
A Guided Tour of the Common Lisp Interface Manager

R a m a n a Rao < r a o Q x e r o x . c o m >

Xerox Palo Al to Research Cente r

Wi l l i am M. York < y o r k ~ i l a . c o m >
In t e rna t iona l Lisp Associates , Inc.

Dennis D o u g h t y < d o u g h t y @ i l a . c o m >
In t e rna t i ona l Lisp Associates , Inc.

A b s t r a c t

The Common Lisp Interface Manager (CLIM) is a
powerful Lisp-based system that provides a layered
set of facilities for building user interfaces. These
facilities include a portable layer called Silica that in-
cludes basic windowing, input, output services, and
mechanisms for constructing window types and user
interface components; stream-oriented input and out-
put facilities extended with presentations and con-
text sensitive input similar to the work pioneered in
the Genera UI system; and a gadget-oriented toolkit
similar to those found in the X world extended with
support for look and feel adaptiveness. In this arti-
cle, we present an overview of CLIM's broad range
of functionality and present a series of examples that
illustrates CLIM's power.

I n t r o d u c t i o n

Common Lisp is a language standard that has pro-
vided a broad range of functionality, and that has,
to a large degree, successfully enabled the writing
of truly portable Lisp programs. The emergence of
CLOS and the cleanup efforts of Ansi X3J13 have
further enhanced the utility and portability of Com-
mon Lisp. However, one major stumbling block re-
mains in the path of those endeavoring to write large
portable applications. The Common Lisp community
has not yet provided a standard interface for imple-
menting user interfaces beyond the most basic oper-
ations based on stream reading and printing.

The Common Lisp Interface Manager (CLIM) ad-
dresses this problem by specifying an interface to a
broad range of services necessary or useful for de-
veloping graphical user interfaces. These services
include low level facilities like geometry, graphics,
event-oriented input, and windowing; intermediate
level facilities like support for Common Lisp stream
operations, output recording, and advanced output

copyright 1990 Ramana Rao of Xerox

formatting; and high level facilities like context sen-
sitive input, an adaptive toolkit, and an application
building framework.

CLIM will eventually support a large num-
ber of window enviromnents including Genera[16],
X[12], the Macintosh[l], Microsoft Windows[5],
SunView[13], and NextStep[6]. CLIM is designed to
exploit the functionality provided by the host envi-
ronment to the degree that it makes sense. For ex-
ample, CLIM top level windows are typically mapped
onto host windows, and input and output opera-
tions are ultimately performed by host window sys-
tem code. Another example is that CLIM supports
the incorporation of toolkits written in other lan-
guages (e.g. C-based toolkits that implement Motif[7]
or OpenLook[15]). However, in both cases, a uniform
interface provided by CLIM allows Lisp applications
to deal only with Lisp objects and functions regard-
less of their operating platform (i.e. combination of
Lisp system, host computer, and host window envi-
ronment).

An important goal that has guided the design of
CLIM has been to layer the specification into a num-
ber of distinct facilities. Furthermore, the specifica-
tion doesn't distinguish the use of a facility by higher
level CLIM facilities from its use by CLIM users.
For example, the geometry substrate, which includes
transformations and regions, is designed for efficient
use by the graphics and windowing substrates as well
as by CLIM users. This means that, in general, a
CLIM user can reimplement higher level CLIM fa-
cilities using the interfaces provided by lower level
facilities.

This modular, layered design has a number of ben-
efits. The CLIM architecture balances the goal of
ease of use on one hand, and the goal of versatility on
the other. High level facilities allow programmers to
build portable user interfaces quickly, whereas lower
level facilities provide a useful platform for building
toolkits or frameworks that better support the spe-

Parc, William M. York & Dennis Doughty of ILA

IV-i. 17

Applications

Frames
Command Loops

Presentations
Extended Streams

Application Panes

Formatted Output, Graphs
Output Recording

Graphics
Ports

Frame Managers

Adaptive Gadget Panes
Layout Panes

Panes

Standard Sheets

Sheet Definition

Geometry

Look and Feel
Common Lisp w/CLOS

Host Window System
Operating System

Hardware

Figure 1: An Overview of CLIM functionality

cific needs or requirements of a particular application.
For example, CLIM's application framework and

adaptive toolkit allow users to develop applications
that automatically adopt the look and feel of the
host's environment. (We often call this "adaptive-
ness," "look and feel independence," or occasion-
ally more picturesquely, "chameleon look and feel" .)
However, many users may need or want to define a
particular look and feel that stays constant across
all host environments (we call this "portable look
and feel"). Such users can circumvent the look and
feel adaptiveness provided by CLIM, while still using
most of the application framework facility and other
high level CLIM facilities like context sensitive input.
Furthermore, using the lower level facilities of CLIM,
they can develop portable toolkit libraries that define
and implement their own particular look and feel.

Another major benefit of CLIM's modular design
is that application programs need only load CLIM
facilities that they use. This is particularly impor-
tant because of the extent of functionality provided
by CLIM. For example, some applications may not
use some CLIM facility, say presentations or output
recording, and in such cases, these facilities need not
be loaded. Similarly, other applications may not need
all gadget implementations or any Lisp-based gadget
implementations, since they are running in an envi-
ronment in which C-based gadgets have been incor-
porated.

The next section presents an overview of the func-
tionality provided by CLIM. The rest of paper de-

scribes Silica, application building functionality, and
many of the high level facilities of CLIM in greater
detail. These sections present a series of real code
examples that gradually build up higher and higher
CLIM concepts.

1 Overview of Funct ional i ty

Figure 1 shows the various aspects of a host environ-
ment in which CLIM lives as well as the various ele-
ments provided by CLIM. Below we briefly describe
a number of CLIM's areas of functionality. Later sec-
tions will illustrate many of these components.

G e o m e t r y CLIM provides points, rectangles, and
transformations; and functions for manipulating
these object types.

Graphics CLIM provides a portable interface to
a broad set of graphics functions for drawing
complex geometric shapes. The CLIM drawing
model supports a wide variety of drawing op-
tions (such as line thickness), a sophisticated ink-
ing model, color, and full affine transformations,
which allows graphics to be arbitrarily trans-
lated, rotated, and scaled.

Silica CLIM provides a portable layer called Sil-
ica for implementing sheets (windows and other
window-like objects). Silica specifies a uniform
interface for creating and managing hierarchies

IV-I. 18

of sheets, regardless of their class or other prop-
erties. In addition, Silica defines a standard
sheet class that implements a straightforward
window that supports much of the functionality
of an X[12] or NEWS[14] window.

C o m m o n Lisp S t r e a m s CLIM integrates the
Common Lisp Stream I /O functionality with the
CLIM graphics, windowing, and panes facilities.

O u t p u t R e c o r d i n g CLIM provides a facility for
capturing all output done to a sheet and auto-
matically repainting it when necessary. In addi-
tion, this facility provides a substrate for other
CLIM facilities including formatted output and
presentations.

F o r m a t t e d O u t p u t CLIM provides a set of high-
level macros that enable programs to produce
neatly formatted tabular and graphical displays
easily.

P r e s e n t a t i o n s CLIM provides the ability to asso-
ciate semantics with output, such that Lisp ob-
jects may be retrieved later via user gestures (e.g.
mouse clicks) on their displayed representation.
This context sensitive input is modularly layered
on top of the output recording facility and is
integrated with the Common Lisp type system.
A mechanism for type coercion is also included,
providing the basis for powerful user interfaces.

A p p l i c a t i o n B u i l d i n g CLIM provides a set of tools
for defining application frames. These tools al-
low the programmer to specify all aspects of an
application's user interface, including pane lay-
out, interaction style, look and feel, and com-
mand menus and/or menu bars. In addition, the
application-building tools provide high-level fa-
cilities for linking user gestures with application
commands.

