
Implementing Queues in Lisp

Peter Norvig

Sun Microsystems Laboratories
Two Federal Street
Billerica MA 01821

Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway

Cambridge MA 02139

A queue is a data structure where items are entered one at a time and removed one at a time
in the same order--i.e. , first in first out. They are the same as stacks except that in a stack, items
are removed in the reverse of the order they are entered--i.e. , last in first out. Queues are most
precisely described by the functions that act on them:

(make-queue) Creates and returns a new empty queue.
(queue-elements queue) Returns a list of the elements in queue with the oldest element

first. The list returned may share structure with queue and therefore may be altered
by subsequent calls on enqueue and/or dequeue.

(empty-queue-p queue) Returns t if queue does not contain any elements and n i l otherwise.
(queue-front queue) Returns the oldest element in queue (i.e., the element that has been

in the queue the longest). When queue is empty, the results are undefined.
(dequeue queue) Queue is altered (by side-effect) by removing the oldest element in queue.

The removed element is returned. When queue is empty, the results are undefined.
(enqueue queue i tem) Queue is altered (by side-effect) by adding the element item into

queue. The return value (if any) is undefined.

(empty-queue-p (setq q (make-queue))) ~ t
(progn (enqueue q 'a) (enqueue q 'b) (queue-front q)) ~ a
(progn (enqueue q 'c) (enqueue q 'd) (dequeue q)) ::¢- a
(queue-elements q) ~ (b c d)

Having enqueue and dequeue alter queue by side-effect is convenient for most uses of queues and
allows for efficient implementations. However, it means that care must be taken when queues are
manipulated. For instance, if the output of queue-elements must be preserved beyond a subsequent
use of enqueue or dequeue it must be copied (e.g., with copy-list).

Q u e u e s I m p l e m e n t e d W i t h L i s t s

Lisp's eponymous data structure, the list, can be used to represent a wide variety of data
structures including queues. The implementation of queues in Figure 1 represents a queue as a
cons cell whose car is a list of the elements in the queue, ordered with the oldest first.

The implementat ion in Figure 1 is simple and easy to understand. The close similarity of
queues and stacks is highlighted by the fact that dequeue is implemented using pop and enqueue is
implemented in a way that is very similar to push.

The one thing that may not be immediately clear about the implementation in Figure 1 is the
reason why a header cell is necessary, instead of just using the list of elements in the queue to
represent the queue. The header cell is needed so that an element can be added into an empty
queue (and the last element removed from a one-element queue) purely by side-effect. For this to
work, an empty queue must be some kind of mutable structure that can be pointed to (e.g., not
just nil).

IV-4.2

(defun make-queue () (list nil))
(defun queue-elements (q) (car q))

(defun empty-queue-p (q) (null (car q)))
(defun queue-front (q) (caar q))
(defun dequeue (q) (pop (car q)))
(defun enqueue (q item) (serf (car q) (nconc (car q) (l i s t item))))

(s e tq q (make-queue)) ~ (n i l)
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) q) ::~ ((a b c))

Figure 1: Queue implementation using nconc.

; space time
; 2 2
; 2 2
; 4 4
; 4 O(n)

The functions in Figure 1 are divided into two groups to reflect the fact that the last four
functions are called much more often than the first two. As a result, it is more important that they
be efficient.

The first column of numbers on the right of Figure 1 shows the size of the code required if the
corresponding function is compiled in line at the point of use. The size is specified as the number
of primitive operations (car, cdr, cons, l i s t , null, rplaca, rplacd, setq, branching, generating a
constant n i l , and calling an out-of-line function) that are necessary. For instance, dequeue requires
4 basic operations (a car, two cdrs and a rplacd).

The space numbers cannot be taken as exactly reflecting any particular Lisp implementation,
because a given Lisp compiler may create code that performs unnecessary operations, and a given
hardware platform may require multiple instructions to support some of the primitive operations.
However, this does not matter a great deal, because the relative code size of functions is the key
thing that is important in the context of this paper. (The validity of the numbers in Figure 1 as a
basis for this kind of comparison has been verified by looking at the code produced by the compilers
for the TI Explorer and the Symbolics Lisp Machine.)

