
A Lisp Environment at IBM TJ Watson Research

M. Mikelsons, C. N. Alberga and C. F. Skutt
Computer Science Department

IBM T. J. Watson Research Center,
Yorktown Heights, New York

Abstract: We give a brief description of a Common Lisp programming environment developed at
the IBM TJ Watson Research Center over the past two years. The two most novel features of this
environment are a program analysis tool and a visual stepper. These are described in more detail.

Oi,erview

Over the past two years, we have built a prototype of a portable Common Lisp programming en-
vironment. The user interface is window oriented and based on the CLX interface to X Windows
[5]. The code is currently running on the IBM RT PC under Lucid Common Lisp Release 2.

Our primary" goal was to implement for the IBM RT PC an environment comparable to the leading
current l,isp environments [3, 8] and to incorporate concepts developed in earlier systems [2].
We wanted both a tool for program development in Lisp, and also a foundation for future work in
Lisp programming environments.

At the present time we have prototypes for:

• A data inspector that can display all built-in l isp types, DEFSTRUCT instances, CLOS class
instances, and a number of hidden types such as compiled functions, meta classes, and struc-
ture descriptors.

* A stack inspector that shows the stack as a scrollable window and pops up windows to display
stack frames. Variable bindings in stack frames can be inspected with the data inspector.

. A program analyzer that extract call graph and special variable usage information from Lisp
source Ides.

. An inspector for the analyzer database. This tool can show call graphs or variable def/use
graphs. We have extended the analyzer and the display interface to show instances of structure
and CLOS class slot accessors in an intelligent way.

* A defsys that goes considerably beyond the PCI, defsys in several ways. In particular, it
interacts with the analyzer to create an index of known symbols. This index is used to integrate
the various separate tools.

. An interactive apropos tool for guided searches through the Lisp name space.
• A class browser that uses the same graph presentation tool as the analyzer.
• A source viewer tlmt presents a program extracted from a file or from memory. The program

is formatted and condcnsed to fit whatever window is available.
• A program stepper that uses the source viewer as the user interface.

All the tools are built on top of a PCL-based window support layer that interfaces to X-windows
through CLX. Although we have not had time to do any speed hacking, the performance of the
tools (except for startup) is acceptable.

In the remainder of this short note, we describe the two components that we feel contain some
advances over the current state of similar tools. The program analysis and presentation methods
attempt to provide more interesting information about a set of programs and try to provide tools
for containing the information explosion inherent in cross reference tools. The stepper interface
goes beyond teletype-oriented steppers by presenting the stepping information in a more readable
and compact form.

The Program Analyzer and Graph Follower

The program analyzer collects control flow and data flow information from source fdes. The Graph
Follower presents this information in interactive windows.

A Lisp Environment at IBM TJ Watson Research I V - 1 . 3 9

c o p y r i g h t 1990 & C.F . S k u t t o f IBM M. M i k e l s o n s , C.N. Alberga,

Control flow information consists of a call graph for an application. We treat CLOS methods as
if they were called from their corresponding genetic function.

The data flow information is more complex. It includes use and modify information for special
variables. In addition, we treat structure and class accessors as data references. When an accessor
is encountered in a program, we do not analyze the occurrence as a function call. Instead, we call
it a reference or a modification of the corresponding slot in a specific data structure. As a result,
the number of nodes in the call graph is significantly reduced and the use and modification of var-
ious data structures is clearly identified.

The Graph Follower attempts to contain and control the information explosion inherent in a pro-
gram analysis tool. Instead of showing a mass of lines leading often to off-screen nodes, we limit
each window to a focus node, a set of predecessor nodes, and and a set of successor modes. Simple
mouse cricks are all that is needed to quickly scroll this view over any desired portion of the data
graph.

When viewing the control flow information, each window is focused on a particular function. The
callers of Otis focus function are shown on the left, while the callees are shown on the tight. The
user can open as many windows as desired in order to view an appropriate segment of the entire
call graph. The first window is usually opened by selecting a focus function from a table of func-
tions in the application. Additional windows are typically opened by selecting nodes in other
windows.

When viewing data flow information, each window may be focussed on a data name or a fimction
name. A data name may be the name of a special variable, the name of a structure, the name of
a CLOS class, or the name of a slot in a structure or a class. When the focus is a function name,
we show uses of data on the left and modifications on the right. When the focus is a data name,
we show using functions on the right and modifying functions on the left.

The Visual Stepper

The Visual Stepper consists of a stepping evaluator and a program browser. The evaluator captures
both the control flow and the environment of the evaluated expression in a data structure. This
makes the evaluator well suited to a window environment. We chosc an interpreter-based approach
in contrast to annotations because of the greater flexibility in manipulating the control flow during
stepping [4].