P a n e s CLIM provides panes which are analogous
to the gadgets or widgets of toolkits like the
X toolkit[9] or InterViews[3]. Supported pane
types include layout panes for arranging other
panes, gadget panes for presenting users with
feedback information or mechanislns for invok-
ing application behavior, and application panes
for displaying and allowing users to interact with
application data.

Look a n d Fee l A d a p t i v e n e s s CLIM supports
look and feel independence by specifying a set of
abstract gadget pane protocols. These protocols
define a gadget in terms of its function and not

in terms of the details of its appearance or op-
eration. Application that use these gadget types
and related facilities will automatically adapt to
use whatever toolkit is available and appropriate
for the host environment. In addition, portable
Lisp-based implementations of the abstract gad-
get pane protocols are provided.

2 Si l ica

The Silica layer of CLIM serves two primary func-
tions. First, it provides a portable windowing model
that insulates higher levels of CLIM and CLIM users
from the details of the host window system. So from
the perspective of most CLIM user's, Silica is the win-
dow system. However, on most platforms, Silica will
use the services of a host window system to provide
efficient windowing, input and output facilities. In
this regard, Silica can be viewed as a portable CLX
(the Lisp interface to the X l l protocol).

Second, Silica provides an extensible framework
that can be used to explore alternative window
system implementations. For example, two other
Common Lisp window systems interfaces have been
build within the Silica framework: the Deli Window
System[8] and Common Windows[2].

Moreover, the extensible framework also allows
sharing and reusing of functionality typically associ-
ated with window systems in a broader range of con-
texts. Silica allows uniform treatment of many of the
objects provided by CLIM including the following:

• windows like those in X or NeWS that provide a
surface or canvas for output

• lightweight gadgets typical of toolkit layers

• structured graphics like output records and ap-
plication presentation objects

objects that act as Lisp handles for windows or
gadgets implemented in a different language (e.g.
OpenLook gadgets implemented in C).

The central abstraction specified by Silica, is the
sheet. A sheet can be viewed either as a, surface that
can be painted on and to which input gestures can
be directed or as a displayable object that. lives in a
hierarchy of other such objects.

The fundamental notion in the Silica window sys-
tem model is the nesting of sheets within another
sheet called a windowing relationship. In a window-
ing relationship, one sheet called the parent provides
space to or groups a number of other sheets called

IV-l. 19

(defun test-silica ()
(let* ((sheet

(make-standard-sheet :parent (find-graft :orientation :graphics)
:transformation (make-translation I00 I00)
:region (make-rectangle 0 0 200 200)))

(w (bounding-rectangle-width sheet))
(h (bounding-rectangle-height sheet))
(xl (/ w 4))
(y~ (/ h 4))
(x2 (, 3 (/ w 4)))
(y2 (* 3 (/ h 4))))

(enable-sheet sheet t) ; Draw This
(draw-line sheet (make-point xl yl) (make-point xl y2)) ;
(draw-line sheet (make-point xl y2) (make-point x2 y2)) ; I\ /I
(draw-line sheet (make-poiny x2 y2) (make-point x2 yl)) ; I \/ I
(draw-line sheet (make-point x2 yl) (make-point xl yl)) ; I /\ I
(draw-line* sheet xl yl x2 y2) ; I/ \I
(draw-line* sheet xl y2 x2 yl)
(medium-force-output sheet)
(sleep I)
(disable-sheet sheet)
(disown-child (sheet-parent sheet) sheet)))

Figure 2: This program illustrates the use of standard sheets, the simple sheet type provided by Silica.

children. The Silica sheet protocols specify function-
ality for constructing, using, and managing hierar-
chies of sheets. Silica sheets have the following prop-
erties:

• coordinate system--provides the ability to refer
to locations in a sheet's abstract plane.

• region--defines an area within a sheet's coordi-
nate system that indicates the area of interest
within the plane that is a clipping region for out-
put and input.

• paren t - - a sheet that is the parent in a windowing
relationship in which this sheet is a child. 1

• t ransformation--determines how points in this
sheet's coordinate system are mapped into points
in its parent.

* enabled flag--determines whether the sheet is
currently considered to be actively participating
in the windowing relationship with its parent and
siblings.

1 Support for multiple parents (i.e. participation in multiple
windowing relationships as a child) is currently an open design
issue.

• children--a set of sheets that are each a child in
a windowing relationship in which this sheet is a
parent.

Sheet hierarchies are displayed and manipulated on
particular host window systems by establishing a con-
nection to that window system and "a.ttaching" them
to an appropriate place in that window system's win-
dow hierarchy. Ports and grafts provide the function-
ality for managing this process. A port is a connection
to a display service that is responsible for managing
host window system resources and for processing in-
put events received from the host window system.

A graft is a special kind of sheet that stands in for
a host window, typically a root window (i.e. screen
level). A sheet is attached to a particular host window
system by making it a child of an associated graft.
A host window will be allocated for that sheet; the
sheet will then appear to be a child of the window
associated with the graft. ~

Silica provides a standard sheet type that pro-
vides the basic capabilities of lightweight windows
like those provided by X l l or NEWS. The example

2For some host servel~, particularly X, arbitrary points in
the Silica hierarchy can be mirrored by host window objects.
This allows interoperating with foreign applications and toolk-
its that rely on the existence of host windows.

IV-i. 20

program in Figure 2 illustrates the straightforward
construction and use of a s tandard sheet.

This code starts by making a s tandard sheet that
is 200 pixels wide by 200 pixels high and positioned
at (100, 100) on the graft. The : o r i e n t a t i o n argu-
ment to f i n d - g r a : f t in this call indicates a request
for a graft whose origin is at its lower left corner and
whose x coordinates increase to the right and whose
y coordinates increase up.

The sheet is then enabled, thus making it visible
on the screen associated with the default graft. The
second argument indicates that the call shouldn' t re-
turn until the host window indicates that the window
has actually been "exposed".

Then six lines are drawn along the sides of a rect-
angle and through its diagonals. The two different
calls to the line drawing functionality are equivalent,
except for the arguments they take. CLIM provides
"spread" and "unspread" versions of many geometry
and graphics functions as a convenience to users. In
addition, a number of functions have two different
versions, one that returns a structured object (e.g. a
point or rectangle), and another that returns multi-
pie values. The CLIM convention is to indicate the
spread argument and the multiple return value ver-
sions of a function by annotat ing the name with an
asterisk.

m e d i u m - f o r c e - o u t p u t is called to force the graph-
ics output to the host window system in case it is
buffered. A medium implements a graphics proto-
col, and in particular, the CLIM graphics protocol.
A standard sheet automatical ly has a CLIM mediuln
associated with it that is forwarded the graphics func-
tions invoked on it. By separating the medium from
sheets, it is possible for the medium classes to be host
system specific, while sheet classes are host system in-
dependent. A user can extract a sheet's medium us-
ing sheet-medium for efficiency, when a large number
of graphics calls are going to be made.

Finally after the output is forced out, the sheet is
disabled and disowned, thus freeing all host window
system resources allocated for the sheet.

This example illustrates the use of one sheet class.
Most CLIM users need not concern themselves with
the details of how sheet classes are defined. However,
a number of the higher level CLIM facilities define
sheet classes. These include the panes provided by
the CLIM toolkit, output records, presentations, and
special sheets that act as lisp handles to host toolkit
objects. All of these higher level objects obey the
sheet protocols so that their hierarchical, repaint, and
input aspects can be treated uniformly.

Since many users may like to integrate their own
objects into the Silica hierarchy, and sheet class deft-

nition is one area in which CLOS is used interestingly
in CLIM, this issue will be discussed in a forthcoming
paper[10].

