
An SQL Interface
for

Common Lisp

Alan S. Gunderson

Advanced Technology Research and Development Group

Digital Equipment Corporation

290 Donald Lynch Blvd

Marlborough MA 01752

January1991

Abstract

Access to persistent database storage from Common Lisp applications is an increasingly fre-
quent requirement. This paper discusses a software module that allows a Common Lisp pro-
gram to access a relational database management system. Database queries are expressed.as
SQL statements. In Common Lisp, the SQL query is represented as a string, which allows se-
quence functions to be used to construct the query. Through a foreign function interface, the
SQL query is passed from Lisp to a C component. The C component contains embedded data-
base statements to utilize the dynamic SQL facility provided by the database management sys-
tem. The database result table is returned to Lisp. Functions are provided to convert the re-
turned data into a list of structures. Each structure corresponds to one row in the database result
table. Structure accessor functions allow each individual attribute (field) in the structure repre-
sentation of a row in the result table to be obtained.

1This paper describes one phase of research being carried out in the Digital Equipment Corporation Advanced
Technology Research and Development Group.

O 1991 Alan S. Gunderson, Digital Equipment Corporation

IV-2.31

1 Introduction

The SQLCL module allows a Common Lisp [Steele 1990] program to access a relational data-
base management system (DBMS). Database queries are expressed as SQL statements. In
Common Lisp, the SQL query is represented as a string, which allows the sequence functions to
be used to construct the query. Through a foreign function interface, the SQL query is passed
from Lisp to a C component. The C component contains embedded database statements to util-
ize the dynamic SQL facility provided by the DBMS. The database result table is returned to
Lisp. Functions are provided to convert the returned data into a list of structures. Each struc-
ture corresponds to one row in the database result table. Structure accessor functions allow
each individual attribute (field) in the structure representation of a row in the result table to be
obtained. SQLCL is implemented in Lucid Common Lisp 1 and C and uses the ULTRIX/SQL 2
DBMS on a Digital DECstafion 3100 RISC workstation running the ULTRIX Version 4.0 oper-
ating system.

2 Related Work

The CLING (Common Lisp/INGRES Interface) from UC Berkeley [Sedayao and Irwin 1987]
provided a QUEL 3 [Stonebraker et al., 1976] interface for Common Lisp. With CLING, access
to the database occurred through calls to the INGRES object library. In contrast, SQLCL uses
the dynamic SQL facility found in ULTRIX/SQL and other relational DBMSs. This should in-
crease the longevity of the SQLCL approach, as the implementation is not dependent upon
functions in the DBMS object library. 4 Direct calls to the object library are probably faster than
the use of dynamic SQL. For our applications, database access speed was not a concern and we
never found the performance of our dynamic SQL approach to be at all bothersome. For an ap-
plication concerned with large numbers of transactions per second, the same may not be true.

Ideas for the use of Dynamic SQL were obtained from the example program called "The
ULTRIX/SQL Terminal Monitor Application" that is described in Appendix B of the
ULTRIX/SQL Companion Guide For C manual. It would be fair to characterize the C compo-
nent of SQLCL as a significant enhancement and evolution of the ULTRIX/SQL Terminal
Monitor Application, including a port of the program to the more stringent requirements for C
programming on a RISC processor, e.g., more attention must be paid to correct word alignment

1Lucid and Lucid Common Lisp are trademarks of Lucid, Inc..
ULTRIX and DECstafion are trademarks of Digital Equipment Corporation.
INGRES is a trademark of INGRES Corporation.

2The relational DBMS is ULTRIX/SQL. ULTRIX/SQL is the designation used by Digital for the INGRES
DBMS. ULTRIX/SQL is a software layered product for Version 4.0 of the ULTRIX operating system. Version
1.0 of ULTRIX/SQL is based on INGRES Release 6.2.

3 QUEL is an older INGRES query language based upon the tuple-oriented relational calculus.

4Initially, we had hoped to use CLING. Unfortunately, the INGRES object library had undergone considerable
change since the CLING system was written and CLING no longer functioned. Also, we wanted to use SQL
rather then QUEL.

IV-2.32

when casting data among data types and to their underlying architectural representations. 1 Sec-
tion 3.3 discusses the word alignment problem in more detail.