The program browser displays a condensed formatted view of the program in a given available area.
It can highlight several sub-expressions simultaneously to point out various foci of attention [6].

When the program browser is showing a stepped expression, there are two distinguished sub-
expressions in the window. Each is shown in a different font, or background/foreground combi-
nation. One sub-expression is the Execution Pointer that indicates where the stepper is currently
positioned. The other sub-expression is the Edit Pointer that identifies some sub-expression of in-
terest to the user.

The Execution Pointer must be further qualified with information displayed in a separate window
above the program display. We need to specify whether the stepper is about to enter the Execution
Pointer or whether that expression was just evahmted. We may also indicate that the stepper is
somewhere within an expression but because of macro expansions, it is not possible to be more
specific. When entering an expression there may be arguments and when leaving there are values.
These are also displayed in one line of the information sub-window. If more detail is desired, the
arguments or values can be inspected by pressing a mouse button on that line.

The Edit Pointer is used in a normal browser to move the focus of attention to various parts of an
expression. When the Edit Pointer enters an elided sub-expression, the window is reformatted to
show the hidden text. During stepping, the Edit Pointer serves another function; it is a convenient
and powerful means of controlling the rate of stepping. By simply positioning the Edit Pointer and
selecting a menu item, the user can step directly to some interesting part of the evaluation without
viewing all the intermediate steps. Again, we have the choice of running until the Execution Pointer
is about to enter the Edit Pointer or until the Execution Pointer is about to leave the Edit Pointer.

A Lisp Environment at IBM TJ Watson Research IV-i. 40

We allow a limited amount of modification to the normal order of evaluation. At any point, the
user can bypass the evaluation of a sub-expression and provide a substitute value. '1"his can be done
even after the sub-expression
has been evaluated. We also allow the flow of control to be altered by positioning the Edit l'ointer

and asking for execution to continue at that point. Not all places in a program can be selected in
this way. The execution Pointer can be repositioned to any place that could have been labelled in
a TAGBODY form or to any expression in a PROGN that could be reached by the previous rule
if the PROGN were a TAGBODY.

In all interactions between the user and the stepper, the visual representation of the program is the
normal means of two-way communication.

S o m e Observat ions on C o m m o n Lisp

When we initially thought of building a state-based interpreter in and for Common Lisp, we ex-
pected difficulties that did not materialize [1]. The evaluator is written entirely in Common I,isp
as recently extended by the standardization process [7] and allows arbitrary combinations of com-
piled code, stepped code, and natively interpreted code.

We have not tested the portability of our code yet, but the only uses of system-dependent code are
in the access to internal data structures in the data inspector and to the run-time stack in the stack
inspector.

Future W o r k

For the immediate future, our plan is to port our environment to the RS6000 workstation where
the performance should be more than adequate for a production tool.

In more long range terms, we would like to refine lhc source-level stepper to deal intelligently with
the effect of Lisp macros. In the current irnplemcntalion, we simply open a new window to step
through the code generated by a macro. A better approach would be to use this as a last resort,
but in general to attempt to show the progress of evaluation in the original expression.

We must also extend the source code analyzer to provide more detailed information about an ap-
plication. This includes tracking of taglist labels, catch points, non-local gos, types and constants.
Another use for the analyzer could be to generate the inter-file dependencies that are normally ex-
pressed in a defsystem.

A c k n o w l e d g m e n t

We would like to acknowledge the significant conlribulion of Scoll I lauck who worked with us for
six months wlfile a Senior at UC Berkeley. lie is now a graduate student at U. of Washington,
Seattle.

Refcl'eltces

1. Alberga, C. A., Bosman-Clarke, C., Mikelsons, M., and Van Deusen, M. Experience with
an Uncommon IJsp. Proceedings of the Lisp and Functional Programming Conference.,
August 1986.

2. Alberga, C. N., Brown, A. L., Leeman, G. B. Jr., Mikelsons, M., and Wegrnan, M. N.,.
A Program Development Tool. Eighth Annual ,4CM Symposium on Principles of Pro-
gramming Languages, January 1981.

3. Endelman, Aaron and Gadol, Steve. The Symboloc Programming Environment. Lisp
Pointers- Special Interest Publication on Lisp, 2(2), 1988.

4. llaulsen, lvo and Sodan, Angela. UnicStep - a Visual Stepper for Common Lisp. Lisp
Pointers - ,4 CA4 SIGPL,4 N Special Interest Publication on Lisp, 3(1), 1990.