3 Building Applications
In this section, we explain a number of the necessary
elements for building applications in CLIM in greater
detail, including frames, f rame managers, panes, and
simple commands. We will also illustrate these el-
elnents in a series of three examples: a simple ap-
plication that paints a picture and reacts to a mouse
button event, a color editor tha t has an adaptive look
and feel, and a simple line and text drawing program.

A p p l i c a t i o n F r a m e s Frames are the central ab-
straction defined by the CLIM interface for presenting
an application's user interface. Many of the high level
fe£tures and facilities for application building pro-
vided by CLIM can be conveniently accessed through
the frame facility. The examples in this section and
the next will illustrate many of these facilities, includ-
ing CLIM toolkit panes, look and feel adaptiveness,
and generic cOlnlnand loops.

To build a user interface, an application program-
mer defines one or more frames classes. These frame
classes define a number of frame properties includ-
ing application specific state and a hierarchy of panes
(i.e. user interface gadgets and regions for interact-
ing with the users). Frame classes also provide a hook
customizing application behavior during various por-
tions of the frame protocol. For example, an : a f -
t e r method on generic functions in the frame pro-
tocol can allow applications to manage application
resources when the fralne is made visible on some
display server.

F r a m e M a n a g e r s Frames are typically displayed
as top level windows on a desktop. Frame managers
provide the machinery for realizing frames on partic-
ular host window systems. A frame manager acts as
an mediator between the frame and what is typically
called a desktop manager, or in X terminology, a win-
dow lnanager. One impor tan t function provided by
a. f lame manager is to adapt a frame to the look and
feel of the host window manager.

CLIM defines a number of generic functions for ma-
nipulating flames. Analogously to the Silica layer,
where a sheet can be connected to a host window
system by invoking a d o p t - c h i l d on a graft and that
sheet, frames can be connected to a host window sys-
tem by invoking a d o p t - f r a m e on a f lame manager
and that frame. Then, e n a b l e - f r a m e can be used

IV-i. 21

to make the frame visible. The launch-frame func-
tion packages together all the functionality needed to
bring up a f rame on a host window system.

P a n e s An application specifies a f rame's content by
supplying code that constructs a hierarchy of panes.
CLIM panes are rectangular sheets that are analogous
to the gadgets or widgets of other toolkits. Applica-
tions builders can construct a pane hierarchy using
pane classes from a library of s tandard panes or by
defining and using their own pane classes.

A f rame 's pane hierarchy is generated when it is
adopted. The frame manager is responsible for at-
taching the pane hierarchy of a frame to an appro-
priate place in a Silica hierarchy (and therefore to
a host window system window hierarchy) when the
frame is adopted. The pane tree may or may not be
at tached directly to a graft, since the frame manager
may choose to interpose its own sheets or panes to
provide (or represent) additional desktop user inter-
face gadgets and regions.

CLIM supplies three basic categories of panes: ap-
plication panes, layout panes, and gadget panes. Ap-
plication panes are panes that can be used to present
application specific da ta and manage user interac-
tions with this data. CLIM provides a number of ap-
plication pane types tha t provide access to the CLIM
graphics, input, and s t ream facilities. These include a
basic pane that supports the CLIM graphics protocol
and low level input services, a basic s t ream pane that
supports the Common Lisp s t ream I / O functions, and
an extended s t ream pane that supports the CLIM ex-
tended s t ream protocol.

Layout panes are composite panes that arrange
their children according to the space requirements of
their children and some composition rule. For exam-
pie, CLIM provides two pane classes, hbox-pane and
vbox-pane , that lay their children out in a horizontal
row or a vertical column respectively.

Gadget panes are panes that implement common
toolkit components like push buttons or sliders. Each
gadget pane class has a set of associated generic func-
tions which serve the role of callbacks in "traditional"
toolkits. For example, a pushbut ton has an "acti-
ra te" callback function which is invoked when its but-
ton is "pressed."

C o m m a n d s Most applications have a set of opera-
tions that can be invoked by the user. In CLIM, the
command facility is used to define these operations.
Commands support the goal of separation of an appli-
cation's user interface from its underlying functional-
ity. In particular, commands separate the notion of

an operation from the details of how the operation is
invoked by the user.

Application programmers define a command for
each operation that they choose to export as an ex-
plicit user entry point. A command is defined to have
a name and a set of zero or more operands, or argu-
ments. These commands can then be invoked using a
variety of interaction techniques. For example, com-
mands can be invoked from menu, keyboard accelera-
tors, direct typein, mouse clicks on application data,
or gadgets. More sophisticated command reading fa-
cilities are discussed later.

3 . 1 A S i m p l e F r a m e

In this first application building example, we il-
lustrate how a user can define a f rame class, and
use an application pane for presenting information
and interacting with the user. In the code in Fig-
ure 3, we define an application f rame using d e f i n e -
a p p l i c a t i o n - f r a m e . The syntax of this macro is the
same as for d e f c l a s s . It defines a new frame class
which automatical ly inherits from the class f rame.
This CLIM class provides most of the functionality
for manipulat ing frames.

Only one requirement must be fulfilled by all frame
definitions: code to generate a pane hierarchy must
be supplied. The :pane option is the simplest way to
supply this code. The hello frame constructs a hier-
archy with only one application pane. The arguments
to the m a k e - i n s t a n c e of the pane indicate that the
pane should preferably be 200 pixels wide by 200 pix-
els high, but that it can stretch in either direction to
absorb all available extra space.

The layout protocol supported by CLIM is some-
what similar to those of TF./Xor InterViews[3]. A re-
quest for space allocation is specified as a preferred
size (i.e. hs, vs), an acceptable amount of extra space
(i.e. hs+, vs+), an acceptable amount of space deficit
(i.e. hs-, vs-). The special constant + f i l l + 3 is used
to indicate a tolerance for an infinite amount of extra
space or space deficit.

The : s e t t i n g s option is used to specified the de-
fault title of a hello frame. Settings are a general
mechanism for specifying arguments to a frame that
can be easily overriden either by the application at
frame construction t ime or by the user with a prefer-
ence file.

The example defines a specialized application pane
using define-application-pane. Pane classes de-
fined u s i n g d e f i n e - a p p l i c a t i o n - p a n e inherit from
the basic application pane class as a default. The

3 CLIM follows the convention of surrounding constants with
pluses.

IV-1.22

(define-application-frame hello-frame ()
()

(:pane (make-instance 'hello-data-pane
:he 200 :he+ +fill+ :vs 200

(:settings :title "Hello from Lisp"))
:vs+ +fill+))

(define-application-pane hello-data-pane ()

())

;; inherits basic-clim-pane
;; by default

;; Behavior defined via CLOS class specialization
(defmethod handle-repaint ((pane hello-data-pane) region ~key ~allow-other-keys)

(declare (ignore region))
(let* ((w (bounding-rectangle-width pane))

(h (bounding-rectangle-height pane)))

;; Blank the pane out
(draw-rectangle* pane 0 0 w h :filled t :ink (pane-background pane))

; ; Center the label
(draw-text* pane "Hello" (floor w 2) (floor h 2)

:align-x :center :align-y :center)))

(defmethod b u t t o n - r e l e a s e ((pane h e l l o - d a t a - p a n e) (bu t ton -name (e q l : r i g h t))
&key x y h a l l o w - o t h e r - k e y s)

(d r a w - p o i n t * pane x y))

Figure 3: A simple frame implementation.

basic application pane supports graphics operations
and invokes generic functions on the pane when input
events are recieved.

Defining a special application pane allows us to pro-
viding repaint and input methods for the pane. We
provide a h a n d l e - r e p a i n t method which clears the
pane and prints "Hello" centered in the pane.