The PCLOS system [Paepcke 1989] is a detailed approach to object persistence for an object-
oriented language. Several dimensions of the object persistence problem are analyzed. One di-
mension is the object mode - the way for an application program to control the location and
sharability of objects at run-time. One such object mode is called "uneached operation" and is
described in the paper as follows:

"All accesses to the persistent object will by default involve database
operations. A read will fetch a value by submitting a query which may
be precompiled for improved efficiency. A write will cause a database
update operation."

A system such as SQLCL could be used for the queries and update operations in PCLOS.

Work at GTE Laboratories on the Distributed Object Manager (DOM) [Manola 1990] as a
building block for a knowledge-based integrated information system is another comprehensive
approach that is being pursued. Applications can interact with other application through DOMs.
A local-application interface (LAI) provides a mapping between an application and a DOM. An
LAI can accept messages, such as a data request, and translate them into local request to an ap-
plication for processing. If the application is a DBMS, the LAI has several similarities to the
SQLCL system.

3 SQLCL Design

The design of SQLCL is comprised of three components:

• The Lisp component. This includes the SQLCL interface functions for the Lisp program-
mer and a data transformation utility for converting data collected from the database into a
form more useful for the Lisp programmer to utilize in his application.

• The C component. A facility of the DBMS called dynamic SQL is accessed via a C pro-
gram. Dynamic SQL is like the Lisp eval function, except SQL statements are evaluated.

• The foreign function interface. This allows function calling between Lisp and C compo-
nents.

The following figure illustrates the interaction among the components.

COMPONENT FUNCTION COMPONENT'
INTERFACE

Ensuing subsections will discuss the SQLCL components in more detail.

1 Oh, the joys of C programming after years in the comfort of Lisp.

IV-2.33

3.1 The Lisp Component
Six Lisp function comprise the interface that the Lisp programmer utilizes to access the DBMS
and to transform the information retrieved from the DBMS. These functions in the Lisp compo-
nent call functions in the C component through the foreign function interface. The C compo-
nent accesses the DBMS and may generate output to the user or return information back to the
Lisp component, again through the foreign function interface. The functions in the Lisp compo-
nent are:

• open-db

• close-db

• interactive-db

• sql-query-print-db

• sql-query-db

• stnictify-tuple-data

A format similar to that used in CLtL [Steele 1990] will be used to describe the interface func-
tions.

open-rib dbname &key (interactive-dbname-query-flag O) [Function]

A DBMS can support numerous databases, where a database is a collection of relational tables
that may be semantically related through common key attributes among the tables. One of the
databases managed by the DBMS must be opened before SQL queries can be posed to the
DBMS to manipulate or retrieve information in the relational tables. The open-rib function al-
lows a database to be opened by the Lisp programmer.

The open-db function returns T if a connection to the database specified in the dbname argu-
ment can be established. The dbname argument should be a string. The special variable
current-db-name is also set to dbname to record the current database name and to indicate
that a database is open. If a database is already opened or an error occurs during the process of
opening the database, an error is signaled.

When the interactive-dbname-query-flag keyword argument is non-zero, the dbname argument
is ignored. Instead, the user is prompted for the name of a database for which a connection is
desired.

The open-rib function also supports a "lazy" loading capability for both the object code of the C
component of SQLCL and the ULTRIX/SQL and C object libraries. 1 An "eager" loading of the
object code could occur when an application using SQLCL is loaded into the Lisp environment.
Unfortunately, the loading of the object code takes almost 2 minutes and is wasted time if

1 The C component of SQLCL is compiled into an object file. As the C code needs to work with the DBMS, a
language called "embedded SQL" is used in the C program. A preprocessor is used on the C program containing
the 'embedded SQL" statements to convert them into standard C code and function calls to the ULTRIX/SQL and
C libraries. The C object code and libraries are then loaded into Lisp and dynamic linking occurs between the
function calls in the C component and the function object code in the libraries.

