
Implementation of a "Lisp comprehension" macro

Guy Lapalme
D6par tement d ' in format ique et de recherche op~rat ionnelle

Universit~ de Montreal
CP 6128, Succ "A"

Montreal Quebec Canada
H3C 3J7

e-mai l : lapalme@iro.umontrea l .ca

J anua ry 1991

1 I n t r o d u c t i o n

This paper describes a set of Lisp macros that enable the use of "list compre-
hensions" which are a very powerful notation that provides a very compact
expression of common list operations see [2] for a full discussion. List com-
prehensions have been introduced by David Turner in KttC, where they were
called ZF-expressions [7]. They have since been introduced in several other
pure functional languages like SASL [8], Miranda 1 [5] and Haskell[3].

List comprehension are often associated with "pure" functional lan-
guages but their principles are independant of the fact that assignment is
allowed in the language. Having used them quite extensively in Miranda, we
realized how much they would be useful in Lisp also. After all, comprehen-
sions are merely "syntactic sugar" over standard functional programs but
they give an intuitive reading of common operations over lists.

We first describe this notation in Miranda and then give the equivalent
Lisp expression with our macros; we finally show the implementation of
our macros which follow closely the derivation given by P. Wadler in [4,
p127-138].

1 M i r a n d a is a registered trademark of Research Software Ltd.

• o / 1991 Guy Lapalme, Unlverslte de Montreal

IV-2.16

2 D e s c r i p t i o n of list c o m p r e h e n s i o n s in Miranda

List comprehensions have the form:

[<expression> [<qualifier1> , . . . , <qualifiers>]

where each qualifier is either a generator (of the form pat <- expr) or a filter
(a Boolean expression). The syntax derives from analogy with common set
notation. For example:

{xlx e s;p(x)}

defines the subset of S for which P holds. Similarly:

[x lx<- s , px]

defines the sublist of s for which p x is True. The scope of variables defined
using generators extends from the generator itself to all qualifiers defined to
the right of the generator, and to the main expression.

For example, the following expression keeps all odd numbers of the list
of numbers xs

Ix [x <-xs ; odd x]

Generators can be nested as in

[x+y I x <- xs; odd x; y <- ys; even y]

which returns all possible sums for all odd numbers in xs with all even

number of ys. The |ast generators change most rapidly and a later qualifier
may refer to a variable defined in an earlier one. Thus this defines a simple

but quite powerful list iteration mechanism; it is much simpler than most

"loop" or "do" macros found in Common Lisp [6]; it is also more general

than the "collect" macro given in [1, p 254-256]. It is in a way similar
in spirit with the "Series Macro Package" of Waters [9] but considerably
simpler (our macro is less than 20 lines of Lisp...). Of course, our model
is much less powerful but is very useful anyhow. The limitations of the
comprehension notation imply that the generated code is efficient without
resorting to a program analysis like the one necessary in some cases for the
series.

The following Miranda functions show the power of expression of list
expressions (and also of pattern matching in the function heads):

IV-2.17

• function for quicksort:

q_sort [] = []

q_sort (a:x) = q_sort [yly <- x; y<a] ++ [a] ++ q_sort[y]y <- x;

which means: sorting the empty list gives the empty list; sort ing a
list beginning with a followed by the list x is appending three lists:
the first one is the result of sorting all elements of x smaller than a,
the second only comprises the "pivot " a and the third is the result of
sort ing all elements of x greater or equal to a.

• function for finding all permuta t ions of a list of elements

perms [] = [[]]

perms x = [a:p I a <- x ; p <- perms (x -- [a])]

This is read as finding the permuta t ions of the empty list is the list
of one empty list; finding the permuta t ions of list x is the list of all
elements a from x in front of all possible permuta t ions of the remaining
elements of x. (: is the "cons" opera tor and - - denotes list difference).

3 Expressing comprehensions in Lisp

Given these definitions, it is quite easy but tedious to t rans la te them into
Lisp .using cons , append, map, r e m o v e - i f - n o t . . . bu t we would like to obta in
a sys temat ic and efficient t ransla t ion from an equivalent Lisp expression
bearing a much closer ressemblance to the original list comprehension.

