
Supporting the Regression Testing of Lisp Programs

Richard C. Waters

MIT AI Laboratory
545 Technology Sq.

Cambridge MA 02139

Dick@AI.MIT.EDU

How often have you made a change in a sys-
tem to fix a bug or add a feature and been to-
tally sure that the change did not affect any-
thing else, only to discover weeks or months
later tha t the change broke something?

In my personal experience, the single most
valuable software maintenance tool is a regres-
sion tester, which maintains a suite of tests for a
system and can run them automatical ly when
the system is changed. The term "regression
testing" is used, because each version of the sys-
tem being tested is compared with the previous
version to make sure that the new version has
not regressed by losing any of the tested capa-
bilities. The more comprehensive the test suite
is, the more valuable this comparison becomes.

Creating a comprehensive test suite for a
system requires significant effort, and running
a test suite can require significant amounts of
computer time. However, given a comprehen-
sive test suite, regression testing detects an im-
pressive number of bugs with remarkably little
human effort.

The KT regression tester presented here sup-
ports the regression testing of systems wri t ten
in Common Lisp. In addition to being a valu-
able tool, RT is an interesting example of the
power of Lisp.

The unified nature of the Lisp programming
environment and the fact that Lisp programs
can be manipulated as da ta allows RT to be im-
plemented in two pages of code. Merely imple-
ment ing a batch-mode regression tester using
an Algol-like language in a typical program-
ming environment would require much more
code. Implement ing a highly interactive system
like RT would be a major undertaking.

U s e r ' s M a n u a l for RT

The functions, macros, and variables that
make up the RT regression tester are in a pack-
age called "RT". The ten exported symbols are
documented below. If you want to refer to these
symbols without a package prefix, you have to
'use' the package.

The basic unit of concern of RT is the tes t .

Each test has an identifying name and a body
that specifies the action of the test. Functions
are provided for defining, redefining, removing,
and performing individual tests and the test
suite as a whole. In addition, information is
maintained about which tests have succeeded
and which have failed.

deftest n a m e form ~rest vMues

Individual tests are defined using the macro
deftest. The identifying n a m e is typically a
number or symbol, but can be any Lisp form.
If the test suite already contains a test with the
same (equal) name , then this test is redefined
and a warning message printed. (This warning
is important to alert the user when a test suite
definition file contains two tests with the same
name.) When the test is a new one, it is added
to the end of the suite. In either case, n a m e is
re turned as the value of d e f t e s t and stored in
the variable * tes t* .

(deftest t-1 (floor 15/7) 2 1/7) ::~ t-1

(deftest (t 2) (list 1) (1)) ::~ (t 2)

(deftest bad (1+ 1) 1) ::> bad

(deftest good (1+ 1) 2) ~ good

The f o rm can be any kind of Lisp form. The
zero or more values can be any kind of Lisp

1991 Richard C. Waters, MIT AI Laboratory

IV-2.47

objects. The test is performed by evaluating
form and comparing the results with the vedues.
The test succeeds if and only if form produces
the correct number of results and each one is
equal to the corresponding value.

* t e s t * name-of-current-test

The variable * t e s t * contains the name of l e
the test most recently defined or performed. It

is set by deftest and do-test.

do-test ~optional (name *test*)

The function d o - t e s t performs the test iden-
tified by name, which defaults to * tes t* . Before
running the test , d o - t e s t stores name in the
variable * t e s t * . If the test succeeds, d o - t e s t

returns name as its vMue. If the test fails,
d o - t e s t returns n i l , after printing an error re-
por t on * s t a n d a r d - o u t p u t * . The following ex-
amples show the results of performing two of
the tests defined above.

(do-test '(t 2)) ~ (t 2)

(do-test 'bad) ::~ nil ; after printing:
Test BAD failed
Form: (1+ 1)
Expected value: 1
Actual value: 2.

do-tests-when-defined default value nil

If the value of this variable is non-null, each
test is performed at the moment that it is de-
fined. This is helpful when interactively con-
struct ing a suite of tests. However, when load-
ing a test suite for later use, performing tests
as they are defined is not liable to be helpful.

get-test ~optional (name *test*)

This function returns the name, form, and
values of the specified test.

