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A queue is a data  structure where items are entered one at a time and removed one at a time 
in the same order--i.e. ,  first in first out. They are the same as stacks except that  in a stack, items 
are removed in the reverse of the order they are entered--i.e. ,  last in first out. Queues are most 
precisely described by the functions that  act on them: 

(make-queue) Creates and returns a new empty queue. 
(queue-elements queue) Returns a list of the elements in queue with the oldest element 

first. The list returned may share structure with queue and therefore may be altered 
by subsequent calls on enqueue and/or  dequeue. 

(empty-queue-p queue) Returns t if queue does not contain any elements and n i l  otherwise. 
(queue-front  queue) Returns the oldest element in queue (i.e., the element that  has been 

in the queue the longest). When queue is empty, the results are undefined. 
(dequeue queue) Queue is altered (by side-effect) by removing the oldest element in queue. 

The removed element is returned. When queue is empty, the results are undefined. 
(enqueue queue i tem) Queue is altered (by side-effect) by adding the element item into 

queue. The return value (if any) is undefined. 

(empty-queue-p (setq q (make-queue))) ~ t 
(progn (enqueue q 'a) (enqueue q 'b) (queue-front q)) ~ a 
(progn (enqueue q 'c) (enqueue q 'd) (dequeue q)) ::¢- a 
(queue-elements q) ~ (b c d) 

Having enqueue and dequeue alter queue by side-effect is convenient for most uses of queues and 
allows for efficient implementations. However, it means that  care must  be taken when queues are 
manipulated.  For instance, if the output  of queue-elements must  be preserved beyond a subsequent 
use of enqueue or dequeue it must be copied (e.g., with copy-list). 

Q u e u e s  I m p l e m e n t e d  W i t h  L i s t s  

Lisp's eponymous data  structure, the list, can be used to represent a wide variety of data 
structures including queues. The implementation of queues in Figure 1 represents a queue as a 
cons cell whose car is a list of the elements in the queue, ordered with the oldest first. 

The implementat ion in Figure 1 is simple and easy to understand. The close similarity of 
queues and stacks is highlighted by the fact that  dequeue is implemented using pop and enqueue is 
implemented in a way that  is very similar to push. 

The one thing that  may not be immediately clear about the implementation in Figure 1 is the 
reason why a header cell is necessary, instead of just using the list of elements in the queue to 
represent the queue. The header cell is needed so that  an element can be added into an empty 
queue (and the last element removed from a one-element queue) purely by side-effect. For this to 
work, an empty  queue must  be some kind of mutable structure that  can be pointed to (e.g., not 
just nil). 
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(defun make-queue () (list nil)) 
(defun queue-elements (q) (car q)) 

(defun empty-queue-p (q) (null (car q))) 
(defun queue-front (q) (caar q)) 
(defun dequeue (q) (pop (car q))) 
(defun enqueue (q item) (serf  (car q) (nconc (car q ) ( l i s t  item)))) 

( s e tq  q (make-queue)) ~ ( n i l )  
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) q) ::~ ( (a  b c ) )  

Figure 1: Queue implementation using nconc. 

; space time 
; 2 2 
; 2 2 
; 4 4 
; 4 O(n) 

The functions in Figure 1 are divided into two groups to reflect the fact that the last four 
functions are called much more often than the first two. As a result, it is more important that they 
be efficient. 

The first column of numbers on the right of Figure 1 shows the size of the code required if the 
corresponding function is compiled in line at the point of use. The size is specified as the number 
of primitive operations (car, cdr, cons, l i s t ,  null, rplaca, rplacd, setq, branching, generating a 
constant n i l ,  and calling an out-of-line function) that are necessary. For instance, dequeue requires 
4 basic operations (a car, two cdrs and a rplacd).  

The space numbers cannot be taken as exactly reflecting any particular Lisp implementation, 
because a given Lisp compiler may create code that performs unnecessary operations, and a given 
hardware platform may require multiple instructions to support some of the primitive operations. 
However, this does not matter a great deal, because the relative code size of functions is the key 
thing that is important in the context of this paper. (The validity of the numbers in Figure 1 as a 
basis for this kind of comparison has been verified by looking at the code produced by the compilers 
for the TI Explorer and the Symbolics Lisp Machine.) 

An important virtue of the implementation of queues in Figure 1 is that the functions are coded 
compactly enough that it is practical to compile all of them in line (i.e., by declaring them inl ine) .  
In most Common Lisp implementations, this is significantly more efficient then using out-of-line 
function calls. 

