
D M G - Object-Oriented Iterative Knowledge Acquisit ion
for the Generat ion of Diagnost ic Hypertext Systems

Pasi T. Tyrv/i inen
tyrvaine@rc.nokia.fi

Depar tmen t of Kn?wledge Technology
Nokia Research Center

P.O. Box 156, SF-02101 Espoo, Finland

A b s t r a c t • in the customer services, and also

DMG is a development environment for building di-
agnostics applications of electrical equipment. Knowl-
edge contained in an equipment model is compiled into
a decision-tree like diagnostic logic, which is then used
visually to pinpoint deficiencies in the performance of
the equipment. The delivery application is a hyper-
text document which combines the diagnostic logic
with links to sources of additional information. Bene-
fits and experiences in real industrial use of DMG are
presented; and practical issues on using a CLOS-based
graphical user interface library are discussed.

• when considering the testability issues of a new
product in the design phase.

1.1 P a r t s o f t h e D e v e l o p m e n t E n v i r o n -
m e n t

The system architecture of DMG is described in Fig-
ure 1. The DMG development environment runs in an
engineering workstation and it consists of three parts:

1. the model editor for modelling the equipment,

2. the generator for generating diagnostic networks
from the model, and

1 D M G O v e r v i e w

DMG [5, 8, 9] is a development environment for di-
agnostic applications of electric equipment. The diag-
nostics is based on structural models of the equipment
around which all knowledge is organized. In addition
to the structural models, knowledge about pathways
of causal interaction about available tests is needed.
Faulty parts are located by using the structural isola-
tion method [2, 6]. The results of applying the struc-
tural isolation method is transferred into an decision-
tree-like object structure called a diagnostic network.
These diagnostic networks represent the logic of a di-
agnostic task in a compiled knowledge form. They are
executed in a PC delivery environment called Hyper-
Expert [3].

The main advantage of DMG is the fast genera-
tion of easily modifiable diagnostic advisory systems
that can be verified and validated graphically. The
applications generated using DMG are most valuable:

• when the production of a new product is starting,
even if no heuristic knowledge is available,

©

3. the graph editor for displaying and editing gen-
erated diagnostic networks.

Both the equipment model and diagnostic network
are represented as structures of interconnected object
instances, and both are displayed for the user using
instances of window classes.

1.2 M o d e l E d i t o r fo r S t r u c t u r a l E q u i p -
m e n t M o d e l s

The model editor is used to create and modify hier-
archical equipment models. These models contain ob-
jects such as modules, ports, connections, and tests.
Each of these interconnected objects has a graphical
representation in a model editor window.

As a model is represented in one window, an in-
ternal model of one module may be represented in an-
other window. Thus, the user may access different
levels of a hierarchical model at the same time, and
the diagnosed system may be developed in a hierar-
chical manner.

Different kinds of faults can have dissimilar path-
ways of causal interaction and separate sets of tests

1991 Pasi T. Tyrvainen, Nokia Research Center

IV-2.24

CAD "1 ~ . ~ , ~NETWOF MODEL GENERAFOR EDITOR EDITOR

DMG - DEVELOPMENT ENVIRONMENT
IN WORKSTATION

• I HYPER [
EXPERT[

DELIVERY
IN PC

Figure 1: Architecture of DMG.

relevant to probe the propagation of faults. In DMG,
different views of the same physical structure are de-
fined as subsets of all connections and tests in the
model. These views can be used to describe e.g., differ-
ent dimensions of a signal (amplitude and frequency)
or different functions of a piece of equipment (booting
a PC or starting a program).

Direct manipulation of properties of the displayed
objects is used to modify fault probabilities of mod-
ules, test descriptions, costs of tests, etc. In this man-
ner, the information of model objects is easily accessi-
ble. This improves model consistency based on visual
validation and reduces the effort of model building and
maintenance.

1.3 G e n e r a t o r

The generator is a recursive LISP procedure that cre-
ates a compiled knowledge representation from the
knowledge in the model. It optimizes the order of the
performed tests minimizing the average time required
for isolating a fault in the system.

The result of a generation process is the diagnostic
logic represented as a decision-tree like structure of
interconnected test nodes. Each of the nodes can also
be expanded to a set of nodes that represents the links
to the relevant textual and pictorial material in the
delivery environment.