An important virtue of the implementation of queues in Figure 1 is that the functions are coded
compactly enough that it is practical to compile all of them in line (i.e., by declaring them inl ine) .
In most Common Lisp implementations, this is significantly more efficient then using out-of-line
function calls.

The second column of numbers on the right of Figure 1 shows the number of basic operations
that have to be executed at run time. If there is any branching required, the number reflects the
control path that is most likely to be taken. These numbers reveal that there is a problem with
the implementation. Most of the functions have small fixed costs that are independent of the size
of the queue. However, the time required to perform the nconc in enqueue is proportional to the
size of the queue.

K e e p i n g a P o i n t e r to t h e E n d of t h e Q u e u e

The problem with nconc is not that it makes an expensive change (it merely performs one
rplacd), but that it has to search down the entire list to locate the cons cell containing the last
queue element. This inefficiency can be overcome by maintaining a pointer to the end of the list of
queue elements.

In particular, BBN Lisp supported a queue data structure exactly like the one in Figure 1 except
that the cdr of the header cell was used as a pointer to the list cell containing the last element
in the queue (if any). Using this pointer, the six queue functions can be supported as shown in
Figure 2. (In BBN Lisp, the function enqueue was called tconc.)

The only difference between Figure 2 and Figure 1 is in the implementation of enqueue. It
is transformed into a constant-time operation and is therefore very much faster. Unfortunately,

IV-4.3

(defun make-queue () (list nil))
(defun queue-elements (q) (car q))

(defun empty-queue-p (q) (null (car q)))
(defun queue-front (q) (caar q))
(defun dequeue (q) (pop (car q)))
(defun enqueue (q item)

(let ((new-last (list item)))
(if (null (car q))

(serf (car q) new-last)
(serf (cddr q) new-last))

(serf (cdr q) new-last)))

(setq q (make-queue)) ~ (nil)
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c)

;space time
; 2 2
; 2 2
; 4 4
; 9 8

q) ~ ((a b . #1=(c)) . #I#)

Figure 2: Simple queue implementation using an end pointer.

enqueue is now too large to be comfortably compiled in line.
The implementation of enqueue in Figure 2 is larger than in Figure 1 primarily because it has to

test for a special boundary condition. When the input queue is empty, enqueue has to do a rplaca
to insert the (one element) list of queue elements in the car of the header cell; otherwise it has to
do a rplacd to extend the list of queue elements.

Moving the Boundary Test to a Better Place

It is possible to remove the boundary test from enqueue by rearranging the queue data structure
as follows. First, the two components of the header cell are interchanged, putting the pointer to
the end of the queue in the car. Second, a convention can be adopted that an empty queue's end
pointer points to the queue itself. These two changes allow the same code to be used for inserting
an element into a queue whether or not the queue is empty, see Figure 3.

Unfortunately, while the two changes above simplify enqueue, they make it more difficult to
implement dequeue. The problem is that dequeue now has a special boundary condition to test
for--if the queue becomes empty, the queue's last pointer has to be made to point to the queue
itself. However, because this is a simpler special case than the one in enqueue in Figure 2, it does
not lead to as much overhead. Also, since some applications do significantly more enqueues than
dequeues and no application does more dequeues, the trade-off is worthwhile.

The implementation approach in Figure 3 takes subtle advantage of the typeless nature of Lisp.
In most other languages, the header cell for a queue would be a different type of structure from the

(defun make-queue () (let ((q (list nil))) (setf (car q) q)))
(defun queue-elements (q) (cdr q))

(defun empty-queue-p (q) (null (cdr q)))
(defun queue-front (q) (cadr q))
(defun dequeue (q)

(l e t ((elements (cdr q)))
(unless (serf (cdr q) (cdr elements))

(serf (car q) q))
(car elements)))

(defun enqueue (q item) (serf (car q) (serf (cdar q)

(setq q (make-queue)) ~ #I=(#1#)
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c)

;space time
; 2 2
; 2 2
; 7 6

(list item)))) ; 4 4

q) ~ (# 1 = (c) a b . # 1 #)

Figure 3: A compact and efficient queue implementation.