IV-2.34

SQLCL is not used. 1 It is possible to force an "eager" load, e.g., when building a production
version of a Lisp application.

c l o s e - d b [Function]

When a Lisp programmer is done utilizing a particular database managed by the DBMS, the
database should be closed with the close-db function. The close-rib function returns T if the
connection to an open database is successfully closed. The special variable *current-db-name*
is reset to NIL to record the fact the that no database is open. If there is no database to close
(one was never opened), the function returns NIL.

interactive-db [Function]

Most DBMSs provide an interactive utility where the user can enter query statements and have
the results of the query displayed back to the user. 2 Such utilities provide a nice environment
for formulating and debugging complex query statements prior to coding them in an applica-
tion program. The interactive-rib function provides such a utility to the Lisp programmer.

When the interactive-db function is called, an interactive SQL terminal monitor is invoked
from Lisp. The user is prompted for the database to open. A loop is then entered where SQL
queries can be typed and query results are printed.

s q l - q u e r y - p r i n t - d b sql-query-str &key (dquote-strings-flag nil) [Function]

This function is an intermediate step between accessing a database interactively with the
interactive-rib function and the sql-query-db function described next. The
sql-query-print-db function is passed an SQL query. The results of the query are displayed to
the user in the same format as that used in the interaetive-db function. The database result in-
formation is pretty printed for the user rather than being returned to Lisp (the sql-query-db
function described next does return the information to Lisp).

With sql-query-print-db, an SQL query, passed as a string in sql-query-str, is sent to the data-
base for dynamic SQL processing. The results of the query are printed to standard-output and T
is returned when the SQL statement is successfully processed. The output is generated by
functions in the C component. If the dquote-strings-flag keyword argument is passed a non-
NIL value, string attributes in the database are printed with surrounding double quotes. Any
errors that occur in the dynamic SQL processing of the SQL statement by the database will be
printed to standard-output. The function returns NIL if the SQL statement can not be run. An
error is signaled if no database is open.

Example:

Lisp> (sql-query-print-db "select o id, o name
from omap node
where o id < i0;"
:dquote-strings-flag t)

1 During our development work, we found that we were infrequently using the DBMS via SQLCL relative to load-
ing the system for debugging of other parts of our application software that did not require access to the database.

2A read-eval-print loop for users of the DBMS.

IV-2.35

[i] oid

[I] 1 [2]
[i] 2 [2]
[i] 8 [2]
[i] 3 [2]
[4 row (s)]
T

[2] O name

\"VAX-9000-RAINYA\"
\"H4000-7\"
\"THICKWIRE-COMPUTER
\"XCVR-CABLE-7\"

RM SEGMENT\"

s q l - q u e r y - d b sql-query-str &key (dquote-strings-flag nil) [Function]

This function will be the "workhorse" in a Lisp application program that needs to access a data-
base. A query is passed to sql-query-db, the database processes the query (Lisp --> Foreign
Function Interface --> C Component --> DBMS) and the results of the query (called a database
result table) are returned to Lisp (DBMS --> C Component --> Foreign Function Interface -->
Lisp). Then, the data transformation utility in the Lisp component can be used to convert the
returned database result table into a form more useful for the Lisp programmer.

With sql-query-db, an SQL query, passed as a string in sql-query-str, is sent to the database
for dynamic SQL processing. The results are returned as a character string suitable for proc-
essing by the read-from-string function. Reading the returned character string will yield a list
of lists. Each sublist is a row in the relational table that is the result of the query.

If the dquote-strings-flag keyword argument is passed a non-NIL value, string attributes in the
database are returned with surrounding double quotes. The returned value is thus a character
string that can contain embedded character strings. If character string attributes in the database
are atomic (no spaces exist in the string), the default value NIL for dquote-strings-flag can be
used to return non-quoted character strings from the database. The non-quoted character strings
will become Lisp symbols when the returned string is processed by the read-from-string func-
tion.

Any errors that occur in the dynamic SQL processing of the SQL statement by the database will
be printed to standard-output. The function returns the NULL character string (in C parlance)
if the SQL statement can not be run. An error is signaled if no database is open.

Examples: 1

Lisp> (sql-query-db "select o_id, o_name
from omap_node

where o id < 10;")
"(([1] 1 [2] VAX-9000-RAINYA)

([1] 2 [2] H4000-7)
([1] 8 [2] THICKWIRE-COMPUTER RM SEGMENT)
([i] 3 [21 XCVR-CABLE-7))"

Lisp> (sql-query-db "create table employee(
emp_id i4 with null,
emp_name varchar(50) with nu11);")

,,,l

1The output strings are pretty-printed in list notation for readability.