1.4 G r a p h E d i t o r f o r D i a g n o s t i c N e t w o r k s

The DMG Graph editor windows are used to display
and manipulate generated diagnostic networks. The

graphical representation gives a fast overview of the
size and quality of the diagnostic application. Distinct
trouble shooting sessions are represented as paths from
the root of the tree to separate solution leaves via a
set of test nodes. This kind of visual validation of re-
sults is efficient, and inconsistencies and shortages of
a system model are easily pinpointed in the structure
of the generated network. The verification and valida-
tion results give feedback to the model builder in an
early phase and it can be used to verify the testability
of a newly designed equipment. In some cases, minor
changes to the model may cause major changes to the
generated network.

Figure 2 illustrates the iterative knowledge acquisi-
tion process in DMG development environment: mod-
ify model, generate diagnostic network, validate net-
work visually, modify model ... etc ... until the ap-
plication is ready to be delivered in the PC environ-
ment. The knowledge acquisition by iterative knowl-
edge compilation relies on the visual validation of the
diagnostic networks and direct manipulation of the
model objects. For these purposes,-object-oriented
user interfaces are needed.

1.5 H y p e r E x p e r t - D e l i v e r y E n v i r o n m e n t

HyperExpert [3] is an expert system tool for advi-
sory applications. It provides a MS-Windows-based
graphical interface and combines expert system tech-
nology with hypertext features. Knowledge is repre-
sented by a network formalism that contains several
node types. Nodes contain text, pictures and external

IV-2.25

HOD/F/

k

f

MODIFY

t e s t - ~

test-5 ~ t e s

~ t e s '

VISU.4L .4ND ST.4TISTIC,4L FEEDBACK

F.4 UL T PROBABILITIES

Figure 2: The iterative knowledge acquisition process in DMG.

function calls and are connected with branches and
loops. Since the networks are stored in a database
structure, no practical upper limits exists on the ap-
plication size.

DMG uses HyperExper t as the delivery environ-
ment for generated diagnostic applications (use of
some other hyper text tool is also possible). The final
generation in DMG incorporates computational links
to the additional information available in the delivery
environment. This final version is then transferred to
a PC and read into the HyperExper t database. The
extra information is added as a set of files which can be
updated without editing the diagnostic network itself.

When a new release of the diagnostic network is
delivered, possible changes made to the old network
are lost, but changes to the additional files are still
available. This feature can be used to tailor the ap-
plications for different environments. The feedback to
the DMG models can include fault statistics collected
by an additional program in the delivery environment.

1 .6 T h e S h o w e r E x a m p l e

The model "Shower" (Figure 3) in the DMG-Model-
Editor window contains five modules connected to
each other by connections that describe the path-
ways of causal interaction such as the flow of water
from "Cold-water-system" via "Cold-water-pipes" (or
via "Warm-water-system" and "Warm-water-pipes")
to "Mixer" and out from the shower. A fault in any

of these five modules can cause a fault in the flow of
the water.

In addition to the "Flow" view of the Shower
model, there is a view "Temperature" which is high-
lighted in the picture. The modules "Warm-water-
system" "Warm-water-pipes" and "Mixer" and con-
nect ions between them are included in the view as
these modules can cause a fault in the temperature of
the outcoming water.

Tests are displayed as smaller boxes and are used
to measure the outputs of modules; Test "Water-out"
includes the question "How is the outcoming water?"
and answers "No water", "Only cold water", or "Flow
and Temperature Ok" directing the fault isolation pro-
cess to the relevant view.

The DMG-Graph-Editor window in the bot tom
displays a diagnostic network generated from the
Shower model. If the trouble-shooter responds "0nly
Cold Water" to the test "Water-out", the test "Hot-
tap" is performed next. The ac t ion in "Hot-tap" is
"Try some other tap for hot water. Is it Ok?" and the
possible results are "Ok", "Fail", or "Unable to per-
form the test" resulting in a Mixer-fault and the ini-
tiation of two unlqueinstances of test "Temperature"
respectively. After the "Fail" answer to the test "Hot-
tap", the test "= l=Tempera tu re" can either attribute
the fault to "Warm-water-system" or "Warm-water-
pipes", or can report an ambiguity set of cardinality
2.

If the fault is at tr ibuted to a module that has an in-

IV-2.26

ternal model, the fault can be analyzed further accord-
ing to the internal model (The "Warm-water-system"
model might have modules "Water-container" "Elec-

tricity" "Thermostat" etc.)