IV-4.4

(defun make-queue () (l e t ((q (l i s t n i l))) (cons q q)))
(defun queue-elements (q) (cdar q))

(defun empty-queue-p (q) (nul l (cdar q)))
(d e f u n q u e u e - f r o n t (q) (c ad ar q))
(defun dequeue (q) (car (serf (car q) (cdar q))))
(defun enqueue (q item) (serf (cdr q) (serf (cddr q) (list item))))

(setq q (make-queue)) ::~ (#1=(nil) . #I)
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) q) :~ ((nil a b

Figure 4: Another compact and efficient queue implementation.

; s p a c e t ime
; 3 3
; 3 3
; 4 4
; 4 4

#1=(c)) . #1#)

cells forming the linked list of queue elements. This would block enqueue from treating the cdr of
the header cell the same as the cdr of a linked list cell. (In some languages, this problem could be
overcome by judicious use of type unioning or type-check bypassing.)

Eliminat ing the Boundary Test by Adding a Cell

A different way to improve on Figure 2 is to eliminate the need for any boundary tests at all,
by adding a dummy cell into the list holding the elements in the queue as shown in Figure 4. This
allows enqueue and dequeue to operate essentially as if the queue were never empty. However, the
other functions have to be adjusted to skip over the dummy cell, and therefore become a bit longer.

Whether or not the implementat ion in Figure 4 is better than the one in Figure 3 depends on the
details of your Lisp implementation and which queue operations you use most. For instance, if calls
on dequeue are particularly infrequent (e.g., because a list of the items queued is the primary result
desired), then the implementation in Figure 3 is better. In contrast, if the Lisp Implementat ion has
special hardware support for following chains of pointers through cons cells (e.g., the TI Explorer),
Figure 4 is better.

Queues Implemented W i t h Vectors

Lists are a convenient basis for queues. In particular, the interaction of cons and garbage
collection provides support for queues of unbounded length without any special provisions having
to be made. However, list-based implementations are wasteful of memory, because an entire cons
cell has to be used to store each element in the queue, and as elements are enqueued and dequeued,
new cons cells continually have to be allocated.

Memory efficient implementations of queues are possible using vectors. This approach is often
taken in other languages. Figure 5 shows an implementation like those usually shown in introduc-
tory data-structure texts. The basic approach is to store the elements of a queue as a section of a
vector treated as a ring. The elements are stored in reverse order in the vector so that a comparison
with zero can be used to detect when either the front or end pointers reach the edge of the vector.

The primary advantage of a vector-based implementation is that it requires only about half the
memory to store the contents of the queue. If the queue elements are shorter than a word (e.g.,
characters or bits) even more savings are possible. In addition, enqueuing and dequeuing elements
does not generate any garbage at all (unless the queue size gets so large that an enlarged vector
has to be allocated).

The primary disadvantage of a vector-based implementation is that it is more complicated. In
particular, it has to do all its own memory management. This means that the queue still takes up
a lot of space even when it is empty. In addition, provision has to be made for extending the vector
holding the queue if it becomes full. (In figure 5, this is supported by the function e x t e n d - q u e u e

and a fullness test in enqueue .)

IV-4.5

(de f s t ruc t q f ron t end s ize elements)

(defun make'queue (~optional (size 20))
(make-q :front (1- size) :end (1- size) :size size

:elements (make-sequence 'simple-vector size)))
(defun queue-elements (q)

(when (not (empty-queue-p q))
(do ((i (I+ (q-end q)) (i+ i))

(result nil))
(nil)

(.hen (= i (q-size q)) (setq i 0))
(push (svref (q-elements q) i) result)
(when (= i (q-front q)) (return result)))))

(defun empty-queue-p (q) (= (q-front q) (q-end q)))
(defun queue-front (q) (svref (q-elements q) (q-front q)))
(defun dequeue (q)

(let ((front (q-front q)))
(progl (svref (q-elements q) front)

(.hen (zerop front) (setq front (q-size q)))
(setf (q-front q) (I- front)))))

(defun enqueue (q item)
(l e t ((end (q-end q)))

(se t f (svref (q-elements q) end) item)
(when (zerop end) (se tq end (q-s ize q)))
(when (= (ser f (q-end q) (1- end)) (q- f ront q))

(defun extend-queue (q)
(l e t* ((elements (q-elements q))