5. Kimbrough, Kerry. Windows to the Future. Lisp Pointer~ - Special Interest Publication
on Lisp, 1(4), 1987.

6. Mikelsons, M. Prettyprinting in an lnteraclive Programming'Environment. ,4CM Sym-
posium on Text Manipulation, Portland, Oregon,, June 1981.

7. Steele, Guy I,., Jr. Common LISP: The l.anguaee, Second Edition. Digital Press, 1990.

A Lisp Environment at IBM TJ Watson Research IV-1 .41

. Walker, Janet I1., Moon, David A., Weinrcb, Daniel I.., and McMahon, Mike. The
Symbolics Genera Programming Environment. IEEE Software, November 1987.

Appendix: The User Interface
We include two figures on the following pages to illustrate some salient features of our user inter-
face.

Figure 1: Defsys and Stepper Interface

Window #1 is a control panel for the environment. It contains menu items that activate a variety
of tools. It also shows the value of important variables such as *PACKAGE*.

Window #2 opens when the "Defsys" menu item on the control panel is selected. It shows a list
of known sub-systems.

Window #3 opens when the system named "EPITOME" is selected in #2. It shows some general
information about the sub-system as well as a list of modules.

Window #4 opens when the module "MAKEBOX" is selected in #3. It shows some general in-
formation about the module as well as a list of all the symbols defined in the module. For each
symbol, we see the type of definition, the symbol, the lambda list and any documentation strings.

Window #5 opens when we select the definition of symbol LIST-TO-BOX. It shows the definition
extracted from the source fde. Sub-expressions are selected by pointing with the mouse or by using
navigation commands on tile menu bar. The mouse position is continuously echoed by drawing
a box around the corresponding expression or by boxing a pair of matching parentheses. When a
sub-expression is selected as the Edit Pointer, it is shown in a contrasting color.

Window #6 opens when we ask for a macro expansion of the Edit Pointer in #5. We do so by
selecting from a sub-menu under "Sublnspect".

Window #7 opens when we ask for a stepped evaluation of the Edit Pointer in #6, again by selecting
from a sub-menu of "Sublnspect".

Window #8 opens when the LET expression is expanded during stepping. In a stepper window,
the navigation menu items are replaced with stepper commands. Navigation commands are still
available under the "EditPointer" button. An additional sub-window shows tile status of the
stepper and arguments or values produced by stepping. The highlighted sub-expression shows the
Execution Pointer.

Figure 2: Program Analyzer Interface In this example, we have invoked the program analyzer for
a small set of functions in a file.

Window #2 is a table of all the special variables defined or used in the application.

Window #17 opens when the variable *COLOR-ARRAY* is selected in #2. It shows that the
variable is input to the method INITIALIZE-INSTANCE for class DGNODE-DISPLAY. The
boxes in the graph are always of a fixed size proportional to the size of the window, and therefore
may show a truncated form of the variable or function name. The full name of a node in the graph
appears in the window above the graph as the mouse passes through a node.

Window #3 is a table of all the functions defined in the application.

Window #4 opens when we select the method INSTAI,L for class DGNODE-DISPLAY. It shows
that the method is invoked by way of the generic function INSTALL. It also shows that the
method calls 5 functions.

Window #5 opens when we sclect the node UNHIGIII . IGIIT-CELL in #4 and ask for a new
control graph window, this window shows that the function has three callers and calls four other
functions.

References IV- i. 4 2

LispVars I~uperI nspect[S tack [C lazs

e,~,=. . , rollJ ~o= , . , ~ , . j ~ t t 1 ~,,..h_[clo=.

Environment and History of Forms and Values
ePACKAGEe #<PackaCe "XTOOLS" 103EEBE3>

By~bol ~ r e f r e s h J Close

D e F i n i t i o n OF L I S T - T O - B O X fro= Module M/d(EBOX

(DEFUN LISI-IO-BOX
(X &RUX (BOX (KC-NEtJ-BOX "HORIZONTAL . . .))
(INHER (KC-NEW-~OX "VEPTICQL))
OPEN CLOSE)

" B u i l d t.he bow s t r u c t u r e f o r a L i s p l i s t a n d - - -
(HULTIPLE-VALUE-SETQ (OPEN . , ,) (PARCH-PAIR))

S-ExpPession Viewer

D e f s y s O p t i o m [be fPes~ [Close

List o£ System Def in i t ions
DEFSYS
EPITDHE

~ f L I S P
SNAPPY
SHOOPf
STEP-TEST
XLT
XLT-HISC
~TOOLS-LI
×TOOLS-PA

×TOOLS-SY

Move 11]
Lower BU

Hide/Show
Cancel
Circulate

Dersys EPITOME

OATEn: ((: SOURCE " / x l t / c u ~ / e ~ l t o m ~.
LOA~ENV: HIL
CO\P1 L,E- ENV: H~L
BINARY-PATt~: (#P"/×Jt , 'cur /epJtc,r , t e /bb ln /X
~OURCE-PATICR: < # P " / x l t / c u r / e p l t o ~ e / ")
NAME: :EPITOHE

List of Modules

I _~T RUCT

i LFrIL$
HAKE, BOX

Packaze L ~ Refresh L
S-Expression Stepper

Status: Wmitin& For sub-stepper.