2 C L O S a n d U s e r I n t e r f a c e s - E x -
p e r i m e n t s a n d P r a c t i c a l I s s u e s

2.1 D M G in U s e

The DMG system is now running in a workstation
environment, and has been used by Nokia's business
units during 1990. It was employed in several loca-
tions within the corporation - including diagnosing
radio links, microcomputers, mobile telephones, and

modems.
The experiments gained from the field tests show

that the direct manipulation facilities of object-
oriented user interfaces are important for the visual
knowledge verification and validation, which enables
the iterative knowledge acquisition process and, thus,
fast knowledge acquisition in DMG.

According to our experiences, the use of DMG has
reduced the time needed to design the diagnostic logic
by 70%. In our case, about half of the time to produce
a diagnostic application is used to the production of
diagnostic logic and an other half to the production of
supporting pictorial and textual material. Thus the
total time savings is less dramatic; about 35% instead
of 70%. In the near future we expect to cut down the
effort needed to produce the support material by bet-
ter utilization of existing material, aided by hypertext
features of the delivery environment.

The application builders (including some casual
users) that are using DMG are fairly satisfied with
the system. They spend most of their time thinking,
and the speed of the user interaction and generation is
fast enough for their purposes. The functionalities of
DMG can be adapted to their wishes more easily than
in systems programmed in traditional programming
languages.

2.2 O b j e c t - O r i e n t e d U s e r I n t e r f a c e s

DMG was first prototyped on a Symbolics LISP ma-
chine in 1987, and the implementation relied heavily
on the object-oriented features and graphical tools of
the Genera environment. After the prototype phase
we had to find a way to port DMG on top of LISP
in engineering workstations. For the similar needs of
several projects at Nokia R.esearch Center, we had to

chose an object system and a user interface tool li-
brary. For the object system we chose Common Lisp
Object System (CLOS [4]) and for the user interface
tools, a library called AIGT was build.

AIGT (Application Interface Generation Tools)
[1, 8] is a modular library of predefined window
class definitions which is designed to be used in the
building of user interfaces for Common Lisp applica-
tions. AIGT consists of a library of predefined window
classes organized in a class hierarchy. An application
uses AIGT by instantiating these classes with appli-
cation specific instance variable values and by inher-
iting predefined classes to application specific classes.
Only the class definitions needed are loaded to the
application environment. In addition to basic inter-
action windows (textual I/O, command panels, form
windows etc.), the library includes large application
frameworks for specific application areas.

The implementation of AIGT was planned to be
based on two standards: Common Lisp Object Sys-
tem as the object system, and X Window System (de-
veloped by M.I.T.) as the graphics system. We hoped
that these components would have provided a com-
mon, portable and fairly stable foundation for AIGT.

The prolonged standardization process of CLOS
made it necessary for us to adopt an object solution of
our own, caned NOS (Nolda Object System). NOS has
been designed using Common Lisp and implements
features of object systems needed for AIGT such as
multiple inheritance. The development of N0S was
guided by early CLOS standard proposals in order to
minimize the conversion work necessary ass CLOS be-
comes available. This goal was reached by delimiting
the available functional features in NOS to those which
were likely to exist in CLOS.

The implementations of X Windows System and
interfaces to LISP came too late for our needs; there-
fore, it was replaced with the Window Tool Kit devel-
oped by Lucid Inc. This software was used because
it provides a uniform window interface independent of
the hardware used and was available for many plat-
forms used by our customers (Sun, Kpollo, HP, and
MicroVax). Thus the first implementations of AIGT
and DMG were based on NOS and Lucid's Window
Tool Kit.

2.3 P o r t i n g D M G to E n g i n e e r i n g W o r k -
s t a t i o n s

In 1988, DMG was ported to workstations on top of
Lucid Common LISP and AIGT user interface tools.
Kelevant general purpose window classes for DMG

IV-2.27

- r • . B Diagnos is Mode lHng end Generattol
Model Ed i t o r Command Panel dmg-model-editol

G Model Ed t t o r Command Panel Shouer

F i l e

Model: Shoomr

I]~l~J~;~:1~| I |) iI [II ; l ~ . h ,',jt:l, I • I i ~:]-~;~ - - I:[I r i l ~.T~ ;11 ~ | i~ril~].~ i : i : l iHl.] i [.:n[:l

[F i l e I [Layout

] I Model I [VJeus J I Disp lay J [Generator J

17,1,1999 18:14:27 Disp layed view: (TE}tPERATURE)