The second column of numbers on the right of Figure 1 shows the number of basic operations 
that have to be executed at run time. If there is any branching required, the number reflects the 
control path that is most likely to be taken. These numbers reveal that there is a problem with 
the implementation. Most of the functions have small fixed costs that are independent of the size 
of the queue. However, the time required to perform the nconc in enqueue is proportional to the 
size of the queue. 

K e e p i n g  a P o i n t e r  to  t h e  E n d  of  t h e  Q u e u e  

The problem with nconc is not that it makes an expensive change (it merely performs one 
rplacd), but that it has to search down the entire list to locate the cons cell containing the last 
queue element. This inefficiency can be overcome by maintaining a pointer to the end of the list of 
queue elements. 

In particular, BBN Lisp supported a queue data structure exactly like the one in Figure 1 except 
that the cdr of the header cell was used as a pointer to the list cell containing the last element 
in the queue (if any). Using this pointer, the six queue functions can be supported as shown in 
Figure 2. (In BBN Lisp, the function enqueue was called tconc.)  

The only difference between Figure 2 and Figure 1 is in the implementation of enqueue. It 
is transformed into a constant-time operation and is therefore very much faster. Unfortunately, 
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(defun make-queue () (list nil)) 
(defun queue-elements (q) (car q)) 

(defun empty-queue-p (q) (null (car q))) 
(defun queue-front (q) (caar q)) 
(defun dequeue (q) (pop (car q))) 
(defun enqueue (q item) 

(let ((new-last (list item))) 
(if (null (car q)) 

(serf (car q) new-last) 
(serf (cddr q) new-last)) 

(serf (cdr q) new-last))) 

(setq q (make-queue)) ~ (nil) 
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) 

;space time 
; 2 2 
; 2 2 
; 4 4 
; 9 8 

q) ~ ((a b . #1=(c)) . #I#) 

Figure 2: Simple queue implementation using an end pointer. 

enqueue is now too large to be comfortably compiled in line. 
The implementation of enqueue in Figure 2 is larger than in Figure 1 primarily because it has to 

test for a special boundary condition. When the input queue is empty, enqueue has to do a rplaca 
to insert the (one element) list of queue elements in the car of the header cell; otherwise it has to 
do a rplacd to extend the list of queue elements. 

Moving the Boundary Test to a Better Place 

It is possible to remove the boundary test from enqueue by rearranging the queue data structure 
as follows. First, the two components of the header cell are interchanged, putting the pointer to 
the end of the queue in the car. Second, a convention can be adopted that an empty queue's end 
pointer points to the queue itself. These two changes allow the same code to be used for inserting 
an element into a queue whether or not the queue is empty, see Figure 3. 

Unfortunately, while the two changes above simplify enqueue, they make it more difficult to 
implement dequeue. The problem is that dequeue now has a special boundary condition to test 
for--if the queue becomes empty, the queue's last pointer has to be made to point to the queue 
itself. However, because this is a simpler special case than the one in enqueue in Figure 2, it does 
not lead to as much overhead. Also, since some applications do significantly more enqueues than 
dequeues and no application does more dequeues, the trade-off is worthwhile. 

The implementation approach in Figure 3 takes subtle advantage of the typeless nature of Lisp. 
In most other languages, the header cell for a queue would be a different type of structure from the 

(defun make-queue () (let ((q (list nil))) (setf (car q) q))) 
(defun queue-elements (q) (cdr q)) 

(defun empty-queue-p (q) (null (cdr q))) 
(defun queue-front (q) (cadr q)) 
(defun dequeue (q) 

( l e t  ((elements (cdr q)))  
(unless (serf (cdr q) (cdr elements)) 

(serf (car q) q)) 
(car elements))) 

(defun enqueue (q item) (serf (car q) (serf (cdar q) 

(setq q (make-queue)) ~ #I=(#1#) 
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) 

;space time 
; 2 2 
; 2 2 
; 7 6 

(list item)))) ; 4 4 

q) ~ ( # 1 = ( c )  a b . # 1 # )  

Figure 3: A compact and efficient queue implementation. 
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(defun make-queue () ( l e t  ((q ( l i s t  n i l ) ) )  (cons q q)))  
(defun queue-elements (q) (cdar q)) 

(defun empty-queue-p (q) (nul l  (cdar q)))  
( d e f u n  q u e u e - f r o n t  (q)  ( c ad ar  q ) )  
(defun dequeue (q) (car (serf (car q) (cdar q)))) 
(defun enqueue (q item) (serf (cdr q) (serf (cddr q) (list item)))) 

(setq q (make-queue)) ::~ (#1=(nil) . #I) 
(progn (enqueue q 'a) (enqueue q 'b) (enqueue q 'c) q) :~ ((nil a b 

Figure 4: Another compact and efficient queue implementation. 

