
Macros in Scheme

William Clinger

Although macros are even older than Lisp, Scheme has just become the first
block-structured programming language to support a reliable macro system.
This macro system is described in the appendix to the Revised 4 Report on ¢he
Algorilhmic Language Scheme, which appeared in the previous issue of Lisp
Pointers. This issue contains three more articles on the subject of macros in
Scheme, counting the article you are reading. I wrote this as an introduction
to the other two articles, because it is very hard to understand their purpose
without some background on macros in Scheme.

Macros are hardly new in the Lisp world, so I can explain what is new about
the Scheme macro system by comparing it to Common Lisp's. Consider a simple
push macro that is like the push macro in Common Lisp except that the place
being pushed is required to be a variable. In Scheme we can write this macro
as

(define-syntax push
(syntax-rules ()

((push item place)
(set! place (cons item place)))))

and we can use push in an expression such as

(l e t * ((cons (lambda (name)
(case name

((phil)
((dick)

((j immy)
((r o n)

(else

' (" t h r e e - c a r d mon te"))
' (" s e c r e t p l a n t o end the war"

"agne."
"not a c r o o k "))

' ("why not t he b e s t "))
'("abolish the draft"

"balance the budget"))
' ()))))

(scams (cons ' p h i l)))
(push (c a r (cons ' j immy)) scams)
(push (cad r (cons ' r o n)) scams)
seams)

This expression will evaluate to

IV-4.17

("balance the budget" "why not the best" "three-card monte")

That , at least, is what this expression will evaluate to in Scheme.
We're not supposed to write expressions like this in Common Lisp, according

to LISP-SYMBOL-REDEFINITION:MAR89-X3J13. (The "consequences are unde-
fined"). One reason for this decision by X3~13 is that the Common Lisp macro
system is unreliable, so a lexical binding of cons as in the above example can
break macros such as push. The decision by X3J 13 doesn't really solve the prob-
lem, because it doesn't address macros that refer to global functions written by
the user of a Common Lisp system, but it does make Common Lisp significantly
less unreliable in practice.

Recognizing that LISP-SYMBOL-REDEFINITION:MAR89-X3J13 doesn't com-
pletely solve the problem, let's push forward with our example as though X3J 13
didn't exist. (Otherwise I would have to construct a different example!)

If we translate everything to pre-X3J13 Common Lisp we will get an error,
because in Common Lisp the first use of push would expand into

(s e t q scams (cons (cons 'jimmy) scams))

within a context where cons is bound to a one-argument procedure. There are
various ways one might try to work around this problem in Common Lisp, but
none are fully general. If a macro needs to refer to a global variable or function
(other than those predefined in the common-lisp package, which X3J13 has
effectively made into reserved words), then it is quite impossible to write that
macro reliably using the Common Lisp macro system.

I 'm as willing as anyone to pick on Common Lisp, but that 's not what I 'm
doing here. When Common Lisp was being designed Scheme had no macro
system at all, for this very reason: Macros were inherently unreliable, or so
we thought then. Even today, except for Scheme and a couple of research
languages that employ a Scheme-style macro system, Common Lisp probably
has the most sophisticated macros of any programming language. The fact is
that macros have been unreliable in block-structured programming languages
for thirty years, and that unreliability has just been accepted as the state of the
art.

How does Scheme's new macro system manage to avoid this problem? In
effect, the macro expander systematically renames local variables to avoid all
inadvertent captures of bound variables, so the macro-expanded form of the
expression above will be something like

(let* ((cons.l (lambda (name)
(case n a m e

((phil) ' ("three-card monte"))

IV-4.18

((dick) '("secret plan to end the war"
"agnew"
"not a crook"))

((jimmy) ' ("why not the besS"))
((ron) ' ("abol i sh the d r a f t "

"balance the budget"))
(e l s e ' ()))))

(scares (cons.1 ' p h i l)))
(se t ! scares (cons (car (cons.1 'jimmy)) scares))
(s e t) scams (cons (cadr (cons .1 'ron)) scams))
S ca.ms)

A macro system that avoids inadvertent captures through systematic renam-
ing is said to be hygienic. Eugene Kohlbecker developed and implemented the
first hygienic macro system for his 1986 PhD dissertation. In 1988 the Scheme
community asked a four-person committee to design a hygienic macro system
for inclusion in the Revised 4 Report. In 1990 Jonathan Kees and I developed a
more general and efficient form of Kohlbecker's algorithm, which Jonathan used
to implement a prototype of the Scheme macro system.