Finally, we provide a b u t t o n - r e l e a s e method that
draws a point at places in the pane where the right
mouse but ton is released. This method illustrates
one place where CLIM uses eq l specializers to allow
applications to at tach application specific behavior
conveniently.

To run the code in this example, a user need only
execute (l a u n c h - f r a m e ' h e l l o - f r a m e) . This inter-
face hides the complications involved in finding a
frame manager, adopting the frame into the frame
manager, and enabling it.

3.2 Adapt ive Look and Feel

In this next example, we define a f lame which can be
used to edit colors by manipulat ing their red, green,
and blue components separately. This example illus-

trates the use of other kinds of panes provided by
CLIM. In particular, we will illustrate the use of gad-
get panes with adaptive look and feel

The f rame definition is provided in Figure 4. The
color editor f rame uses some application slots for stor-
ing the current rgb values as well as two panes that
are used for giving the user feedback. The w i t h -
f r a m e - s l o t s macro is used to get access to them in
code that is implicitly part of a method on the flame;
for example, in a :pane option.

The color f lame introduces another frame option,
:menu-group, which we will discuss below.

The code provided in the :pane option in Figure 4
uses all three kinds of panes provided by CLIM. It
uses two b a s i c - c l i m - p a n e application panes to dis-
play colors. Unlike in the previous example, this pane
type isn't specialized because its behavior serves this
fi'ames purposes adequately. In particular, input is
ignored and its default repaint method fills the pane
with a background color which can be changed. 4

The color editor exa.mple also uses the two other

4Note that in the previous example the repaint method on
basic-clim-pane could have been reused by the hello pane
using method combination.

IV-l. 23

(define-application-frame color-editor-frame ()
(c u r r e n t - c o l o r - p a n e
d r a g - f e e d b a c k - p a n e
(r ed : i n i t f o r m 0 .0)
(g r e e n : i n i t f o r m 0 .0)
(b lue : i n i t f o r m 0 . 0))

(:pane
(with-frame-slots (current-color-pane drag-feedback-pane red blue green)

(vertically ()
(bordering ()
(setf current-color-pane ; Pane to show selected color

(make-instance 'basic-clim-pane :hs 200 :hs+ +fill+ :vs 50
:background (make-color-rgb red green blue))))

(bordering ()
(serf drag-feedback-pane ; Pane to show color in real time

(make-instance 'basic-clim-pane :hs 200 :hs+ +fill+ :vs 50
:background (make-color-rgb red green blue))))

;; Slider defaults min-value to 0 and max-value to I
(realize-pane 'slider :id 'red :orientation :horizontal)
(realize-pane 'slider :id 'blue :orientation :horizontal)
(realize-pane 'slider :id 'green :orientation :horizontal)
+fill+)))

(:menu-group ('°Quit" :command '(com-quit-color-editor)))
(:settings :title "Color Editor"))

Figure 4: A frame definition for a color editor.

kinds of panes: layout panes and adaptive gadget
panes. Layout panes are used to arrange other panes
spatially. Gadget panes are pre-wired interactive ob-
jects that can be used to provide users with a means
for controlling application behavior or inputt ing data.

The color editor uses the vertical box and border
layout pane classes. The vertically and bordering
macros provide an interface to these panes classes.
Most CLIM layout panes provide similar macro in-
terfaces to improve the readabili ty of the code and to
provide the convenience of automatical ly construct-
ing a list of subpanes.

The vertical box pane arranges its children in a
stack from top to bo t tom in the order they are listed
at creation in the v e r t i c a l l y form. This pane type
also supports inter-element space and "pieces of glue"
at arbi t rary points in the children sequence. In the
color editor frame, the + f i l l + "glue" is used to ab-
sorb all extra space when too much vertical space is
allocated to the vertical box. CLIM also provides a
horizontal box which does the same thing except in
the horizontal direction.

Now we are ready to turn to the gadget panes, The
color editor uses three sliders to allow the user to

specify red, greeni and blue values between 0.0 and
1.0. The three calls to r e a l i z e - p a n e construct hori-
zontal slider panes that also show their current value
as a numeric field.

The application calls realize-pane on an ab-
stract gadget specification name rather than make-
i n s t a n c e on a real gadget class name. This allows
an appropriate CLIM object to part icipate in select-
ing a gadget class. In particular, the pane hierarchy
construction code is invoked when the frame is being
adopted into a frame manager, and the frame man-
ager determines what real gadget class is instantiated
by the calls to r e a l i z e - p a n e . This enables the frame
manager to pick a gadget class that has the proper
look and feel for the host window environment.

Gadget panes notify their cl ients-- in general, their
f r a m e - - b y invoking callback generic functions. All
callback functions take at least three arguments:
gadge t , c l i e n t , and id. The client argument en-
ables using specialization on the frame as a means
for specifying callback handlers for a. f rame 's gadgets.

The id argument provides a means for distingnish-
ing gadgets in a frame from one another or for a.sso-
ciating data with a gadget. However, CLIM doesu' t

IV- 1.24

(defmethod drag-callback ((slider slider) (client color-editor-frame) id)
(with-slots (drag-feedback-pane red green blue) client

(serf (pane-background drag-feedback-pane)
(ecase id

(red (make-color-rgb (gadget-value slider) green blue))
(green (make-color-rgb red (gadget-value slider) blue))
(blue (make-color-rgb red green (gadget-value slider)))))

(repaint-sheet drag-feedback-pane +everywhere+)))

(defmethod value-change-callback ((slider slider)
(client color-editor-frame)
id
(new-value value))

(with-slots (current-color-pane red green blue) client
(ecase id

(red (serf red new-value))
(green (setf green new-value))
(blue (setf blue new-value)))

(setf (pane-background current-color-pane)
(make-color-rgb red green blue))

(repaint-sheet current-color-pane +everywhere+)))

Figure 5: Callback methods for color editor frame.

enforce uniqueness across a fl 'ame's pane hierarchy.
The id argument is provided as a required argument
to the callback functions, so that specialization on the
id can be used to part i t ion callback handling code.

The slider gadget protocol defines two callback
functions: d r a g - c a l l b a c k is repeatedly invoked
while the slider is being "dragged" by the user, and
value-change-callback is invoked when the slider
is "released" in a new location. Notice that this spec-
ification is sufficiently abstract to allow a variety of
different look and feels for a slider. For example, no
guarantee is made as to whether the mouse button
is held down during dragging, or whether the mouse
button is pressed once to start and again to stop drag-
ging.

Figure 5 shows methods for the slider callback func-
tions specialized on the color frame. The d r a g -
c a l l b a c k method resets the background color of
and repaints the fl 'ame's drag feedback pane, and
the v a l u e - c h a n g e - c a l l b a c k does the same for the
frame's current color pane. These methods use the
id argument to determine which color component to
change. In a more complicated situation or one where
the frame may be subclassed, eq l specialization on id
could have been used instead of ecase .

An application can invoke a color editor franle by
executing the following:

(launch-frame ' color-editor-frame
:color (make-color-rgb 0 0 I)
:wait-until-done t)

The :wait-until-done argument to launch-
frame allows the frame to be invoked as if it were
a function. The frame can then return values to its
user. In this particular case, the frame will take an
initial color (the details of parsing this color and set-
ting the frame slots aren ' t shown here), edit it, and
return it when the users quits the frame.

The color editor f rame uses the :menu-group op-
tion to indicate tha.t access to certain application op-
erations in a manner appropriate to the host environ-
ment should be provided. In this example, only one
such operation, named c o r n - q u i t - c o l o r - e d i t o r and
presented as "Qui t " to the user, is required by the
frame. The frame manager will determine how this
command can be invoked by the user. The definition
of c o r n - q u i t - c o l o r - e d i t o r command (not provided
here) would remove the fl 'ame from the host screen
and return the current color value. In the next exam-
ple, commands will be explored in greater detail.