IV-2.36

Lisp> (sql-query-db "insert into employee(emp_id, emp_name)
values (157, 'Fred Smith');")

Lisp> (sql-query-db "insert into employee(emp_id, emp_name)
values (199, 'Jane Jones');")

111,

Lisp> (sql-query-db "select * from employee;" :dquote-strings-flag t)
"(([1] 157 [2] \"Fred Smith\")

([1] 199 [2] \"Jane Jones\"))"

structify-tuple-data data-string struct-name slot-name-list [Function]

The database result table returned to Lisp as a string can be converted into a list of
DEFSTRUCT structures. This transformation yields a database result table in a format that is
very convenient and familiar to a Common Lisp programmer. Each structure in the list corre-
sponds to a row in the database result table. The columns in a row can be retrieved using the
structure slot accessor functions. The columns (also called attributes or fields) in a relational
table are referred to by the attribute names in SQL queries, e.g., EMPLOYEE.EMP_ID. A
structure accessor function, e.g., EMPLOYEE-ID, provides a similar interface to the result table
attributes.

With the structify-tuple-data function, the data-string argument is passed a string returned
from ULTRIX/SQL to Lisp via use of the sql-query-db function. The struct-name argument is
the name designator for the structure and slot-name-list is a list of the structure slot names. A
one-to-one mapping between the columns in the database result table and the slots in the struc-
ture should be made. The slot names do not have to be the same as the attribute names in the
database but the number of items in the slot-name-list should correspond to the number of at-
tributes (columns) in the database result table.

Examples:

Lisp> (setq tmpl (sql-query-db "select * from employee;" :dquote-strings-flag t))
"(([1] 157 [2] \"Fred Smith\")([1] 199 [2] \"Jane Jones\"))"

Lisp> (setq tmp2 (structify-tuple-data tmpl 'employee '(id. name-str)))
(#S(EMPLOYEE ID 157 NAME-STR "Fred Smith")

#S(EMPLOYEE ID 199 NAME-STR "Jane Jones"))

Lisp> (employee-name-str (car tmp2))
"Fred Smith"

Lisp> (employee-id (car trap2))
157

3.2 C Component for Dynamic SQL

This section will describe the C component of SQLCL. The use of dynamic SQL will be dis-
cussed in detail via examination of code fragments. In the C code, statements will appear pre-
ceded by "EXEC SQL". These are the "embedded SQL" statements that were briefly discussed

IV-2.37

in a footnote in Section 3.1. Prior to compilation with the C compiler, a preprocessor, called
esqle, is used to convert the embedded "EXEC SQL" statements into standard C data structures
and function calls to the ULTRIX/SQL and C object libraries.

For discussion purposes, assume the sql-query-db function discussed in Section 3.1 has been
called in the Lisp component. The sql-query-str argument is passed an SQL statement as a
string. Through the foreign function interface (see Section 3.4), the C function in the C compo-
nent with the following proforma is called:

char * sqlcl_out_run_query(input_query, dquote_strings_flag)
char *input_query;
int dquote_strings_flag;

The input_query argument of the C function sqlcl_out_run_query is a pointer to the
sql-query-str argument in the sql-query-db Lisp component function.

The function processing will now be described. The query is first run through a simple conver-
sion routine and is then placed in the SQL statement input buffer data structure (strut_bur). This
C data structure is made visible to other "embedded SQL" statements in the C program via the
declaration:

EXEC SQL BEGIN DECLARE SECTION;
char stmt_buf[STMT_MAX + 1];/* SQL statement input buffer */

EXEC SQL END DECLARE SECTION;

The SQL statement in stmt buf is now prepared 1 and described 2 into the SQL Descriptor Area
(SQLDA). The SQLDA is a C structure used to communication type and size information
about an SQL statement, between the C program and the DBMS. There is also another shared
structure for information communication between the C program and the DBMS called the SQL
Communication Area (SQLCA). The following figure illustrates this.