The Revised 4 Report specifies the syntax and semantics of a hygienic macro
system, but does not prescribe any particular algorithm. The P~evised 4 Report
does describe a non-hygienic, low-level macro facility that could be used to
implement the hygienic macro system I have been describing, but goes on to
note that this particular low-level facility "is but one of several low-level facilities
that have been designed and implemented to complement" Scheme's hygienic
macro system. The following articles describe two more of them.

Before moving on to the low-level facilities, I want to show you more of the
power of Scheme's hygienic macro system. First let us consider a simplified form
of Common Lisp's serf macro. With the Scheme macro system there are no
reserved words, so we can redefine set! locally as in

(let-syntax
((set ! (syntax-rules (car c d r vector-ref)

((set! (car x) y) (set-car! x y))
((set! (cdr x) y) (set-calf! x y))
((set! (vector-tel x e) y) (vector-set! x e y))
((s e t ! x y) (se t ! x y)))))

(l e t* ((days (l i s t 'monday 'wednesday ' f r i d a y))
(day1 'sunday))

(se t ! (car days) ' tuesday)
(se t ! dayl (car days))
day1))

The (car cdr vector-re:f) following syntax-rules means that car, cdr, and
vector-ref are not pattern variables. They can match only themselves. The

IV-4.19

use of l e t - s y n t a x instead of l e t r e c - s y n t a x means that the l e t - s y n t a x macro
is not recursive, so it can refer to the outer definition of s e t ! in the last rule
without circularity.

In Common Lisp, (s e r f (c a r days) ' t u e s d a y) will not be expanded if
it occurs within a local binding for car . (At least that is so according to
FUNCTION-NAME:SIMALL. On the other hand, the consequences are supposed
to be undefined if c a r is bound locally. Perhaps some Common Lisp wizard can
explain this to me.) The purpose of this rule in Common Lisp is to ensure that
the scope of a s e t f method that is associated with a function does not exceed
the scope of the function itself.

This limitation of the scope of a s e t ! method will be enforced automatically
by the Scheme macro system, because the c a r in the pat tern will match a ca r in
a use only if the two occurrences of ca r are within the scope of the same binding
of car . Since this scope is lexical (whether local or global), the Scheme macro
system generalizes Common Lisp's rule for s e t f in the way that is appropriate
for block-structured languages like Scheme.

Of course, none of this is special to s e t f . Scheme's hygienic macro system
is a general mechanism for defining syntactic transformations that reliably obey
the rules of lexical scope.

Another (rather silly) example might help to make the point:

(l e t ((c a r cdr)
(s e t - c a r ! s e t - c d r !)
(cd r c a r)
(s e t - c d r ! s e t - c a r !))

(l e t - s y n t a x
((s e t ! (s y n t a x - r u l e s (c a r cdr v e c t o r - t e l)

((s e t ! (c a r x) y) (s e t - c a r ! x y))
((s e t ! (cdr x) y) (s e t - c d r ! x y))
((s e t ! (v e c t o r - t e l x e) y) (v e c t o r - s e t ! x e y))
((s e t ! x y) (s e t ! x y)))))

(let ((days (list 'monday 'wednesday 'friday))
(set-car! (lambda () 17)))

(set! (car days) 'tuesday)
(cons (set-car!) days))))

In Scheme this evaluates to (17 monday . tuesday). This is easy to see if
you forget everything you thought you knew about macros, and rely only on the
fact that all (non-pattern-variable) identifiers in the macro definition, whether
they occur on the lea or on the right hand side of a syntax rule, are resolved
using Scheme's familiar lexical scope rules.

Alas, I cannot easily implement an analogue of Common Lisp's s e t f in
Scheme using the high-level macro system. Although local macros can be either

IV-4.20

recursive (l e t r e e - s y n t a x) or non-recursive (l e t - s y n t a x) , global macros are
always recursive (d e f i n e - s y n t a x) . This should be fixed.