So we have defined read macros associated with the [and] characters
tha t build a call to another macro defining the "real" Lisp expression. In
Lisp, each expression is well delimited, so we omit the " l " and the " ; " .
The first expression in a comprehension is the value of the expression to
be evaluated and the following ones are qualifiers; a qualifier is a generator
if it is a three element list whose second element is the <- symbol; in this
case the first element of the list should be a variable. If a qualifier is not a
generator then it is a filter tha t either returns n i l if it fails or not n i l if it
succeeds. So the previous examples are t rans la ted into Lisp in the following:

[x (x <- xs) (oddp x)]

y >=a]

IV-2.18

TQI [EI]-H-L]~
(TEl E]: TE l L])

TQI[EI B,Q]-~-L]_--
/fTE[B] thenTQl[El QI-HL] else TE ELI

TQ[[E]v<-L,,Q]-H-L2]---
letrec

h = us -> case us of
[] - >

(v: us') ->
i n (a T E l L1 ~)

TE l L2]
TQ[[El Q] +r(hus')]

(rule A)

(rule B)

(rule C)

Figure 1: Wadler's optimal translation rules for list comprehensions

[(+ x y) (x <- xs) (y <- ys) (evenp y)]

(defun qsor't (ax)
(and ax

(l e t ((a (car ax))
(x (cdr ax)))

(append (qsort [y (y <- x)
(list a)
(qsort [y (y <- x)

(< y a)])

(>= y a)])))))

(defun perms (x)
(if (null x) '(())

[(cons a p) (a <- x) (p <- (perms (remove a x :count 1)))]))

4 Translating into Lisp

Wadler [4, p132-135] describes a series of transformations to translate list
comprehensions into an "enriched" A-cMculus (i.e. A-cMculus with pattern
matching, l e t and l e t r e c) and gives the following translation rules where
T E l e] is the translation of expression e and TQI c --H-1] is the translation
of a comprehension e with partial result l. In Lisp, TE l e ~ is merely the
corresponding Lisp expression (as we use the backquote facility, we prefix

IV-2.19

(defmacro comp ((e ~rest qs) 12)
(if (null qs) '(cons ,e ,12) ; rule A

(let ((ql (car qs))
(q (cd r q s)))

(if (not(eq (cadr ql) '<-)) ; a generator?
'(if ,ql (comp (,e ,@q),12) ,12) ; rule B

(let ((v (car ql)) ; rule C
(ii (third ql))
(h (gentemp "H-"))
(us (gentemp "US-"))
(u s l (gentemp " U S l - ")))

' (l a b e l s ((, h (, u s) ; c o r r e s p o n d s t o a l e t r e c
(if (null ,us) ,12

(l e t ((, v (c a r , u s))
(,usl (cdr ,us)))

(comp (,e ,eq) (,h ,usl))))))
(,h ,li)))))))

Figure 2: "Lisp macro" adapta t ion of Wadler's t ranslat ion rule

e by a comma). A comprehension is t ranslated by a macro with two pa-
rameters: the first one comprises the the expression and the quMifiers; the
second is the partial result. This scheme is optimal in that it performs the
min imum number of cons (i.e. exactly one for each element in the returned
list). The macro is given in Figure 2 which is a straight t ranslat ion of the
rules where T Q [e ~ is converted to a recursive call to the macro. The read
macros associated with the brackets are the following:

(defun open-bracket (stream ch)
(do ((i nil)

(c (read stream t nil t)(read stream t nil t)))
((eq c 'I]]) '(comp ,(reverse I) ()))

(push c i))
)

(defun closing-bracket (stream ch) ' I] I)

(eval-when (compile load eval)
(set-macro-character #\[#'open-bracket)

IV-2.20

(set-macro-character #\] #'closing-bracket))

For example the translation of

(oddp x)] [x (x <- xs)

is the following

(LABELS ((H-7
(IF

(us-7)
(NULL US-7) NIL
(LET ((X (CAR US-7))

(USI-7 (CDR US-7)))
(IF (ODDP X) (CONS X (H-7 USI-7)) (H-7 USi-7))))))

(H-7 XS))