~[SQLDA

SQLCA < COMPONENT

The code for the prepare and describe process is as follows:

/* Prepare and describe the statement. If we cannot fully
describe the statement (our SQLDA is too small) then
allocate a new one and redesclribe the statement. */

EXEC SQL PREPARE stmt FROM :stmt_buf;
EXEC SQL DESCRIBE stmt INTO :sqlda;
if (sqlda->sqld > sqlda->sqln){

Init_Sqlda(sqlda- >sqld);
EXEC SQL DESCRIBE stmt INTO :sqlda; }

1 The prepare statement encodes the dynamically constructed statement string for later execution.

2The describe statement retrieves type information about a prepared dynamic SQL statement.

IV-2.38

Now that the SQL statement has been prepared and described, the sqld field in the SQLDA can
be examined to determine the type of SQL statement. The type can be either an SQL selection

statement,.e.g.,

select emp_id, emp_name from employee;

or a non-select SQL statement, e.g.,

create table employee(emp_id i4 with null,
emp_name varchar(50) with null);

With the statement type determination, appropriate routines can be invoked to process the SQL
statement. This is show in the code below.

/* if 'sqld' = 0 then this is not a SELECT */
if (sqlda->sqld == 0) {

EXEC SQL EXECUTE stmt;
rows = sqlca.sqlerrd[2];
total_output[0] = ' \0 ' ; }

else/* SELECT */
rows = sqlcl_Execute_Select(dquote_strings_flag);

As shown in the last line in the previous code fragment, when the SQL statement is a select
statement, the C function with the following proforma is called.

int sqlcl Execute Select(dquote_strings_flag)
int dq~ote_strifi-gs_flag;

Several variables are first declared in this sqlcl_Execute_Seleet function

int rows; /* Counter for rows fetched */

/* Ptr to total_output where retrieval results are collected */
char *tot_output_ptr;

Now, the Print Header function is called.

/* Determine the result column names, allocate the result variables, and set up the types. */
Print_Header(0); /* arg of 0 to only run the function for side effects */

The Print Header function allocates a buffer for retrieving the data from the DBMS. The re-
sult buffe~is a single character buffer whose size is determined by adding up the result column
sizes for each column (attribute) of a row in the database result table. All the different database
types are collapsed into integer (long), float (double precision), and character types.

Now the dynamic SQL statement is processed by the DBMS with the following statement. If
an error occurs when running the SQL statement, a jump to Close_Csr occurs. The Close_Csr
code recovers from the error and handles error reporting.

EXEC SQL WHENEVER SQLERROR GOTO Close_Csr;

IV-2.39

After a dynamic SQL statement is processed, the dynamic cursor is opened.

/* Open the dynamic cursor */
EXEC SQL OPEN csr;

A dynamic cursor can be thought of as a row marker that can be moved forward through each
row in a database result table. A cursor basically allows the full range of C and embedded
SQL statements to utilize the data from the database a row at a time, i.e., the programmer has
full control of the manipulation of the retrieved data.

Using the dynamic cursor, the query result data is now placed into the total_output character
buffer as a list of lists. For example, the query

select emp_id, emp_name from employee;

yields the result table

emp_id e m p _ n a m e
157 Fred Smith
199 Jane Jones

which would be placed in the character buffer as:

"(([1] 157 [2] \"Fred Smith\")([1] 199 [2] \"Jane Jones\"))"

The code fragment below illustrates this process. Notice that the function sqlel_Print_Row is
called to produce the row data.

/* Fetch and gather the results for each row into total_output buffer */
tot_output_.ptr = total_output;
r o w s = 0 ;

/* Add a left parenthesis to indicate start of data, which will
be a list of lists of data */

*tot_output__ptr++ = '\(' ;
while (sqlca.sqlcode == 0)
{

EXEC SQL FETCH csr USING DESCRIPTOR :sqlda;
if (sqlca.sqlcode == 0) {

r o w s + + ;

/* Add a (to indicate start of row */
*tot output_ptr++ = '\(';

sqlcl_Print_Row(&tot_output_ptr,
dquote_strings_flag);

/* Add a) to indicate end of row */
*tot_output_ptr++ = '\) ' ;

}
} /* While there are more rows */

/* Add a) to indicate end of data represented as a list of lists of data */
*tot_output_ptr++ = '\) ' ;

/* Terminate the retrieval into total_output */
*tot_output_ptr++ = '\0';

IV-2.40

The sqlcl Execute Select function finally returns the number of rows of query data retrieved.
Also, the ffide effect'of placing the retrieved query data into total_output has occurred.