; s p a c e  t ime  
; 3 3 
; 3 3 
; 4 4 
; 4 4 

#1=(c)) . #1#) 

cells forming the linked list of queue elements. This would block enqueue  from treating the cdr of 
the header cell the same as the cdr of a linked list cell. (In some languages, this problem could be 
overcome by judicious use of type unioning or type-check bypassing.) 

Eliminat ing the  Boundary  Test by Adding  a Cell 

A different way to improve on Figure 2 is to eliminate the need for any boundary tests at all, 
by adding a dummy cell into the list holding the elements in the queue as shown in Figure 4. This 
allows enqueue and dequeue to operate essentially as if the queue were never empty. However, the 
other functions have to be adjusted to skip over the dummy cell, and therefore become a bit longer. 

Whether or not the implementat ion in Figure 4 is better than the one in Figure 3 depends on the 
details of your Lisp implementation and which queue operations you use most. For instance, if calls 
on dequeue are particularly infrequent (e.g., because a list of the items queued is the primary result 
desired), then the implementation in Figure 3 is better. In contrast, if the Lisp Implementat ion has 
special hardware support  for following chains of pointers through cons cells (e.g., the TI Explorer), 
Figure 4 is better. 

Queues  Implemented  W i t h  Vectors 

Lists are a convenient basis for queues. In particular, the interaction of cons and garbage 
collection provides support  for queues of unbounded length without any special provisions having 
to be made. However, list-based implementations are wasteful of memory, because an entire cons 
cell has to be used to store each element in the queue, and as elements are enqueued and dequeued, 
new cons cells continually have to be allocated. 

Memory efficient implementations of queues are possible using vectors. This approach is often 
taken in other languages. Figure 5 shows an implementation like those usually shown in introduc- 
tory data-structure texts. The basic approach is to store the elements of a queue as a section of a 
vector treated as a ring. The elements are stored in reverse order in the vector so that  a comparison 
with zero can be used to detect when either the front or end pointers reach the edge of the vector. 

The primary advantage of a vector-based implementation is that  it requires only about half the 
memory to store the contents of the queue. If the queue elements are shorter than a word (e.g., 
characters or bits) even more savings are possible. In addition, enqueuing and dequeuing elements 
does not generate any garbage at all (unless the queue size gets so large that  an enlarged vector 
has to be allocated). 

The primary disadvantage of a vector-based implementation is that  it is more complicated. In 
particular, it has to do all its own memory management.  This means that  the queue still takes up 
a lot of space even when it is empty. In addition, provision has to be made for extending the vector 
holding the queue if it becomes full. (In figure 5, this is supported by the function e x t e n d - q u e u e  

and a fullness test in enqueue . )  
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(de f s t ruc t  q f ron t  end s ize  elements) 

(defun make'queue (~optional  (size 20)) 
(make-q :front (1- size) :end (1- size) :size size 

:elements (make-sequence 'simple-vector size))) 
(defun queue-elements (q) 

(when (not (empty-queue-p q)) 
(do ((i (I+ (q-end q)) (i+ i)) 

(result nil)) 
(nil) 

(.hen (= i (q-size q)) (setq i 0)) 
(push (svref (q-elements q) i) result) 
(when (= i (q-front q)) (return result))))) 

(defun empty-queue-p (q) (= (q-front q) (q-end q))) 
(defun queue-front (q) (svref (q-elements q) (q-front q))) 
(defun dequeue (q) 

(let ((front (q-front q))) 
(progl (svref (q-elements q) front) 

(.hen (zerop front) (setq front (q-size q))) 
(setf (q-front q) (I- front))))) 

(defun enqueue (q item) 
( l e t  ((end (q-end q))) 

( se t f  (svref  (q-elements q) end) item) 
(when (zerop end) (se tq  end (q-s ize q))) 
(when (= (ser f  (q-end q) (1- end)) (q- f ront  q)) 

(defun extend-queue (q) 
( l e t*  ((elements (q-elements q)) 