3 . 3 S i m p l e C o m m a n d s

In this third application building example, we build
a simple drawing program that can be used to draw

IV-l. 25

(define-application-frame draw-frame ()
(

;; Lines and Texts of Drawing
(lines :accesser lines :initform nil)
(strings :accesser strings :initform nil)
;; Current Text Entry
(cur-point :accesser cur-point :initform nil)
(cur-string :accesser cur-string :initform nil))

(:pane (make-instance 'draw-pans :hs 400 :vs 400
:text-style (intern-text-style :serif

(:command-definer t)
(:top-level t))

(define-application-pane draw-pane ()
())

(defmethod h a n d l e - r e p a i n t ((pane draw-pane) r e g i o n)
(d e c l a r e (i g n o r e r e g i o n))
(l e t ((f r ame (pane - f rame pane))

(medium (shee t -medium p a n e)))
(c a l l - n e x t - m e t h o d) ; P a i n t s the background
(dolist (line (lines frame))

(draw-line medium (first line) (second line)))
(dolist (pair (strings frame))

(draw-text medium (car pair) (car pair)))
(when (cur-string frame)

(draw-text medium (cur-string frame) (cur-point frame)))))

:bold-italic : l a r g e)))

Figure 6: A flame and pane definition for a line and text draw program

lines and insert text. This example further elaborates
on the concept of command introduced in the last
example. Our simple drawing program will define
commands for various drawing operations and will
"bind" specific input events to these commands.

The draw frame and pane are defined in Figure 6.
The h a n d l e - r e p a i n t method for the draw-pane is
straightforward. It fills the pane to the background
using the default method provided for application
panes, and then iterates through the lines and strings
painting them. Finally it paints the current string be-
ing entered.

The draw frame uses two options to d e f i n e -
a p p l i c a t i o n - f r a m e that we have not encountered
before. The :command-def iner option is used to
specify a name for a command-defining macro for
this frame class. Pass!ng t to this option, as in
the example, indicates that a name of the form
def ine -<f rame-name>-command should be used.
The command-defining macro can then be nsed to
define commands that are specialized to the defined

frame class.

The second option, : t o p - l e v e l , specifies a special
form that is used to initiate the top level command
loop for tile frame. If this option is specified in a mul-
tiprocessing environment, a process will be started
that executes an appropriate top level run function.
If this option is t then a default top level loop is used.
The top level is responsible for dequeuing commands
that have been invoked by the user and executing
them. We will return to some details below.

Figure 7 shows the command definitions for this
frame. Each of these commands will generate a
method specialized on draw-frame. The w i t h - f r a m e
and w i t h - f r a m e - s l o t s macros can be used to access
the frame or its slots within a command definition.

To complete this example, we need to at tach these
commands to particular input operations on the pane.
Figure 8 defines some input lnethods specialized on
the draw pane. Each of these methods invokes
execute-f rame-command passing in a special com-
mand invocation form. This eventually leads to each

IV-I. 26

(define-draw-frame-command com-draw-clear ()
(with-frame (frame)

(serf (lines frame) nil
(strings frame) nil
(cur-string frame) nil)

(repaint-sheet (frame-pane frame) +everywhere+)))

(define-draw-frame-command com-draw-add-string (string point)
(with-frame (frame)

(push (cons point string) (strings frame))))

(define-draw-frame-command com-draw-update-string (string point)
(with-frame (frame)

(let ((pane (frame-pane frame)))
(draw-text pane string point)
(medium-force-output pane))))

(define-draw-frame-command com-draw-add-line (point event-x event-y)
(with-frame (frame)

(let ((pane (frame-pane frame)))
(serf (lines frame)

(push (list point (make-point event-x event-y))
(lines frame)))

(draw-line* pane (point-x point) (point-y point) event-x event-y)
(medium-force-output pane))))

Figure 7: The draw frame's command implementations.

command being invoked by the frame's top level loop.
In a multiprocessing environment, this happens in a
separate top level loop process associated with the
frame. We do not have room in this paper to cover
the more subtle details.

The button-press method uses the tracking-
p o i n t e r macro to manager ~ "rubber-banding" line
input loop. This macro allows the application to pro-
cess all input, bypassing the normal input distribu-
tion channels. Note that a special ink, + f l i p p i n g -
ink+, is used to paint the line. This ink, analogous to
using xor on a monochrome screen, provides a device-
independent way to draw the line such that it can be
easily "undrawn."

This example also provides methods for but ton
click. A but ton click is an event that is generated
when a mouse but ton is pressed and then released
immediately afterwards. CLIM also supports double
mouse button clicks. The default methods for these
events decompose them into press and release events.

A final observation about this example is that it
binds the specific user interface to the commands us-
ing methods on the draw pane. We believe that spe-

cial pane classes could be provided that implement
any number of existing or new declarative translation
mechanisms for mapping events to command invoca-
tions. We await user feedback to guide further design
work in this area.

4 High Level Facilities

In this section, we explain a number of higher level
facilities provided by CLIM, including output record-
ing, formatted output, presentations, context sensi-
tive input, and command procesors. Many of these
facilities are derived from work done at Symbolics on
the Dynamic Windows (DW) project for General16].
See [4] for more detailed information on the moti-
vations and design details behind DW. Many of the
origiual contributers to DW have participated in the
redesign of these facilities for CLIM.

We illustrate these facilities in two complete exam-
pies: a directory lister and a simple schedule browser.

IV- I. 27

(defmethod key-press ((pane draw-pane) char
~key ~allow-other-keys)

(let ((frame (pane-frame pane)))
(setf (cur-string frame)

(concatenate 'string (or (cur-string frame))
(string char)))

(execute-frame-command
frame
'(com-draw-update-string ,(cur-string frame) ,(cur-point frame)))))

(defmethod button-press ((pane draw-pane) (button-name (eql :left))
~key x y hallow-other-keys)

(let ((frame (pane-frame pane)))
(serf (cur-point frame) (make-point x y))
(let (lastx lasty)

(tracking-pointer (pane)
(:pointer-motion (x y)

(when lastx
(draw-line* medium startx starty lastx lasty :ink +flipping-ink+))

(draw-line* medium startx starry x y :ink +flipping-ink+)
(setq lastx x

lasty y))
(:button-release (button-name x y)

(when (eql button-name :left)
(when lastx

(draw-line* medium startx starty lastx lasty :ink +flipping-ink+))
(execute-frame-command
frame '(com-draw-add-line ,(cur-point frame) ,x ,y))
(return)))))))

(defmethod button-click ((pane draw-pane)
(button-name (eql :left))
~key x y hallow-other-keys)

(let ((frame (pane-frame pane)))
(when (cur-string frame)

;; Complete the previous string
(execute-frame-command
frame
'(com-draw-add-string ,(cur-string frame) ,(cur-point frame)))

(setf (cur-string frame) nil))
;; Start the next string.
(setf (cur-point frame) (make-point x y))))

(defmethod button-click ((pane draw-pane)
(button-name (eql :middle))
&key x y ~allow-other-keys)

(let ((frame (pane-frame pane)))
(execute-frame-command frame '(com-draw-clear))))

Figure 8: The draw pane's input methods.

IV-i. 28

(defun show-packages (stream)
(formatting-table (stream)

(dolist (package (list-all-packages))
(formatting-row (stream)

;; The first column contains the package name
(formatting-cell (stream)

(write-string (package-name package) stream))
;; The second color contains the symbol count,
;; aligned with the right edge o:f the column
(formatting-cell (stream :align-x ':right)

(:format stream "~D" (count-package-symbols package)))))))

Figure 9: An output function that uses table formatt ing.