(s ize (q-s ize q))
(nee-s ize (* 2 s ize))
(divide (1+ (q-f ront q)))
(nee-end (+ divide s ize -1))
(nee (make-sequence ' s imple-vector nee -s ize)))

(replace new elements :end2 divide)
(replace new elements :startl (I+ new-end) :start2 divide)
(ser f (q-elements q) new)
(ser f (q-end q) new-end)
(ser f (q-s ize q) new-size)))

(progn (setq q (make-queue))
(dotimes (i 17) (enqueue q ~-) (dequeue q))
(dotimes (i 5) (enqueue q i)) q)

#S(queue f ront 17 end 2 s ize 20 elements
#(2 1 0 4 3))

; s p a c e t i m e
; 3 3
; 3 3
; 7 6

(extend-queue q))))

; 10

Figure 5: A traditional vector-based queue implementation.

Whenever possible, it is good to start the queue at a size that is sufficient to hold the maxi-
m u m expected size, rather than starting at an arbitrary size like 20. For this reason the function
make-queue is extended by giving it an optional size argument. Given firm maximum-size informa-
tion one could go further and dispense with extend-queue and the fullness test in enqueue. However,
this is a dangerous practice and saves relatively little.

It is worthy of note that it would be a mistake to use an a~:ljustable array in the queue data
structure. This would make extending the array a little bit easier, but would slow up all of the
other operations on the vector. Adjustable arrays are only helpful when there may be many pointers
directly to the array that has to be extended. Whenever, as here, there is known to be only one
pointer, it is much better to change the pointer to point to a new array, than to extend the array
itself.

Another problem is that queue-elements becomes an 0(n) operation, since it has to copy the

IV-4.6

(defstruct q front end size elements)

(defun make-queue (&optional (size 20))
(make-q :front (- size I) :end (- size I) :size size

:elements (make-sequence ~simple-vector size)))
(defun queue-elements (q)

(do ((i (I+ (q-end q)) (I+ i))
(result nil))

((> i (q-front q)) result)
(push (svref (q-elements q) i) result)))

(defun empty-queue-p (q) (= (q-front q) (q-end q)))
(defun queue-front (q) (svref (q-elements q) (q-front q)))
(defun dequeue (q)

(progl (svref (q-elements q) (q-front q)) (decf (q-front q))))
(defun enqueue (q item)

(serf (svref (q-elements q) (q-end q)) item)
(.hen (minusp (decf (q-end q))) (shift-queue q)))

(defun shift-queue (q)
(let* ((elements (q-elements q))

(h e . elements))
(.hen (> (q-front q) (/ (q-size q) 2))

(setq ne. (make-sequence 'simple-vector (* 2 (q-size q))))
(serf (q-elements q) new)
(serf (q-size q) (* 2 (q-size q))))

(serf (q-end q) (- (q-size q) 2 (q-front q)))
(replace new elements :startl (I+ (q-end q)))
(serf (q-front q) (I- (q-size q)))))

(preEn (setq q (make-queue))
(do t imes (i 17) (enqueue q ' -) (dequeue q))
(do t imes (i 5) (enqueue q i)) q)

#S(queue f r o n t 19 end 14 s i z e 20 e lements
#(2 i 0 4 3 2 i 0))

Figure 6: A faster vector-based queue implementation.

; space t ime
; 3 3
; 3 3
; 5 5

; 8 7

queue contents into a list. If you want to be able to easily get a list of the elements in a queue, it
is better to start with a list-based implementation.

A final problem with Figure 5.is the inefficiency of some of the key operations. The functions
empty-queue and queue-front axe small and could be coded in line. However, deqaeue is on the
borderline in size and enqueue is quite large.

S h i f t i n g Is B e t t e r T h a n U s i n g a R i n g

Figure 6 shows the kind of improvements than can be obtmned using a little ingenuity. The key
difference between Figure 6 and Figure 5 is that the implementation does not treat the vector as a
ring. Rather, whenever the queue reaches the end of the vector, it is shifted over (by the function
shi f t -queue , which flso extends the vector if necessary).