Another problem with macros in Scheme is that some macros are awkward
or impossible to describe using the pat tern language. Suppose we want to define
a s e t * ! macro to perform assignments in parallel, with

(s e t * ! i l el i2 e2 . . .)

expanding into

(l e t ((1;1 e l) (t2 e2) . . .)
(se t ! i l 1;1)
(se t ! i2 1;2)
. . .)

This is hard to express for two reasons. The first is that the variables to be
assigned need to be paired up with the expressions giving their new values.
The second difficulty is that the macro must generate an indefinite number of
temporary variables.

The s e t * ! macro can be defined using an auxiliary macro to perform the
pairing and to generate the temporaries. Although it might appear that the
same temporary is being used for each assignment, the hygienic macro system
automatically renames each binding occurrence that is inserted by a macro,
together with all occurrences within its scope. Since each temporary that is
inserted by the auxiliary macro eventually becomes a binding occurrence, each
will be renamed. (Amazing but true.)

(define-syntax set*!
(syntax-rules ()

((set*! ii el more ...)
(set*!-aux () ii el more ...))))

(define-syntax set* !-aux

(syntax-rules ()
((set*!-aux ((ii el tl) ...))
(let ((tl el) ...)

(set! i l tl) ...))
((set*!-aux ((il el tl) ...) i2 e2 more ...)
(set*!-aux ((il el tl) ... (i2 e2 newtemp)) more ...))))

This definition of s e t * ! may be compared with the s e t * ! macro that is defined
in the Revised 4 Report using the low-level macro system. Although s e t * ! was
put forth as an example of a macro that would be easier to write in a low-level
macro system, I prefer the high-level definition above.

IV-4.21

This definition would be more elegant if the auxiliary macro were local to
each use of s e t * ! . Tha t would be less efficient because the auxiliary macro
would have to be re-compiled for each use, but the reM reason I didn ' t use a
local macro is that it doesn' t work in Scheme!

The problem is annoyingly syntactic: If s e t * ! expands into a l e t r e c - s y n t a x
that defines s e t * ! - a u x , then the seven ellipses that appear in the definition of
s e t * ! -aux will appear on the right hand side of the syntax rule for s e t * !, and
the macro expander will t ry to expand these seven ellipses when transcribing
the use of s e t * ! , just as it expands the one ellipsis that appears on the right
hand side of the syntax rule for s e t * ! above. Somehow the macro expander
needs to know that the expansion of those seven ellipses is supposed to wait
until later, while expanding the one ellipsis. A similar problem is solved in TEX
by an escape character, and this solution should work in Scheme as well.

The low-level system described in the Revised 4 Report uses s y n t a x ass an
escape character, but some such mechanism needs to be added to the high-level
system as well.

Another problem is that not all hygienic macros can be expressed using the
pat tern language. This does not seem to be a very serious problem, however,
as I have yet to hear of a hygienic macro that anyone needed to write as part
of an actual program that could not be written using the pat tern language.

With recursion, s y n t a x - r u l e s is reasonably expressive. It can express all
recursive functions on lists, where cons, car , cdr, n u l l ? , and equa l? on non-
list elements are the base functions. The pat tern language cannot do much with
non-lists, however. It cannot take the successor of a numeral, for example.

The pr imary limitation of the hygienic macro system is that it is thoroughly
hygienic, and thus cannot express macros that bind identifiers implicitly. Com-
mon Lisp's d e f s t r u c t is an example of a non-hygienic macro, since it implicitly
defines accesser functions for the structure. Another non-hygienic macro is a
loop-until-exit macro that implicitly binds e x i t , so tha t

(let ((x o) (y io00))
(loop-until-exit
(if (positive? y)

(begin (set! x (+ x 3))
(set! y (- y I)))

(exit X))))

evMuates to 3000. This is the non-hygienic macro whose definition appears
in the Revised 4 Report as an example of the low-level macro system. In that
system it can be defined as

(define-syntax loop-until-exit
(lambda (x)

IV-4.22

(lot

'(,(syntax call-with-current-continuation)
(, (s y n t a x lambda)

(, e x i t)
(, (s y n t a x l e t r e c)

((,(syntax loop)
(,(syntax lambda ()

, b o d y

(,(syntax loop))))))
(, (s ~ t a x l o o p))))))))

Thin may be compared with the definitions of similar macros m the following
articles.