(get-test '(t 2)) ::~ ((t 2) (list I) (I))

rem-test ~toptional (name *test*)

If the indicated test is in the test suite, this

function removes it and returns name. Other-

wise, nil is returned.

rem-all-tests

This function reinitializes RT by removing

every test from the test suite and returns n i l .
Generally, it is advisable for the whole test suite
to apply to some one system. When switching
from testing one system to testing another, it is
wise to remove all the old tests before beginning
to define new ones.

do-tests ~optional (out *standard-output*)

This function uses d o - t e s t to run each of
the tests in the test suite and prints a report of
the results on out, which can either be an out-
put s t ream or the name of a file. If out is omit-
ted, it defaults to *standard-output*. Do-tests
returns t if every test succeeded and nil if any
test failed.

As illustrated below, the first line of the re-

port produced by do-tests shows how many

tests need to be performed. The last line shows

how many tests failed and lists their names.

While the tests are being performed, do-tests

prints the names of the successful tests and the

error reports from the unsuccessful tests.

(do-tests "report.txt") ::~ nil
; the file "report.txt" contains:
Doing 4 pending tests of 4 tests total.
T-i (T 2)

Test BAD failed
Form: (1+ 1)
Expected value: 1
Actual value: 2.
GOOD

1 out of 4 total tests failed: BAD.

It is best if the individual tests in the suite
are total ly independent of each other. However,
should the need arise for some interdependence,
you can rely on the fact tha t d o - t e s t s will run
tests in the order they were originally defined.

pending-t e st s

When a test is defined or redefined, it is
marked as pending. In addition, d o - t e s t marks
the test to be run as pending before running it
and d o - t e s t s marks every test as pending be-
fore running any of them. The only t ime a test
is marked as not pending is when it completes
successfully. The function p e n d i n g - t e s t s re-

turns a list of the names of the currently pend-
ing tests.

(pending-tests) :::::b- (bad)

IV-2.48

• continue-testing

This function is identical to do-tests except
tha t it only runs the tests that are pending and
always writes its ou tpu t on *s tandard-output* .

(continue-testing) :=~ nil ; after printing:
Doing I pending test out of 4 total tests.
Test BAD failed
Form: (1+ 1)
Expected value: 1
Actual value: 2.
I out of 4 total tests failed: BAD.

Continue-testing has a special meaning if
called at a breakpoint generated while a test is
being performed. The failure of a test to re-
turn the correct value does not trigger an error
break. However, there are many kinds of things
that can go wrong while a test is being per-
formed (e.g., dividing by zero) that will cause
breaks.

If continue-testing is evaluated in a break
generated during testing, it aborts the current
test (which remains pending) and forces the
processing of tests to continue. Note that in
such a breakpoint , * t e s t* is bound to the name
of the test being performed and (g e t - t e s t) can
be used to look at the test .

When building a system, it is advisable to
start constructing a test suite for it as soon as
possible. Since individual tests are rather weak,
a comprehensive test suite requires large num-
bers of tests. However, these can be accumu-
lated over time. In particular, whenever a bug
is found by some means other than testing, it
is wise to add a test tha t would have found the
bug and therefore will ensure that the bug will
not reappear.

Every time the system is changed, the entire
test suite should be run to make sure that no
unintended changes have occurred. Typically,
some tests will fail. Sometimes, this merely
means that tests have to be changed to reflect
changes in the system's specification. Other
times, it indicates bugs that have to be tracked
down and fixed. During this phase, continue-
t e s t i n g is useful for focusing on the tests that
are failing. However, for safety sake, it is always
wise to reinitialize RT, redefine the entire test
suite, and run d o - t e s t s one more time after you
think all of the tests are working.

H o w R T W o r k s

The code for RT is shown in Figures 1 & 2.
The first figure shows the functions for main-
taining the suite of tests. For the most part ,
the code is self explanatory. However, several
points are worthy of note.

The test suite is represented as a list of test

entr ies stored in the variable *ent r ies* . The
list begins with a dummy entry of n i l so that
insertion and deletion of entries can be done by
side-effect without having to handle an empty
test suite as a special case. Each test entry
contains five pieces of information:

pend A flag that is non-nuU when the
test is pending.

name The name of the test represented
by the test entry.

form The form to evaluate when
performing the test.

va ls The values specifying what the
form should return.

defn A list containing the name, form,
and vals .

For efficiency, the entry da ta s tructure is
represented as a list where the pend, name, and
form fields are defined in the normal way, and
the va l s and defn fields are overlapping tails of
the list.