Packaee 1 ~bu= J Aetee~h

S-Expression Stepper
,o. . | , , , E, 10o. ,o

. , , . = Co.p_~_L~_~Fi,., 8=.EL~_LtSL~
r ~ a t t t s : About tO enter highlight.ed Form.
iArg~: NIL

Close

<LAHBDQ (BO:,~VQR HIDE PACKAC;E)
(SERF (BX-PQRTS BOPTVAR)

m" (LAMBDA ()
(LET ((-HIDE-DECLARES- HIDE) (-PACKAGE- PACKAGE))

(COLLEC'T-PARTS B(~/VRR OPEN . . .))))
B~rKVQR)

mE ~HIDE-DEELARES~ *PACKAGEr)

D.r=y= .LDer=y=Op~io.l , c , o . s i = e r . = h

Module MAKEBOX in EPITOHE

[DATE~: ((: SOURCE " I x 1 L /cu r / e p i tome/ 'makebox. I i s p "
LOAD-ENV: (: STRUCT)
CO~fPILE-ENV: (: STRUCT)
PACIK/~CE: EPITOHE
NAMIE: : HAKEBOX

Defined Symbols

DEFUH LET-T0-BOX (×) (LET mr~s
DEFUN L I ST -RUI4-10-W~ (I A I L)
DEFUN LIST-TO-BOX (X) B u i l d t he
DEFtlN HAKE-DELIFIITE ~, (X) Hake a bow
DEFUN HAKE-DOT-BOX HI L
DE|'UN HAP-CAR (FN LIST) Like mapca
DErUN OP-TO-B[D< (X)
DEFUM PAREN-PRIR NIL
DEFIIN PREEI×ED-T0-BX (X PREFIX)
DEFUN PROGRRH-TO-BI~X (X)
DEFUN S-TO-BOX (X) Recursivel
DEFUN SEPARATE-BOX (B(~< IN-P OUT\
DErUN SEPARATE-PARTS (BOX)
DEruN TAIL-TO-PARTS (X sKEY PART-\ Return a I

Lo

Figure I: Defsys and Stepper Interface

References IV- i. 43

Follower Panel Close

(INSTALL <DGNODE-DISPLAY))
(NEW-FOCUS (DGNDI~E-DISPLAY))
(SCALE (DGHODE-DISPLAY)>
<SETF NODE>
(SETF NODE-HEIIU)
(SETF SUCC-0FFSET)
BQ-LIST

i ~ (, ~
C~LL-HEXT-HETHOD
CELL-HEIGHT

F o l l o ~ r l 'anel ~ Close

method (INSTALL (DGNODE-DISPLA¥))

D, ISTALL HDDE-HEHU]

UHHIGHLIGHT-CELL]

CALL-NEX'r-METHOD]

EHABLEmEVEHT]

M o v e

L o w e r Ill]

F o l l o ~ v Panel C]osm

,CULOE-ARRfff*
FOtP
GC
GBI

I
IG-7 EX1-OF
~F --H E NI_I
;LER

RiCht: Henu oF actions on h lghl I Ih ted node
_ e F t : Focus on highlighted node

Fol lo~r Panel J Close

metb4xl (INITIALIZE-INSTANCE (DGNODE-DISPLAY))

,COLOR-ARRAY*

Fol lower Panel J C l o ~

Function UNIIIGNL]GBT-CELL

DGHODE-EEH_______O

[(t,Ew- FOCUS ~D~t~OOt~
t(ZHs'rALL (DG,,=~-O~J

GRID]
LAST-RO~J]

LAST-COL]

D&I4ODE - REPAI HT-CEL]

HIDE-POI fCTER- HELP]

L of actions on highlighted node
L= On highlighted node

I11 l~-_i2L ill'.. I t-

~ [h t : Hew,u of eotio.~ on highlighted ~ode
Leer: Focus o~ highlighted node

Log i n

Figure 2: Program Analyzer Interface

References IV-i. 44