O u t p u t R e c o r d i n g Many of the higher level fa-
cilities in CLIM are based on the concept of output
recording. The CLIM output recording facility is sim-
ply a mechanism wherein a window remembers all of
the output that has been performed on it. This out-
put history (stored basically as a display list) can
be used by CLIM for several purposes. For exam-
ple, the output history can be used to automatically
support window contents refreshing (or "damage re-
paint" events). This database can be exploited in
more sophisticated ways, as we shall see later. Of
course, the application programmer has considerable
control over the output history. Output recording can
be enabled or suspended, and the history itself can be
cleared or pruned.

Output records can be nested, thereby forming
their own hierarchy. The leaves of this tree are typi-
cally records that represent a piece of output, say the
result of a call to d r a w - r e c t a n g l e or w r i t e - s t r i n g .
The intermediate nodes typically provide additional
semantics to the tree, such as marking a subtree of
nodes as resultant output of one particular phase of
an application. CLIM provides support for defining
new output record types, to allow for customnization
of such at tr ibutes as how the storage of inferior nodes
is managed (e.g. a node that is going to store many
graphical elements may want to sort them into an R
tree for faster search and retrieval).

O u t p u t F o r m a t t i n g CLIM provides a convenient
table and graph format t ing facility, which is built on
top of the output recording facility. The key to these
formatt ing tools (as opposed to, say, :format 's X di-
rective) is that they dynamically compute the for-
mat t ing parameters based on the actual size of the
application-generated output.

The application programmer uses these tools by

wrapping any piece of output-producing code with
"advisory" macros that help the system determine
the structure of the output.

For example, s tart with a simple output function
that shows some information about the packages in
the Lisp environment:

(defun show-package-info (stream)
(dolist (package (list-all-packages))

(write-string (package-name package)
stream)

(write-string stream)
(format

stream "-D"
(count-package-symbols package))

(terpri stream)))

Any a t t empt to fix this function to produce tabular
output by building in a certain fixed spacing between
the package name and symbol count will either get
caught by an unexpectedly-long package name, or will
have to reserve way to much space for the typical case.

The code in Figure 9 is an improved version of this
function that produces a neatly format ted table for
any set of package names,

P r e s e n t a t i o n s The next step up from perserving
the mere physical appearance of output done to a
window is to preserve its semantics. For example,
when an application displays a Lisp pa thname on
the screen via (f o r m a t t " M' p a t h) , the string
"/clim/demo/cad-demo.lisp" may appear. To the
user this string has obvious semantic meaning; it is
a pathname. However, to Lisp (and the underly-
ing system) it is just a text string. Fortunately, in
many cases the semantics can be recovered from the
string. Thus the power of the various textual cut-and-

IV-i. 29

paste mechanisms supported by contemporary com-
puter systems. However, it is possible to improve
upon the utility of this lowest common denominator
facility (i.e. squeezing everything through its printed
representation) by remembering the semantics of the
output as well as its appearance. This is the idea
behind presentations.

A presentation is a special kind of output record
that maintains the link between screen output and
the Lisp data structure that it represents. A pre-
sentation remembers three things: the displayed out-
put (by capturing a subtree of output records repre-
senting the output) , the Lisp object associated with
the output, and the presentation type of the output.
By maintaining this "back pointer" to the underlying
Lisp data structure, the presentation facility allows
output to be "reused" at a higher semantic level.

An application can produce semantically tagged
output by calling the CLIM function p r e s e n t . For
example, to display the pathname referred to above
as a presentation, the application would execute
(present path 'pathname). present captures the
resulting output and the pathname object in a pre-
sentation of type 'pathname.

P r e s e n t a t i o n T y p e s CLIM defines a set of pre-
sentation types, which are arranged in a super-
type/subtype lattice like the CL types. In fact, the
presentation type hierarchy is an extension of the CL
type hierarchy. The reason that this extended type
system is needed is that the CL type system is "over-
loaded" from the UI perspective. For example, the
integer 72 lnight represent a heart rate in one appli-
cation and a Fahrenheit temperature in another, but
it will always just be an integer to Lisp.

The application programmer can define the "UI
entities" of the application by defining presentation
types, thus extending the presentation type library.
By defining a presentation type, the programmer can
centralize all of the UI aspects of the new type in one
place, including output appearance and input syntax.
As an example, CLIM defines a pathname presenta-
tion type that defines how a pathname is displayed
and how one is input. The pathname input side pro-
vides pathname completion and possibilities-display
features. By defining this behavior in one place and
using it in all applications that need to display or read
pathnames, CLIM helps build consistent user inter-
faces.

Note that in the pathname output example given
above, p r e s e n t invokes the standard pathname dis-
player defined by the presentation type. However,
since the presentation facility is simply based on the
output recording facility, presentation semantics can

be given to any output. The following example shows
how the pathname object could be associated with
some graphics that were displayed on the screen.

(with-output-as-presentation
(:object path
:type 'pathname
:stream s)

(draw-rectangle* s 0 0 30 30))

C o n t e x t - D e p e n d e n t I n p u t Once semantically-
tagged output as been displayed on the screen, how
can it be reused? The key is for the application to
establish an input contezt whenever it is waiting for
input from the user. The input context is specified
in terms of the presentation type that is appropri-
ate for the current input point. CLIM provides a
simple interface for managing the input context in
the form of the accep t function. For example, if the
application requires the user to input a pathname, it
can execute (a c c e p t 'pathname : s t r eam s) . Typi-
cally, this will invoke the input reader (or parser) that
was defined for the pathname type and will establish
an input context that indicates that it is waiting for
a pathname.

Once the input context has been established, CLIM
will automatically make any appropriate existing out-
put available to the user via mouse gestures. Tha t is,
once an input context of "pathnalne" as been estab-
lished, the user can move the mouse over any pre-
sentation that is of type pathname (or is a subtype
of pathname), click on it, and the pathname object
underlying the presentation is returned as the value
of the call to accep t .

C o m m a n d P r o c e s s o r s As discussed earlier, ap-
plications can define each user-accessible operation
as a command that has a na.me and a set of zero or
more arguments. For each argument the application
programmer can specify a presentation type. This
type information is used by CLIM's command pro-
cessor facility to manage a dialog with the user in
which arguments of the correct type are collected. In
this way, previously "presented" data can be used by
the user to supply arguments to the commands. Also,
the body of a command is guaranteed to be invoked
on argument values of the correct presentation type
(and Lisp type).

Defining an application's operations as commands
does not define or constrain the interaction style
of the application. Once a command has been de-
fined, the CLIM command processor facility can in-
voke several built-in mechanisms to read command
"sentences" (a commalld name and its arguments)

IV-l. 30

from the user in a variety of ways. The command
name and arguments may be typed by the user, or the
command name might be selected from a menu and
the arguments supplied by clicking on displayed pre-
sentations, or a single keystroke "accelerator" might
invoke a command on a default argument set. In
addition, the command processer is extensible by ap-
plication programmers. For example, the command
processor can be extended to support a "noun then
verb" interaction style, where the user can first click
on a displayed presentation and then invoke a com-
mand that is defined to take an argument of the se-
lected presentation type.

4 . 1 A D i r e c t o r y B r o w s e r

To illustrate how all of these high level facilities come
together, we define a simple example in Figure 10
that makes use of them all.

The dirlist-frame application is a very simple-
minded file system browser. It defines two panes,
an input pane to handle user typein and an output
pane to display directory contents. The application
defines a display function that is associated with the
output pane. The function displays the contents of a
directory, one file per line. Each line is a presentation
of type pathname, so the association between the text
lines on the screen and the Lisp pa thname objects
that produced them is maintained. The application
defines one command that takes an argument of type
pathname and displays the contents of the specified
directory.