3.3 The sqlcl_Print_Row Function
Data type coercion between information stored in a strongly typed DBMS and untyped Lisp
will be examined, via example, in this section. In the code described in Section 3.2, the
sqlcl_Execute_Select function called the sqlcl_Print_Row function to produce the row data.
Basically, the DBMS dynamic SQL utility has processed the SQL query and the results have
been placed in the SQLDA and SQLCA. The cursor is "pointing" to a row of the database re-
sult table. Now the columns in that row of data are handled one by one.

A code fragment of the sqlcl_Prlnt Row function is shown below to illustrate the type of proc-
essing involved. An integer stored in column of a row of the database result table is converted
into a character representation of the integer, i.e., the character representation of the integer is
obtained, and this is what is returned to Lisp, where the Lisp reader can be used to "regenerate"
the integer.

In the code below, the sqv pointer to a structure is used. It is declared in the function as

IISQLVAR *sqv; /* pointer to 'sqlvar' */

IISQLVAR is a typedef for a structure for a single SQLDA (SQL Descriptor Area) variable. A
variable is one column (attribute) in a row of the database result table. The type of the variable
can be obtained by accessing the sqltype field of the structure. The data for the variable is
found in the sqldata field.

/* find the base type of the result (non-nullable) */
if ((base_type = sqv->sqltype) < 0)

base_type = -base_type;

switch (base_type)
{ case IISQ_INT_TYPE:

/* All integers were retrieved into long integers.
Copy the bytes of the long integer one by one into the
char array that is the same 'dimension' as a long integer */

for(j=0, p=(char *)sqv->sqldata; j < sizeof(long); j++, p++)
long_int_copy[j] = *p;

long_trap2 = (long *)long_int copy;/* Caste ptr to copy into ptr to long int */
long_tmp2_val = *long_tmp2;/* Now get the value of that bugger */
/* Finally, sprintf it. What a language */
sprintf buf_ptr = sprintf(sprintf_buf,"%ld ",long_tmp2_val);
while (*total_output_ptr++ = *sprintf_buf_ptr++);
total_output_.ptr--;/* back out of the '\0' */
break;

case IISQ_FLT_TYPE:
/* All floats were retrieved into doubles */

} /* end switch on base type

IV-2.41

Notice that the C sprintf function is used to produce the character representation of the integer
retrieved from the database. All of the processing to copy the bytes of the long integer from the
database into the long_tmp2_val variable for sprintf are done to maintain word alignment for
the RISC processor. Let's examine this in more detail, using integers (as shown in the code
fragment), as an example.

When a row of data in the database result table is retrieved from the database, it is placed into a
single character buffer in the SQLDA. The bytes of an integer are placed in the character buffer
in locations which may not necessarily fall on word boundaries. The bytes of the integer must
thus be copied out of the character array a byte at a time before working with the information as
an integer. In other words, you can't just access the bytes of an integer at a pointer location in
the character array for use as an integer. The integer must be put in a location aligned on a word
boundary or a word alignment error occurs.

3.4 Lisp/C Foreign Function Interface
The use of the Lisp/C foreign function interface for SQLCL can best be illustrated by example
The sql-query-db function described in Section 3.1 calls the ingres-sqlcl-out-run-query for-
eign function defined below.

(def-foreign-function (ingres-sqlcl-out-run-query (:name "sqlcl_out_run_query")
(:language :c)
(:return-type (:pointer :character)))

(arg 1 :simple-string)
(arg2 :fixnum) ;when 1, strings are built V'foo bar\" vs. foo bar

)

The foreign function definition includes the C
sqlcl_out_run_query which was discussed in Section 3.2.
ties that a pointer to a character string will be returned.
passed to the C function are specified.

component entry point name
Also, the function definition speci-
Lastly, the arguments that will be

4 Issues, Retrospective, and Future

The SQLCL module could be improved. A capability to process database errors in Lisp is
needed. A shared structure between the Lisp component and the C component for communicat-
ing database error information is one such possibility. Another useful enhancement would be
the ability to have multiple databases open simultaneously.