CCexit (construct-identifier --

(c a r (unwrap-syntax X))

' e x i t))

(b o d y (c a r (u n w r a p - s y n t a x (c d r (u n l r r a p - s y n t a x x))))))

Date: 6 November 1991, 09:37:42 EST
From: Tt lEBOSS at YKTVMI! (AI Khorasani): From a friend

'** Comparing an EE to a Computer Scientist ***

Once upon a time, in a kingdom not far from here, a king summoned two of his advisors for a test.
He showed them both a shiny metal box with two slots in the top, a control knob, and a lever.
"What do you think this is7"

One advisor, an engineer, answered first. "It is a toaster," he said. The king asked, "I low would you
design an embedded computer for it?" The engineer replied, "Using a four-bit mierocontmller, I
would write a simple program that reads the darkness knob and quantizes its position to one of 16
shades of darkness, from snow white to coal black. The program would use that darkness level as
the index to a 16-element table of initial timer values. Then it would turn on the heating elements
and start the timer with the initial value selected from the table. At the end of the time delay, it
would turn off the heat and pop up the toast. Come back next week, and !1I show you a working
prototype."

The second advisor, a computer scjentisl, immediately recognized the danger of such shor|-fighted
drinking, l ie said, "l 'oasters don't just turn bread into toast, they are also used to warm frozen
waffles. What you see before you is really a breakfast food cooker. As the subjects of your
kingdom become more sophisticated, they will demand more capabilities. They will need a break-
fast food cooker that can also cook sausage, fry bacon, and make scrambled eggs. A toasler that
only makes toast will soon be obsolete. If we don't look to the future, we will have to completely
redesign the toaster in just a few years."

"With this in mind, we can formulate a more intelligent solution to the problem. First, create a
class of breakfast foods. Specialize tiffs class into subclasses: grains, pork, and poultry. The spe-
cialization process should be repeated with grains divided into toast, muffins, pancakes, and waffles;
pork divided into sausage, links, and bacon; and poultry divided into scrambled eggs, hard-boiled
eggs, poached eggs, fried eggs, and various omelet classes."

"The ham and cheese omelet class is worth special attention because it must inherit characteristics
from the pork, dairy, and poultry classes. Thus, we see that the problem cannot be properly soh'ed
without multiple inheritance. At run time, the program must create the proper object and send a
message to the object that says, 'Cook yourself." The semantics of this m e s s a ~ depend, of course,
on the kind of object, so they have a different meaning to a piece of toast than to scrambled eggs."

"Reviewing the process so far, we see that the analysis phase has revealed that the primary re-
quirement is to cook any kind of breakfast food• In the design phase, we have discovered some
derived requirements. Specifically, we need an object-oriented language with multiple inheritance.
Of course, users don't want tim eggs to get cold while the bacon is trying, so concurrent processing
is required, too."

"We must not forget the user interface. The lever that lowers the food lacks versatility, and the
darkness knob is confusing. Users won't buy the product unless it has a user-friendly, graphical
interface. When the breakfast cooker is plugged in, users should see a cowboy boot on the screen.
Users click on it, and the message 'Booting AIX v. 8.3" appears on the senzen. (AIX 8.3 should be
out by the time the product gets to the market.) Users can pull down a menu and click on the foods
they want to cook."

"Having made the wise decision of specifying the software first in the design phase, all that remains
is to pick an adequate hardware platform for the implementation phase. An Intel ~0386 with 8MB
of memory, a 30MB hard disk, and a VGA moniior should be sufficient. If you select a multi-
tasking, object oriented language that supports multiple inheritance and has a built-in GUI, writing
the program will be a snap. (Imagine the difficulty we would have had if we had fi~ollshly allowed
a hardware-first design strategy to lock us into a four-bit microcontrollerT)."

The king had the computer scientist thrown in the moat, and they all lived happily ever after.

IV-4.23