The define-application-frame form makes use
of some new concepts and options:

• State variables. The application has two slots,
one to hold the list of files contained in the cur-
rent directory, and the other to hold on to the
display pane.

• making-application-pane. This convenience
macro packages up some useful application pane
idioms. I t controls the scrolling behavior of the
pane, including whether it has a vertical scroll
bar, a horizontal scroll bar, neither, or both.

• The extended-stream-pane type. This kind of
pane supports the extended input and output
protocols of CLIM, including output recording
and the presentation type facility. Many of these
facilities are defined as extensions of the Com-
mon Lisp s t ream proto%ol.

• The :display-function and :display-time
options. These options provide a simple way

to manage application information display in
a pane. The display function is invoked by
the CLIM command loop at the specified time.
Typically, the display fnnction utilizes applica-
tion state information tha t is modified by the
application's commands. A : d i s p l a y - t i m e of
:command-loop means to run the display func-
tion whenever an application command is exe-
cuted.

The extended-top-level function. This top-
level supports the extended command loop, in-
cluding the management of the command pro-
cesser and display functions.

The dirlist-display-files display function is
the heart of this application. It iterates over the
contents of the current directory displaying the files
one by one. Because it uses p r e s e n t , each displayed
pa thname is a presentation, and can automatical ly
be selected by clicking on it with the mouse in an
appropriate context.

The c o r n - e d i t - d i r e c t o r y command is defined to
take one argument, of presentation type pathname.
The command ' s body tries to interpret the pa thname
tha t it receives as a directory, obtaining a list of the
files contained therein. 5 The command simply up-
dates the f i l e s application state variable with the
new list.

Since this application was defined with an inter-
actor pane for user input, the user can invoke the
sole command by typing its name, "Edit Directory."
CLIM supports automat ic command completion, so
in this case only the first letter and the complete ac-
tion need be typed. At this point the CLIM command
loop will begin reading the arguments for that com-
mand, and will automatical ly enter a pathname input
context. Thus, the user can fill in the required argu-
m e n t either by typing a pa thname, or by clicking on
one of the pa thnames visible in the display pane.

In order to carry this interface one step further
into an entirely mouse-driven interaction style, the
application programmner must specify some associa-
tion between a mouse gesture and the command it
invokes. This is done via the d e f i n e - p r e s e n t a t i o n -
to-command-translator form. The CLIM presenta-
tion substrate supports a general concept of presenta-
tion type "translation." This translation mechanism
can be used to map objects of one type into a differ-
ent presentation type, if appropriate. For example,
it might be possible to satisfy an input request for a
pa thname by selecting a computer user's login ID and

5Common Lisp is weak in its support of hierarchical file
systems so this code is somewhat contrived.

IV-I. 31

(define-application-frame dirlist-frame ()
((files :initform nil)
pane)

(:pane
(with-frame-slots (pane)

(vertically ()
(making-application-pane (:hs 400 :vs 50)
(make-instance 'extended-stream-pane :interactor t))

(making-application-pane (:hs 400 :vs 400)
(setf pane

(make-instance 'extended-stream-pane
:display-function '(dirlist-display-files)
:display-time ':command-loop))))))

(:command-definer t)
(:top-level (extended-top-level)))

(defmethod dirlist-display-files ((frame dirlist-frame) pane)
(clear-output-history pane)
(with-slots (files)frame

(dolist (file files)
(present file 'pathname :stream pane)
(terpri pane))))

(define-dirlist-frame-command (com-edit-directory :command-name "Edit Directory")
((dir 'pathname))

(setq dir (make-pathname :directory (append (pathname-directory dir)
(list (pathname-name dir)))

:name :wild :type :wild :version :wild
:defaults dir))

(with-frame-slots (files)
(serf files (directory dir))))

;;; This defines a "mouse" translator that says "when I click left
;;; on an object of type PATHNAME, run this body, which maps the
;;; object into a command that takes that kind of object as an argument
(define-presentation-to-command-translator edit-dir (pathname :gesture ':left)

(object)
'(com-edit-directory ,object))

Figure 10: A complete implementa, tion of a directory listing frame.

IV-i .32

(defvar *days* #("Sun Mon Tue Wed Thu Fri Sat"))

(define-presentation-type weekday ()
:parser ((stream ~key default)

(declare (ignore default))
(values
(completing-from-suggestions (stream)

(dotimes (i 7)
(suggest (aref *days* i) i)))))

:printer ((object stream ~key acceptably)
(write-string (aref *days* object) stream)))

Figure 11: The weekday presentation type definition.

returning the pa thname of the user's home directory.
This would be accomplished by defining a translator
from a user-id presentation type to the pathname type
that consulted the system's user database to retrieve
the home directory information.

By far the most useful application of the trans-
lation mechanism is to define translators from/aJibi-
t rary presentation types to the command prese)dation
type. In our example, by defining a t rm~lgtor from
the pathnarae type to the command type which maps
the pa thname into Edit Directory of that pathname,
and assigning it to the left mouse button, CLIM will
automatically invoke the Edit Directory command on
a pa thname that the user selects with the left mouse
button.

4 . 2 S c h e d u l e E x a m p l e

We present one last example to explore how an ap-
plication might define its own presentation types, as
well as take advantage of the output formatt ing facil-
ities. In this example we build a simple appointment
browser.

Since the user of this application will frequently be
dealing with the days of the week, we start by defin-
ing a new presentation type, weekday. This simple
presentation type, shown in Figure 11, represents a
day of the week as a number from 0 to 6. Each day
number has associated with it the abbreviated day
name, "Mon," "Tue," etc.

The weekday presentation type defines two basic
pieces of behavior: how a weekday is displayed, and
how it is read as input. It does this by defining a
prin~er and a parser function for the type. As is the
case with most presentation types, the printer and
parser are duals. Tha t is, the printer, when given an
object to print, produces output that the parser can

interpret to arrive back at the original object.
We define an application f rame for the appoint-

ment browser in Figure 12. The frame defines state
variables to hold the list o f ' appo in tmen t s and the
current day. This information is kept in slots on the
frame (rather than global variables) so that multi-
ple copies of the application can be run, each with
its own appointment list. The application represents
the appointment data as an Mist containing an entry
for each day of the week, with each entry containing
a list of the appointments for the day. Test data. is
provided as a default initform.

Just as in the previous example, the appointment
application defines two panes, an interactor and an
output display pane, and the s tandard e x t e n d e d -
t o p - l e v e l command loop is used.

The appointment application defines two com-
mands. The "Show Smmnary" command resets the
display back to the weekly summary mode by setting
the c u r r e n t - d a y slot to n i l . The "Select Day" com-
mand sets c u r r e n t - d a y to the value of an argument
that is specified to be a weekday. This presentation
type specification allows the command processor to
mnake all presented weekday active when it is filling
in this argument, as well as, provide completion as-
sistance to the user.