C o l d - u a t e r - s y s t e m ~ _ _ _ ~

T I ' ^ 1 ' " C o N - t a p I I_~- , .uo o--uater-ptpesA.. , i l ~ . T---[~ Mi"sr

J [Par=aSs,s] [R.ra= I [qoit I

I Others J

Adjust

T

/ / C o l d - w a t e r - s y s t e m - f a u l t
I P r e s s u r e ~ i :~.Cold-.~, . later-ptpes-faul t

Cold-ta. ~=3=Htxe r - f au l t

/ M i x e r - f a u l t

/ ,/=2-w,rm-water-s st~-~aul
~ - - Ja L e E - o u t ~ = l=Temperatur eJ~-Var'm-water -p ipes- f au I t

~ ¥ a P m - w a t e r - s y s t e m - e t c - 2 - f a u t s

/ V a r m - w a t e r - s y s t e m - f a u l t

~All-Ok

Figure 3: DMG development environment. A model "Shower" is displayed in a model editor window and a
diagnostic network generated from the model is displayed in an overlapping graph editor window.

IV-2.28

were found or added to the AIGT library, facilitating
the reuse of lots of previous work. The effort required
for port ing DMG to AIGT was about 10% of the origi-
nal programming effort, excluding the additions to the
AIGT library. The facilities of the Genera environ-
ment and some parts of the DMG code were replaced
with the methods of AIGT classes. In addition, we
were able to leave out irrelevant parts of the Genera
environment, reducing the total size of the runtime ap-
plication. Speed of the runt ime application depended
more on the size of central memory available than on
the implementat ion environment.

About 40% of the source code in current DMG sys-
tem is DMG specific code and about 60% is reused
AIGT code. The size of the DMG environment is
kept small by loading only needed class definitions
from the AIGT library, al though a minor amount of
unutilized AIGT code is included in loaded class def-
initions. (The use of task-specific shells enabled some
demonstrat ion applications to reuse the programming
effort of more than 10 man-months with the effort
of one man-month . In general the amount of reused
AIGT programming code has been about 60-90% of
the source code of an application. This figure tends
to include about 10-30% overhead of unutilized AIGT
code.)

Figure 4 illustrates the use of AIGT window
classes in DMG. The DMG-Model-Editor inherits
the class Block-Editor-Window and the DMG-Graph-
Editor inherits the Graph-Editor-Window [7] respec-
tively. The access and graphical representation meth-
ods of objects are based on inherited methods of cor-
responding Block-Editor-Windows and Graph-Editor-
Windows object classes, Blocks, Connection-Ports,
etc. The other window types for user interaction were
heavily used in implement ing DMG.

Some problems were encountered with the ap-
plication framework types of windows which were
not general enough to be tailored for the needs of
DMG. In general, implicit assumptions and predefined
paradigms of these task specific tools enable fast de-
velopment of applications. On the other hand mainte-
nance of generality requires either specialized methods
to be modular and replaceable or use of intermediate
class definitions and specialization via inheritance.

The library of predefined window classes is ex-
panding all the time. Newly added classes are usu-
ally rewrit ten to improve generality after being used
in more than one application. Very often it is also use-
ful to make some changes to DMG instead of merely
writing interface methods between new class defini-
tions and DMG.

Redefining methods for library classes sometimes
causes the typical software version management prob-
lems as the inherited AIGT methods change without
the DMG builder being aware of it; therefore, good
software engineering practice is needed. In any case,
even if the inheritance of predefined classes causes
some software management problems, it actually re-
duces them. For example, adding methods to print a
window with a PostScript laser-printer for AIGT class
Block-Editor-Window allows use of this functionality
in DMG-Model-Editor with minimal extra effort.

3 F u t u r e D i r e c t i o n s

3.1 T o o l s in t h e N e a r F u t u r e

The functionalities of NOS have been ported on top of
CLOS using macros, and the newly added classes in
the AIGT library can use all of the facilities provided
by CLOS as needed. Thus DMG can run either on
top of CLOS, PCL or directly on top of Common Lisp
and NOS.

The window system used is still the Window Tool
Kit of Lucid Common Lisp. Earlier we also consid-
ered port ing AIGT on top of X Window System for
greater speed and portability. So far, the speed has
been only a minor problem when the proper hardware
is used and we are able to run the applications on the
platforms our customers are using.