(s ize (q-s ize  q)) 
(nee-s ize  (* 2 s ize))  
(divide (1+ (q-f ront  q)))  
(nee-end (+ divide  s ize  -1))  
(nee (make-sequence ' s imple-vector  nee -s ize ) ) )  

(replace new elements :end2 divide) 
(replace new elements :startl (I+ new-end) :start2 divide) 
(ser f  (q-elements q) new) 
(ser f  (q-end q) new-end) 
(ser f  (q-s ize  q) new-size)))  

(progn (setq  q (make-queue)) 
(dotimes ( i  17) (enqueue q ~-) (dequeue q)) 
(dotimes ( i  5) (enqueue q i ) )  q) 

#S(queue f ront  17 end 2 s ize  20 elements 
#(2 1 0 4 3)) 

; s p a c e  t i m e  
; 3 3 
; 3 3 
; 7 6 

(extend-queue q))))  

; 10 

Figure 5: A traditional vector-based queue implementation. 

Whenever possible, it is good to start the queue at a size that  is sufficient to hold the maxi- 
m u m  expected size, rather than starting at an arbitrary size like 20. For this reason the function 
make-queue is extended by giving it an optional size argument.  Given firm maximum-size informa- 
tion one could go further and dispense with extend-queue and the fullness test in enqueue. However, 
this is a dangerous practice and saves relatively little. 

It is worthy of note that  it would be a mistake to use an a~:ljustable array in the queue data  
structure. This would make extending the array a little bit easier, but would slow up all of the 
other operations on the vector. Adjustable arrays are only helpful when there may be many pointers 
directly to the array that  has to be extended. Whenever, as here, there is known to be only one 
pointer, it is much better to change the pointer to point to a new array, than to extend the array 
itself. 

Another problem is that  queue-elements becomes an 0(n) operation, since it has to copy the 
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(defstruct q front end size elements) 

(defun make-queue (&optional (size 20)) 
(make-q :front (- size I) :end (- size I) :size size 

:elements (make-sequence ~simple-vector size))) 
(defun queue-elements (q) 

(do ((i (I+ (q-end q)) (I+ i)) 
(result nil)) 

((> i (q-front q)) result) 
(push (svref (q-elements q) i) result))) 

(defun empty-queue-p (q) (= (q-front q) (q-end q))) 
(defun queue-front (q) (svref (q-elements q) (q-front q))) 
(defun dequeue (q) 

(progl (svref (q-elements q) (q-front q)) (decf (q-front q)))) 
(defun enqueue (q item) 

(serf (svref (q-elements q) (q-end q)) item) 
(.hen (minusp (decf (q-end q))) (shift-queue q))) 

(defun shift-queue (q) 
(let* ((elements (q-elements q)) 

( h e .  elements)) 
(.hen (> (q-front q) (/ (q-size q) 2)) 

(setq ne. (make-sequence 'simple-vector (* 2 (q-size q)))) 
(serf (q-elements q) new) 
(serf (q-size q) (* 2 (q-size q)))) 

(serf (q-end q) (- (q-size q) 2 (q-front q))) 
(replace new elements :startl (I+ (q-end q))) 
(serf (q-front q) (I- (q-size q))))) 

(preEn (setq q (make-queue)) 
(do t imes  ( i  17) (enqueue q ' - )  (dequeue q) )  
(do t imes  ( i  5) (enqueue q i ) )  q) 

#S(queue f r o n t  19 end 14 s i z e  20 e lements  
#(2 i 0 4 3 2 i 0)) 

Figure 6: A faster vector-based queue implementation. 

; space  t ime 
; 3 3 
; 3 3 
; 5 5 

; 8 7 

queue contents into a list. If you want to be able to easily get a list of the elements in a queue, it 
is better  to start with a list-based implementation.  

A final problem with Figure 5.is the inefficiency of some of the key operations. The functions 
empty-queue and queue-front axe small and could be coded in line. However, deqaeue is on the 
borderline in size and enqueue is quite large. 

S h i f t i n g  Is  B e t t e r  T h a n  U s i n g  a R i n g  

Figure 6 shows the kind of improvements than can be obtmned using a little ingenuity. The key 
difference between Figure 6 and Figure 5 is that  the implementation does not treat the vector as a 
ring. Rather,  whenever the queue reaches the end of the vector, it is shifted over (by the function 
shi f t -queue ,  which flso extends the vector if necessary). 