One might well imagine that operating on the vector as a ring had to be better than shifting
everything over every time the queue reaches the edge of the vector. However, as long as the queue
is significantly shorter than the vector (say only 2/3 the length or less) then shifting does not
have to occur very often, and performing occasional shifts ends up being cheaper than complex
decrementing of the pointers all of the time. Deqaeue and enqaeue both become significantly more
efficient, and deqaeae becomes short enough to easily code in line.

All in a11, except for the fact that the queue structure has to be a bit bigger for things to work
out efficiently, the implementation in Figure 6 is better than the one in Figure 5 in ~ respects.

IV-4.7

Given its memory efficiency and quite reasonable speed, it is worth considering Figure 6 as an
alternative to a list-based implementation in any situation where the function queue-eleraents is
not used.

C o n c l u s i o n

Lisp provides an all-purpose data structure--the list--which is often adequate for rapid pro-
totyping. But when an efficient solution is required, Lisp programmers must choose their data
structures carefully. Figures 3-6 show two efficient list based implementations of queues and two
efficient vector-based implementations. Which is appropriate to use depends on the details of the
exact situation in question.

The various implementations presented above illustrate several general issues to keep in mind
when seeking efficient algorithms. Introducing alignments of components can often eliminate special
cases (e.g., the way the queue data structure is rearranged in Figure 3). Sometimes a computation
can be moved from an expensive context to a less expensive one (e.g., moving the boundary test
from enqueue to dequeue in Figure 3). Many times, it is better to do a little extra work all the time,
then do an expensive check to determine when extra work is really needed (e.g., indexing through
the extra cell in Figure 4 is better in many situations than testing for whether the list is empty).
Other times, it is better to introduce extra work some of the time to eliminate a steady background
of work (e.g., occasional wholesale shifting in Figure 6 is better than continual performing complex
pointer stepping). Slimming functions down to in-line-able size can pay big pragmatic dividends.
Above all, the only way to get a really efficient algorithm is to experiment with many alternatives.

From: "Damarls M. Ayuso" < dayuso@BBN.COM >; Dale: Wed, 4 Sep 91 13:42:3g EDT

flOW TO])ETERMINE WII1CH PROGRAMMING LANUAGE YOU ARE USING

C: You shoot yourself in the foot.

APL: You hear a gunshol, and there's a hole in your fool, bul you don't remember enough linear
algebra to understand what the hell happened.

C+ +: You accidently create a dozen instances of yourself and shoot them all in lhe fool. Pro-
viding emergency medical care is impossible since you can't tell which are bitwise copies and which
are just pointing at others and saying, "that's me, over there."

Modula/2: After realizing that you can't actually accomplish an)lhing in lhe language, you shoot
yourself in the head.

Smalltalk: You spend so much time playing with the graphics and windowing system that your
boss shoots you in the fool, takes away your workstation, and makes you develop in COBOL on
a character cell terminal.

FORTRAN: You shoot yourself in each toe, iteratively, until you run out of Ioes; then you read
in th~ next foot and repeat. If you run out of bullets, you continue anyway because you have no
exception-processing ability.

Algol: You shoot yourself in the foot with a musket. "l-be musket is esthetically fascinating, and
the wound baffles the adolescent medic in the emergency room.

COBOL: USEing a COLT45 HANDGUN, AIM gun at LEG.FOOT, TIIEN place
A R M H A N D . F I N G E R on IIANDGUN."I 'RIGGER, and SQUF.I!ZE. "I'IIF.N return
HANDGUN to IIOLSTER. Check whether shoelace needs to be relied.

BASIC: Shoot self in foot with water piSlol. On big systems, conlinue unlil entire lower body is
waterlogged.

PL/h You consume all available system resources, including all offline bullcls. "l ie Dala Process-
ing & Payroll Department doubles its size, triples its budget, acquires four new mainframes, and
drops the original one on your foot.

SNOBO| ,: You grab your foot with your hand, then rewrite your hand to be a bullet. The act of
shooting the original foot then changes your hand/bullet into yet another fool (a left fool).

LISP: You shoot yourself in the appendage which holds the gun with which you shoot yourself
in the appendage which holds the gun with which you shoot yourself in the appendage which holds
the gun with which you shoot yourself in the appendage which holds the gun with which you ...

IV-4.8