A preferable possibility is to port the more ad-
vanced parts of AIGT on top of CLIM (by Interna-
tional Lisp Associates) or X Window System based
CLUE (such as LispWorks by Harlequin and Delphi
Common Lisp by Delphi S.p.A.). The primitive class
definitions of AIGT could be replaced with CLIM
classes which the more advanced AIGT classes would
inherit. This is a feasible solution due to the modular
structure of AIGT library. In the future either of these
new standards can be the foundat ionmpon which the
more advanced tools of AIGT would be built, enabling
use of DMG on top of a standard environment.

A standard for object-oriented databases is also
needed for the LISP environment. So far, the lack of
good tools for saving object structures in a permanent
storage has forced DMG and other LISP applications
to employ their own saving mechanisms. We are look-
ing forward to commercial object-oriented databases
that would help us in the future by providing a com-
mon solution for all applications.

IV-2.29

~|'PL | CAT l VN -VI ND(~,~
/~ULT I PLE-CHOI CE - SELECT I QN-L I ST -¥I NO0'~

S EL ECT I DN-L I ST -W I NDO~- CASCADI NG-MENU
~ READ-SELECT 1 ON-L l ST -VI NOO~I

HOVEABLE-Vl NDOV~ C DP.e.~ANO -PANEL,-V I NOON

"0~ - V I ~ SPREAD-SHEET-Vl NOff, f
RESHAPEABLE-VI NOOV.
CLOSABLE-VI NDG'~\

DEFALq.T -Vl NDI~'I ~ ~
] I NFORMATI 0N-¥I NDOV~-~OMENTARY- I NFORMAT I ON -V I NOO~

.,I C .¥1 NOOW~I HI E RACT I DN-v I N-D~V~-- MOMEHTARY - I NT E R~T I DN-V I NDO, f

NOMENTARY-MI XIN ~ \ gRiME R-¥ I NDO~'--- GR~'H - EOITOR-V I NOOV--- m

COMMAND-PANEL-MI XI NG

PLffrrER~
~POSTSCRIPT

Figure 4: Class definitions of AIGT that are instantiated in DMG are boxed, and new DMG classes are shadowed.

3.2 R e s e a r c h D i r e c t i o n s

In addition to further development of DMG and AIGT
we are interested in applying automatic generation of [5]
hypertext to other design information. For these pur-
poses we use models for the domain area (taxonomies,
concept networks etc.) and for the tasks performed.
The research areas related to this work are knowledge
modelling and information science including natural [6]
language processing and hypertext related research.

The future work includes participation in the Es-
prit II project no. 2083, SIMPR, Structured Infor- [7]
mation Management: Processing and Retrieval. The
SIMPR project is developing software for text in-
dexing, subject analysis and classification, structured
information management and interactive retrieval of [8]
large (400 MBytes) documents.

R e f e r e n c e s

[1]

[2]

[3]

[4]

AIGT Application Interface Generation Tools,
Users guide, Nokia Research Center, Espoo, Fin-
land, July 1989.

Hamsher, W., and Davis R., "Issues in Model
Based Troubleshooting," A.I. Memo 893, MIT AI
Laboratory 1987.

Hyper Expert - A Short Introduction, Version 1.2,
Nokia Research Center, April 1989.

Keene, S.E., Object-Oriented Programming in
Common Lisp, A Programmer's Guide to CLOS,

[9]

Addison-Wesley Publishing Company, USA,
1989.

Lounamaa, P., Nurminen, J., and Tyrvainen, P.,
"DMG - A System for Diagnostic Modelling and
Generation," Nokia Research Center, Helsinki
Finland, March 1988.

Milne, R., "Strategies for Diagnosis," IEEE
Transactions on System, Man and Cybernetics,
SMC-17 3, 1987.

Robins, G., "Applications of the ISI Grapher,"
The ISI Reprint Series, ISI/RS-88-210, June
1988.

Tyrvainen, P., "Reusable Object-Oriented Tools
and Their Applications: AIGT - An Object-
Oriented Interface Tool Library, DMG - An Ap-
plication for Model Based Diagnostics," Proceed-
ings of First International Conference in Tech-
nology of Object-Oriented Languages and Systems
(TOOLS'89), Paris, November 13F-i5, 1989.

Tyrva~nen, P., "DMG - Model Based Hypertext
Generation
for Practical Production of Diagnostic Advisory
Systems," The First European Conference on the
Practical Applications of Lisp (EUROPAL'90),
Cambridge, March 27-28, 1990.

IV-2.30