This is simply the definition and a cMl to an internM procedure that does
a recursive w~k on the list keeping only the odd elements. We build the
procedure "in place" in order to build the right lemcM environment for the
mmn expression. This is not the translation that would come to mind in the
the first place but its correctness is guaranteed by the series of transforma-
tions proven in [4, p 132-135]. Now the definition of "perms" becomes after
being fully expanded:

(DEFUN PERMS (X)
(IF (NULL X) '(NIL)

(LABELS ((H-8 (US-8)
(IF (NULL US-8) NIL

(LET ((A (CAR US-8))
(USI-8 (CDR US-8)))

(LABELS ((H-9 (US-9)
(IF (NULL US-9)

(H-8 X))))

(H-8 USi-8)
(LET ((P (CAR US-9))

(usi-9 (CDR US-9)))

(CONS (CONS A P) (H-9 USI-9:
(H-9 (PERMS (REMOVE A X :COUNT I))))))))

5 E x t e n s i o n s

We have shown a direct translation of list comprehensions but it would be
interesting to extend this work in some areas. In Common Lisp, lists are

IV-2.21

a special case of sequences. So using (e l t 1 x) instead of (ca r x) and
(subseq 2 x) instead of (cdr x) would result in a more general macro
package capable of being applied to vectors, strings as well as lists. Unfor-
tunately, subseq is specified as creating new instances of sequences at each
call so in this case, the generated code would be less space efficient than in
the case of list.

In Miranda, list comprehensions are more general than what we de-
scribed here: pattern matching (using constants and even repeated vari-
ables) can be used in the left part of a generator, for example

[y I (l,y) <-xys]

returns the list of y in a list of 2-tuples such that the first element is equal
to 1. As pattern-matching is not included in Miranda (except in the "new"
d e s t r u c t u r i n g - b i n d macro) we decided not to add it for this case of list
comprehension. As lazy evaluation is used in Miranda, infinite lists can be
specified in a generator built by a recurrence equation; in Lisp, this is not
the usual evaluation mode, so we do not translate these cases.

Given these restrictions, we found this tool a very good and simple al-
ternative to the loop/do/i terate/series macros for the simple but frequently
occuring case of iterating over a list.

6 C o n c l u s i o n

We have given a direct translation of list comprehensions in Lisp, we ran
some simple tests in Allegro Common Lisp on a Sparc Station and we found
that the resulting expressions ran between 30% slower and 20% faster than
a "hand coded" Lisp version using the same "functional" style. The same
tests were also run by Jon L. White using the Lucid "Development Quality"
and "Production Quality" compilers and found that, in this case, most of the
times the "comprehension" versions were faster than the "hand coded" ones.
These translations are not the optima] ones because usually Lisp compilers
generate much better code from looping constructs such as do or d o l i s t .
The Series macros of Waters[9] strive to translate expressions having a func-
tional style into true iterative style and in some cases they achieve a more
efficient translation at the cost of a comprehensive program analysis; our
macro is only a straight implementation of the translation rules given by
Wadler which could possibly be augmented to generate looping constructs
when feasible. But as they stand now, the mechanically translated versions

IV-2.22

are never much slower than comprehensions so there is no real drawback in
using them, but the rewards are great in terms of power of expression.

R e f e r e n c e s

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman. Structure and
interpretation of Computer Programs. MIT Press, 1985.

[2] R. Bird and P. Wadler. Introduction to Functional Programming.
Prentice-Hall, 1988.

[3] P. Hudak and P. Wadler (editors). Report on the programming language
Haskell, a non-strict purely functional language (Version 1.0). Technical
Report YALEU/DCS/RR777, Yale University, Department of Computer
Science, April 1990.

[4] S. L. Peyton-Jones. The Implementation of Functional Languages.
Prentice-Hall, 1987.

[5] Research Software Limited. Miranda System Manual. 1987.

[6] Guy L. Steele Jr. Common Lisp, the language. Digital Press, 2nd edition,
1990.

[7] D. A. Turner. Functional Programming and Its Applications, chapter Re-
cursion Equations as a Programming Language, pages 1-28. Cambridge
University Press, 1982.

[8] D. A. Turner. SASL language manual. UKC computing lab. report, The
University of Kent at Canterbury, nov 1983.

[9] Richard C. Waters. The series macro package. Lisp Pointers, 3(1):7-28,
1990.

IV-2.23