More attention could also be paid to reducing dynamic memory consumption in both the Lisp
and C components of SQLCL. In our applications, some of the information in the list of struc-
tures produced by structify-tuple-data is eventually placed into CLOS [Bobrow et al., 1988,
Keene, 1989] instances. This could be very inefficient for applications that require access to
large amounts of data from the database. Let's describe why this is true

The database result table is returned to Lisp as a character string, which is then transformed into
a list of lists by reading the character string with read-from-strlng. The list of list is then trans-

IV-2.42

formed into a list of structures and then slots in the structures are accessed and values are then
placed in CLOS instances. All this transformation of the data consumes a lot of CONS cell.
This is acceptable for our applications, as our data needs from the database are fairly modest,
i.e., the consumption of a few tens of thousands of bytes of extra memory was not a big con-
cern. With heavy database access, though, this could quickly get out of hand.

The Lucid Common Lisp foreign function interface supports the specification of shared struc-
tures between a Lisp component and a C component. Thus, a useful enhancement of SQLCL
would make use of this facility to place the database result table directly into a set of structures
shared between the Lisp and C components, thus eliminating some of the unnecessary
CONSing.

There is an enhancement beyond the use of shared structures between the Lisp and C compo-
nents. It would be nice to be able to define shared storage between C and CLOS instances and
have the data placed directly into slots in the shared instances, possibly on a "when needed" ba-
sis. Shared instances are not currently supported in the foreign function interface in Lucid
Common Lisp. There are many issues surrounding a "when needed" capability. The PCLOS
system referenced earlier has investigated several dimensions of this problem.

5 Conclusion

Although we recognize there are improvements that can be made, the current SQLCL module
adequately get the job done for us in its current form, i.e., we can utilize a DBMS from our
application prototypes. The database is utilized via SQL statements expressed as strings in
Lisp. Results are returned to Lisp as a character string. This can be converted into a list of
structures, providing a nice functional interface, via the structure accessors, to each attribute
(column) in a row of the database result table.

The SQLCL module provides a simple interface between a Common Lisp program and a rela-
tional database management system, such as ULTRIX/SQL, that supports dynamic SQL state-
ment processing. More elaborate interfaces to persistent storage from a Lisp application, such
as the PCLOS and DOM systems discussed in the paper, could use a system such as SQLCL for
some of their database processing.

Acknowledgments

I would like to thank Mark Adler and Rose Horner for reviewing and critiquing this paper and
for being supportive and intellectually stimulating co-workers. A thank you is also due to Mike
Carifio, who was my inspiring engineering manager when SQLCL was developed, and Steve
Schwartz, for reviewing and evaluating my SQLCL development as it progressed. Finally,
thanks to the Artificial Intelligence Technology Center and Digital Equipment Corporation for
providing a super environment and culture for performing AI research and engineering work.

IV-2.43

References

[Bobrow et al., 1988] D. G. Bobrow, et al. "Common Lisp Object System Specification X3J13
Document 88-002R." SIGPLANNotices. Special issue. September 1988 [23].

[Keene, 1989] Sonya Keene. Object-Oriented Programming in COMMON LISP: A Program-
mer's Guide to CLOS. Addison-Wesley, Reading, Massachusetts: 1989.

[Manola 1990] Frank Manola. "Object-Oriented Knowledge Bases." AI Expert. April, 1990,
pp. 46-57.

[Paepcke 1989] Andreas Paepcke. "PCLOS: A Critical Review." In proceedings of the 1989
Object-Oriented Programming: Systems, Languages, and Applications Conference
(OOPSLA-89). 1989, pp. 221-237.

[Sedayao and Irwin 1987] Jeff Sedayao and John Irwin. "CLING - Common LISP/INGRES In-
terface Manual", Computer Science Division, Dept. of Electrical Engineering and Computer
Science, University of California, Berkeley, CA.

[Steele, 1990] Guy L. Steele Jr. COMMON LISP: The Language. Second edition. Digital
Press, Bedford, Massachusetts. 1990.

[Stonebraker et al., 1976] M Stonebraker, E. Wong, P. Kreps, and G. Held. "The Design and
Implementation of INGRES." ACM Transactions on Database Systems, 1, 1976, pp. 189-222.

IV-2.44