Ge t -en t ry is broken out as a separate func-
tion, rather than being par t of g e t - t e s t , be-
cause it is a called by d o - t e s t as well.

The reason why d e f t e s t is a macro instead
of a function is to allow tests to be defined with-
out explicitly quoting the various parts of the
definition.

The copy-list in add-entry is needed to en-

sure tha t evaluating a d e f t e s t a second time
creates a fresh entry.

A desire to keep the entries on *en t r i e s*
in the order that the tests are initially defined
makes the main loop in add-ent ry somewhat
complex. The loop searches through *en t r i e s*
to see if there is a pre-existing test with the
same name as the one being defined. If there
is, the entry is replaced. If not, the new entry
is placed at the end of *en t r ies* .

The error report ing done by g e t - e n t r y and

IV-2.49

(in-package "RT" :use '("LISP"))

(provide "RT")

(export
'(deftest get-test do-test rem-test
rem-all-tests do-tests pending-tests
continue-testing *test*
do-tests-when-defined))

(defvar *test* nil "Current test name")
(defvar *do-tests-when-defined* nil)
(defvar *entries* '(nil) "Test database")
(defvar *in-test* nil "Used by TEST")
(defvar *debug* nil "For debugging")

(defstruct (entry (:conc-name nil)
(:type list))

pend name form)

(defmacro vals (entry) '(cdddr ,entry))

(defmacro defn (entry) '(cdr ,entry))

(defun pending-tests ()
(do ((1 (cdr *entries*) (cdr l))

(r nil))
((null I) (nreverse r))

(when (pend (car i))
(push (name (car 1)) r))))

(defun r e m - a l l - t e s t s ()
(s e tq *en t r i e s* (l i s t n i l))
nil)

(defun rem-test (Roptional (name *test*))
(do ((I *entries* (cdr i)))

((null (cdr 1)) nil)
(when (equal (name (cadr l)) name)

(serf (cdr l) (cddr 1))
(return name))))

(deftm get-test (Roptional (name *test*))
(defn (get-entry name)))

(defun get-entry (name)
(let ((entry (find name (cdr *entries*)

:key #'name
:test #'equal)))

(when (null entry)
(report-error t

"'%No test with name ":@('S')."
name))

entry))

(defmacro deftest (name form ~rest values)
'(add-entry '(t ,name ,form .,values)))

(defun add-entry (entry)
(setq entry (copy-list entry))
(do ((i *entries* (cdr i))) (nil)

(when (null (cdr i))
(setf (cdr i) (list entry))
(return nil))

(when (equal (name (cadr i))
(name entry))

(serf (cadr i) entry)
(report-error nil

"Redefining test "@:('S')"
(name entry))

(return nil)))
(when *do-tests-when-defined*

(do-entry entry))
(setq *test* (name entry)))

(defun report-error (error? ~rest args)
(cond (*debug*

(apply #'format t args)
(if error? (throw '*debug* nil)))

(error? (apply #'error args))
(t (apply #'warn args))))

Figure h The code for the par t of RT that maintains the test suite.

add-ent ry is broken out into the separate func-
tion r e p o r t - e r r o r to provide greater uniformity
and facilitating the testing of RT.

It is often advisable to insert a few hooks
in a system that facilitate testing. As illus-
t ra ted in the next section, the use of the vari-
able *debug* and the associated throw makes it
possible to test the error checking done by RT
without causing error breaks at test ing time.

Figure 2 shows the code for running tests.
Except for the format control s t r ings--which,
as always, are convenient bu t insc ru tab le - -mos t
of the code is self explanatory. Nevertheless, a
couple of points are interesting.

The catch set up by do-entry is used by

continue-testing to abort out of a test that has
caused an error break. The variable *in-test*

is used as an interlock to make sure that the
function c o n t i n u e - t e s t i n g will only do a throw
when the appropr ia te catch exists. The way
do-en t ry first sets the penal field of the entry to
t and then resets it to reflect whether the test
has succeeded causes the penal field to remain t
when a test is aborted.

Because it does a lot of ou tpu t , d o - e n t r i e s
looks complex. However, it actually does little
more than call do-en t ry on each pending test.

It was decided that Con t inue - t e s t i ng did
not need to have a s t ream argument , because
c o n t i n u e - t e s t i n g is only useful when using RT
interactively.