As before, it would be a great user convenience to
be able to invoke the "Select Day" command simply
by clicking on one of the displayed weekdays. How-
ever, rather than using the d e f i n e - p r e s e n t a t i o n -
t o - c o m m a n d - t r a n s l a t o r form, this t ime we use a
shortcut provided by the command definition macro.
When defining the argument for the "Select Day"
command, we not only specify that it is of type week-
day, but that we would like to define that clicking left
on a weekday presentation should invoke this corn-
man& This is done using the : t r a n s l a t o r - g e s t u r e

IV-i .33

(defvar *test-data* ;; Alist of day number and appointment strings
'((0) (I "Dentist") (2 "Staff meeting") (3 "Performance Evaluation Bowling")

(4 "Interview at ACME The Simpsons") (5 "TGIF") (6 "Sailing")))

(define-application-frame schedule ()
((display-pane)
(appointments :initarg :appointments :initform *test-data*)
(current-day :initform nil))

(:pane (with-frame-slots (display-pane)
(vertically
(making-application-pane (:hs 400 :vs 200)

(setf pane (make-instance 'extended-stream-pane
:display-function '(display-appointments)
:display-time ':command-loop)))

(making-application-pane (:hs 400 :vs 50)
(make-instance 'extended-stream-pane :interactor t)))))

(:command-definer t)
(:top-level (extended-top-level)))

;;; Chooses which day to see in detail.
(define-schedule-command (com-select-day :command-name t)

((day 'weekday :translator-gesture ':left))
(with-frame-slots (current-day)

(setq current-day day)))

;;; Show weekly summary.
(define-schedule-command (com-show-summary :command-name t) ()

(with-frame-slots (current-day)
(setq current-day nil)))

Figure 12: The schedule frame definition and commands.

option to the command definer.
Finally, we turn to the display the appoint-

ment information. The display function, d i s p l a y -
appo in tments , shown in Figure 15, is somewhat more
complex than our earlier example. It can display
two different sets of information: a weekly summary
showing the days of the week and the number of ap-
pointments for each day, or a detailed description of
one day's appointments. The two information dis-
plays are shown in Figure 13 and Figure 14.

d i s p l a y - a p p o i n t m e n t s decides which set of infor-
mation to display by examining the application state
variable c u r r e n t - d a y . The table formatting facility
to present the weekly summary information neatly or-
ganized. The daily appointment list, by contrast, is
displayed "by hand". Note, however, that whenever
a day of the week is displayed, it is done with a call to
p r e s e n t using the weekday presentation type. This
allows the printed weekdays to be selected either as
a command or as a weekday argument.

This example illustrates how an applciation with
interesting UI behavior can be constructed fl'om a
high-level specification of its functionality.

Conclus ion

The series of examples presented in this article illus-
trate the broad range of functionality provided by
CLIM. The later examples, especially, demonstrate
that complex user interfaces can be built economi-
cally and modularly using CLIM. Many of the higher
level facilities make it possible to separate the issues
involved in designing an application's user interface
from the functionality of the application.

On the other hand, many of these higher level fa-
cilities may not be appropriate for all users. CLIM's
lower level facilities and clean modularization of the
higher level facilities provide these users with portable
platform and a framework for implementing their own

IV-l. 34

Day of week Number of appointments
Sun 0 appointments
Mon 1 appointment
Tue 1 appointment
Wed 2 appointments
Thu 2 appointments
Fri 1 appointment
Sat I appointment

ID Command: Show Summary
Command:

Figure 13: The Schedule example displaying schedule summary

Sun Mon Tue Wed Thu Frl Sat

Appointments for Thu

Inte~d~v at ACME
The Simpsons

~ Command: select Day Thu
Command:

Figure 14: The Schedule example displaying schedule for a particular day, i.e. Thursday

IV-1.35

;;; Complex display function, shows two completely different
;;; displays.
(defmethod display-appointments ((frame schedule) pane)

(clear-output-history pane)
(with-slots (current-day appointments) frame

(if (null current-day)
(show-weekly-summary pane appointments)
(show-appointments pane current-day

(rest (assoc current-day appointments))))))

;;; Show a summary of the week, with an appointment count for
;;; each day. You can see the appointments for a specific day by
;;; clicking on the day name.
(defun show-weekly-summary (pane appointments)

(formatting-table (pane)
;; Table headings
(formatting-row (pane)

(formatting-cell (pane)
(write-string "Day of week" pane))

(formatting-cell (pane)
(write-string "Number of appointments" pane)))

(dolist (day appointments)
(formatting-row (pane)

(formatting-cell (pane)
(present (first day) 'weekday :stream pane))

(formatting-cell (pane)
(format pane "-D appointment-:P" (length (rest day))))))))

;;; Show detailed appointment list for day
(defun show-appointments (pane current-day current-day-appointments)

;; Show all days at top so you can switch to another
;; day with one click.
(dotimes (day 7)

(with-text-face ((if (eql day current-day) ':bold ':roman) pane)
(present day 'weekday :stream pane)

(write-string pane))
(terpri pane)
(terpri pane)
;; Show all the appointments, one per line
(write-string "Appointments for " pane)
(present current-day 'weekday :stream pane)
(terpri pane)
(terpri pane)
(dolist (appointment current-day-appointments)

(write-string appointment pane)
(terpri pane))))

Figure 15: The schedule's display function.

IV-l. 36

user interface toolkits and frameworks. In addition,
CLIM's use of CLOS to define explicit, documented
protocols provides application programmers with the
opportunity to customize CLIM and support inter-
faces not anticipated by the CLIM designers.

CLIM currently supports the Genera, X, SunView,
and Macintosh host window environments. A devel-
oper's prerelease of CLIM is now available for Alle-
gro Common Lisp, Lucid Common Lisp, CLOE-386,
and Genera. In addition, prerelease versions of CLIM
should soon be available for Harlequin Common Lisp
and Macintosh Common Lisp.

We along with a number of other individuals of the
CLIM consortium are actively working on writing a
specification for CLIM[ll].

A c k n o w l e d g e m e n t s

CLIM represents the cooperative effort of individu-
als at several companies. These individuals include
Jim Veitch, John Irwin, and Chris Richardson of
Franz; Richard Lamson, David Linden, and Mark
Son-Bell of ILA; Paul Wieneke and Zack Smith of
Lucid; Scott MeKay, John Aspinall, Dave Moon and
Charlie Hornig of Symbolics; and Gregor Kizcales and
John Seely Brown of Xerox PARC. Mark Son-Bell
and Jon L. White have help us improve this paper.

R e f e r e n c e s

[1] Apple Computer. Inside Macintosh, volume 3.
Addison-Wesley, Reading, MA, 1985.

[2] Intellicorp, Mountain View, CA. Common Win-
dows Manual, 1986.

[3] M. Linton, J. Vlissides, and P. Calder. Compos-
ing user interfaces with interviews. IEEE Com-
puter, 22(2):8-22, Feb 1989.

[4] Scott McKay, William York, and Michael McMa-
hon. A presentation manager based on applica-
tion semantics. In Proceedings of the A CM SIG-
GRAPH Symposium on User Interface Software
and Technology, pages 141-148. ACM Press, Nov
1989.

[5] Microsoft Corporation, Redmond, WA. Mi-
crosoft Windows Software Development Kit,
1985.

[6J Next, Inc, Redwood City, CA. Next Preliminary
1.0 System Reference Manual: Concepts, 1989.

[7]

[8]

[9]

Open Software Foundation, Cambridge, MA.
OSF/MOTIF Style Guide, 1989.

Rob Pettengill. The deli window system: A
portable, clos based network window system
interface. In Proceedings of the First CLOS
Users and Implementors Workshop, pages 121-
124, Oct 1988.

Ram Rao and Smokey Wallace. The x toolkit. In
Proceedings of the Summer 1987 USENIX Con-
ference. USENIX, 1986.

[10] Ramana Rao. Silica papers. In Preparation,
1991.

[11]

[12]

[13]

Ramana Rao, Bill York, Dennis Doughty, John
Aspinall, Scott Mckay, and Dave Moon. Com-
mon lisp interface manager specification. In
Preparation, 1990.

R.W. Scheifler and J. Gettys. The x window
system. ACM Transactions on Graphics, 5(2),
1986.

Sun Mierosystems, Mountain View, CA. Sun-
View Programmer's Guide, 1986.

[14] Sun Microsystems. NeWS Technical Overview,
1987.

[15]

[16]

Sun Microsystems, Mountain View, CA. OPEN
LOOK Graphical User Interface, 1989.

Symbolics, Inc. Programmer's Reference Manual
Vol 7: Programming the User Interface.

IV-l. 37

