as fast as these shown for the Macintosh D i.e., flirting with 1 GBOP
(giga-bit-operations/second). Finally, bit-vector operations on true SIMD architectures such as the
"DAP" and the "Connection Machine" can gain addition factors of 100 on bit-vector operation speeds.

Acknowledgements

We are indebted to Jon White for pointing out the [Eliot89] reference.

References

Adz! JRM. Reference Manual for the Ada ® Programming Language. ANSI/MIL-S'I D- 1815A- 1983,
American National Standards Inst, New York, 1983.

Ait-Kaci, Hassan; Boyer, Robert; Lincoln, Patrick, and Nasr, Roger. "Efficient Implementation of
Lattice Operations". ACM TOPLAS 11,1 (Jan. 1989),115-146.

Baase, Sara. Computer Algorithms: Introduction to Design and Analysis. Addison-Wesley,
Reading, Mass., 1978.

Baker, Henry. ML:HGB;BBOOLE >. MIT AI Lab., 1975.

Baker, Henry. "The Efficient Implementation of Common Lisp's SEARCH Function on
Bit-vectors". Internal Memorandum, Nimble Computer Corporation, 1989.

Baker, Henry. "A Decision Procedure for Common Lisp's SUBTYPEP Predicate". J. Lisp and
Symbolic Comp., to appear.

Brenner, Norman. "Algorithm 467: Matrix Transposition in Place". CACM 16, 11 (Nov.
1973),692-694.

Eliot, Christopher R. "Manipulating Sets in Common Lisp". Lisp Pointers 2, 3&4 (Jan.-June
1989),5-14.

Hudak, Paul. "A Semantic Model of Reference Counting and its Abstraction". Proc. 1986 ACM
Conf. on Lisp and Funct. Prog., August,351-363.

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 2 1

Moon, David. "Garbage collection in a large Lisp system". Proc. 1984 ACM Conf. on Lisp and
Funct. Prog.,235-246.

Moon, David. "BIT-ARRAY-FUNCTIONS", proposal for modifying the Common Lisp standard.
June, 1989.

Pratt, Vaughan R. "A Linguistics Oriented Programming Language". Proc. IJCAI 3, (Aug.
1973),372-380.

Schwartz, J.T. "Optimization of very high level languages, Part II: Deducing relationships of
inclusion and membership". Computer Languages 1,3 (1975), 197-218.

Steele, Jr., Guy L. Common Lisp: The Language. Digital Press, Burlington, Mass., 1984.

White, Jon L. "Rcconfigurable, Rctargetable Bignums: A Case Study in Efficient, Portable Lisp
System Building'!. Proc. 1986 ACM Conf. on Lisp and Funct. Prog., August, 174-191.

the proper object and send a message to the object that says, 'Cook
yourself.' The semantics of this message depend, of course, on the
kind of object, so they have a different meaning to a piece of toast
than to scrambled eggs."

"Reviewing the process so far, we see that the analysls phase has
revealed that the primary requirement is to cook any kind of breakfast
food. In the design phase, we have discovered some derived
requirements. Speciflcally, we need an object-orlented language with
multlple inheritance. Of course, users don't want the eggs to get
cold while the bacon is frying, so concurrent processing is required,
too ."

"We must not forget the user interface. The lever that lowers the
food lacks versatility, and the darkness knob is confusing. Users
won't buy the product unless it has a user-frlendly, graphical
interface. When the breakfast cooker is plugged in, users should see
a cowboy boot on the screen. Users cllck on it, and the message
'Booting UNIX v. 8.3' appears on the screen. (UNIX 8.3 should be out
by the time the product gets to the market.) Users can pull down a
menu and click on the foods they want to cook."

"Having made the wise decision of specifying the software first in the design
phase, all that remains is to plck an adequate hardware platform for the
implementatlon phase. An In,el 80386 with 8MB of memory, a 30MB hard disk, and
a VGA monitor should be sufficient. If you select a multltasklng, object
oriented language that supports multiple inheritance and has a built-ln GUI,
writing the program will be a snap. (Imagine the difficulty we would have had
if we had foollshly allowed a hardware-first design strategy to lock us into a
four-bit mlcrocontrollerl)."

The king had the computer scientist thrown in the moat, and they all lived
happily ever after.

This net item was passed along to me. Perhaps a start for an OOPSLA keynote?
stu

From: sif@1achesis.bellcore.com (Stuart I Feldman)

© 1989,1990 by Nimble Computer Corporation. I I I - 2 . 2 2