One might be moved to say that the code in
Figures 1 ~: 2 is too trivial to be an impressive
example of the power of Lisp. However, this

IV-2.50

(defun do-test (~optional (name *test*))
(do-entry (get-entry name)))

(defun do-entry (entry ~optional
(s *standard-output*))

(catch '*in-test*
(setq *test* (name entry))
(serf (pend entry) t)
(le t* ((* in - t e s t* t)

(*break-on-warnings* t)
(r (mul t ip le -va lue - l i s t

(eval (form en t ry)))))
(serf (pend entry)

(not (equal r (vals entry))))
(when (pend entry)

(format s " '~Test ":@('S') f a i l ed"
"%Form: "S"
"%Expected value'P: "

" { ' S ' ' ' ~ ' 1 7 t - } "
"%Actual value'P:

"{'S'''%'15t'}.'%"
test (form entry)
(length (vals entry))
(vals entry)
(length r) r))))

(when (not (pend entry)) *test*))

(defun continue-testing ()
(if *in-test*

(throw '*in-test* nil)
(do-entries *standard-output*)))

Figure 2: The code for the part of RT that

(defun do-tests (&optional
(out *standard-output*))

(dolist (entry (cdr *entries*))
(serf (pend entry) t))

(i f (streamp out)
(do-entr ies out)
(with-open-file

(stream out :direction :output)
(do-entries stream))))

(defun do-entries (s)
(format s "'~Doing "A pending test':P "

of "A tests total.'~"
(count t (cdr *entries*)

:key #'pend)
(length (cdr *ent r ies*)))

(dolist (entry (cdr *entries*))
(when (pend entry)

(format s "'~['<'%':; ":~('S')'>']"
(do-entry entry s))))

(let ((pending (pending-tests)))
(if (null pending)

(format s "'&No tests failed.")
(format s "'~'A out of "A "

total tests failed: "
":e('{'<-% "1:;'S'>"

(length (cdr *entr ies*))
pending))

(null pending)))

performs tests.

would be taking too narrow a view. The im-
pressive thing about Figures 1 & 2 is not what
they contain, but what the do not have to con-
tain. In particular, most of what you would
have to write to implement RT in other lan-
guages is provided by the Lisp environment and
does not have to be written at all.

Consider what it would be like to imple-
ment RT in a language such as Ada. Because
of the strong typing in Ada, one would prob-
ably be prevented from taking the simple ap-
proach of storing each test as a combination of
a testing function to call and a group of data
values. Rather, one would probably have to
define each test as a separate function of no
arguments. This would allow you to use the
standard Ada compiler to prepare the tests for
execution; however, you would have to write
some amount of code outside of Ada (e.g., shell
scripts in a U N I X system) to manage the process
of defining and running tests.

For an Ada implementation to support the

interactive running of individual test cases and
reporting of the results, a user-interface mod-
ule would have to be written. To go beyond this
and allow the interactive (re)definition of tests,
some escape to the surrounding operating sys-
tem would be required to access the compiler.
To take the final step of allowing the testing
of a system to be intermixed with debugging,
the implementation would have to be built as
an extension to an interactive programming en-
vironment. Like any Lisp system, RT gets the
benefit of this at no cost to the implementor
whatever.

A n E x a m p l e Tes t Su i te

Returning to the question of how RT can
best be used, consider Figure 3, which shows
the beginnings of a test suite for RT itself. There
is a bit of gratuitous complexity because the
system is being used to test itself. Nevertheless,
the figure is a good example of what a typical
test suite looks like. The first three lines of the

IV-2.51

(in-package "USER")
(require "RT")
(use-package "RT")

(defmacro setup (~rest body)
'(do-setup '(progn., body)))

(defun do-setup (form)
(let ((*test* nil)

(*do-tests-when-defined* nil)
(rt::*entries* (list nil))
(rt::*debug* t)
result)

(deftest tl 4 4)
(deftest (t 2) 4 3)
(values

(normalize
(with-output-to-string

(*standard-output*)
(setq result

(catch 'rt::*debug*
(eval form)))))

result)))

(defun normalize (string)
(let ((1 nil))

(with-input-from-string (s string)
(loop (push (read-line s nil s) l)

(when (eq (car l) s)
(setq 1 (nreverse (cdr 1)))
(return nil))))

(delete 1 :test #'equal)))

(rem-all-tests)