One might well imagine that  operating on the vector as a ring had to be better than shifting 
everything over every time the queue reaches the edge of the vector. However, as long as the queue 
is significantly shorter than the vector (say only 2/3 the length or less) then shifting does not 
have to occur very often, and performing occasional shifts ends up being cheaper than complex 
decrementing of the pointers all of the time. Deqaeue and enqaeue both become significantly more 
efficient, and deqaeae becomes short enough to easily code in line. 

All in a11, except for the fact that  the queue structure has to be a bit bigger for things to work 
out efficiently, the implementation in Figure 6 is better than the one in Figure 5 in ~ respects. 
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Given its memory efficiency and quite reasonable speed, it is worth considering Figure 6 as an 
alternative to a list-based implementation in any situation where the function queue-eleraents is 
not used. 

C o n c l u s i o n  

Lisp provides an all-purpose data structure--the list--which is often adequate for rapid pro- 
totyping. But when an efficient solution is required, Lisp programmers must choose their data 
structures carefully. Figures 3-6 show two efficient list based implementations of queues and two 
efficient vector-based implementations. Which is appropriate to use depends on the details of the 
exact situation in question. 

The various implementations presented above illustrate several general issues to keep in mind 
when seeking efficient algorithms. Introducing alignments of components can often eliminate special 
cases (e.g., the way the queue data structure is rearranged in Figure 3). Sometimes a computation 
can be moved from an expensive context to a less expensive one (e.g., moving the boundary test 
from enqueue to dequeue in Figure 3). Many times, it is better to do a little extra work all the time, 
then do an expensive check to determine when extra work is really needed (e.g., indexing through 
the extra cell in Figure 4 is better in many situations than testing for whether the list is empty). 
Other times, it is better to introduce extra work some of the time to eliminate a steady background 
of work (e.g., occasional wholesale shifting in Figure 6 is better than continual performing complex 
pointer stepping). Slimming functions down to in-line-able size can pay big pragmatic dividends. 
Above all, the only way to get a really efficient algorithm is to experiment with many alternatives. 

From: "Damarls M. Ayuso" < dayuso@BBN.COM >;  Dale: Wed, 4 Sep 91 13:42:3g EDT 

flOW TO ])ETERMINE WII1CH PROGRAMMING LANUAGE YOU ARE USING 

C: You shoot yourself in the foot. 

APL: You hear a gunshol, and there's a hole in your fool, bul you don't remember enough linear 
algebra to understand what the hell happened. 

C+  +:  You accidently create a dozen instances of yourself and shoot them all in lhe fool. Pro- 
viding emergency medical care is impossible since you can't tell which are bitwise copies and which 
are just pointing at others and saying, "that's me, over there." 

Modula/2: After realizing that you can't actually accomplish an)lhing in lhe language, you shoot 
yourself in the head. 

Smalltalk: You spend so much time playing with the graphics and windowing system that your 
boss shoots you in the fool, takes away your workstation, and makes you develop in COBOL on 
a character cell terminal. 

FORTRAN: You shoot yourself in each toe, iteratively, until you run out of Ioes; then you read 
in th~ next foot and repeat. If you run out of bullets, you continue anyway because you have no 
exception-processing ability. 

Algol: You shoot yourself in the foot with a musket. "l-be musket is esthetically fascinating, and 
the wound baffles the adolescent medic in the emergency room. 

COBOL: USEing a COLT45 HANDGUN, AIM gun at LEG.FOOT, TIIEN place 
A R M H A N D . F I N G E R  on IIANDGUN."I 'RIGGER, and SQUF.I!ZE. "I'IIF.N return 
HANDGUN to IIOLSTER. Check whether shoelace needs to be relied. 

BASIC: Shoot self in foot with water piSlol. On big systems, conlinue unlil entire lower body is 
waterlogged. 

PL/h You consume all available system resources, including all offline bullcls. "l ie Dala Process- 
ing & Payroll Department doubles its size, triples its budget, acquires four new mainframes, and 
drops the original one on your foot. 

SNOBO| ,: You grab your foot with your hand, then rewrite your hand to be a bullet. The act of 
shooting the original foot then changes your hand/bullet into yet another fool (a left fool). 

LISP: You shoot yourself in the appendage which holds the gun with which you shoot yourself 
in the appendage which holds the gun with which you shoot yourself in the appendage which holds 
the gun with which you shoot yourself in the appendage which holds the gun with which you ... 
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