(deftest get-test-i
(setup (get-test 'tl))
() (tl 4 4))

(deftest get-test-2
(se tup (g e t - t e s t ' t l) * t e s t*)
() (t 2))

(deftest get-test-3
(setup (get-test '(t 2)))
() ((t 2) 4 3))

(deftest get-test-4
(setup (let ((*test* 'tl)) (get-test)))
() (tl 4 4))

(deftest get-test-5
(setup (get-test 'tO))
("No test with name TO.") nil)

(deftest do-test-I
(setup (do-test 'tl))
() t l)

(deftest do-test-2
(setup (do-test 'tl) *test*)
() tl)

(d e f t e s t d o - t e s t - 3
(setup (do-test '(t 2)))
("Test (T 2) failed"
"Form: 4"
"Expected value: 3"
"Actual value: 4.")

nil)

Figure 3: Some tests of RT itself.

figure specify that the test suite is in the "USER"
package and prepare R.T for use.

The function se tup is used by the tests to
create a safe environment where experiments
can be performed without affecting the over-
all test suite in the figure. In preparat ion for
these experiments, se tup defines two example
tests (t l and (t 2)). Setup captures any out-
put created by form in a string and returns a
list of the lines of ou tpu t as its first value. Setup
binds r t : :*debug* to t (see Figure 1) and in-
cludes an appropria te ca tch so that the error
checking done by RT can be tested.

The function normalize overcomes a minor
problem in the por tabi l i ty of Common Lisp.
Several of the format control strings in do-en t ry
and d o - e n t r i e s use the control code -~ (see
Figure 2). Unfortunately, while this is be t ter
than "Z in many situations, it is not guaran-
teed to behave differently, and Common Lisp
implementat ions vary widely in what they do.
Normalize removes any blank lines that result
from "~ acting like "Z.

The first five tests in Figure 3 test the func-
tion g e t - t e s t . Even for this trivial function,
several tests are required to get reasonable cov-
erage of its capabilities. G e t - t e s t - 5 , checks
that g e t - t e s t reports an error when given the
name of a non-existent test .

The last three tests in Figure 3 test the func-
tion d o - t e s t . The full test suite for RT contains
several more tests of g e t - t e s t and d o - t e s t s ,
and some twenty more tests overall.

A c k n o w l e d g m e n t s

The concept of regression testing is an old
one, and many (if not most) large programming
organizations have regression testers. RT is the
result of ten years of practical use and evolu-
tion. Many of the ideas in it came from conver-
sations with Charles Rich and Kent Pi tman,
who implemented similar systems.

This paper describes research done at the
MIT AI Laboratory. Support was provided by
DARPA, NSF, IBM, NYNEX, Siemens, Sperry, and
MCC. The views and conclusions presented here
are those of the author and should not be inter-
preted as representing the policies, expressed or
implied, of these organizations.

IV-2.52

Obtaining RT
RT is wri t ten in portable Common Lisp and

has been tested in several different Common
Lisp implementat ions. The complete source for
RT is shown in Figures 1-2. In addition, the
source can be obtained over the INTERNET by
using FTP. Connection should be made to the
AI .HIT. EDU machine (INTERNET number 128.52.
32.81). Login as "anonymous" and copy the
files shown below. It is advisable to run the
tests in r t - t e s t , l i s p after compiling RT for the
first time on a new system.

In the directory /pub/lptrs/
ft. lisp source code
rt-test .lisp test suite
re-doc, txt brief documentation

The contents of Figures I ~ 2 and the files
above ate copyright 1990 by the Massachusetts
Institute of Technology, Cambridge MA. Per-
mission to use, copy, modify, and distribute
this software for any purpose and without fee
is hereby granted, provided that this copyright
and permission notice appear in all copies and
supporting documentation, and that the names
of MIT and/or the author are not used in ad-
vertising or publicity pertaining to distribution
of the software without specific, written prior
permission. MIT and the author make no rep-
resentations about the suitability of this soft-
ware for any purpose. It is provided "as is"
without express or implied warranty.

MIT and the author disclaim all warranties
with regard to this software, including all im-
plied warranties of merchantability an d fitness,
in no event shM1 MIT or the author be liable
for any special, indirect or consequential dam-
ages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action
of contract, negligence or other tortious action,
arising out of or in connection with the use or
performance of this software. [~]

IV-2.53

