
Hygienic Macros Through Explicit Renaming

William Clinger

This paper describes an alternative to the low-level macro facility described
in the Revised 4 Report on the Algorithmic Language Scheme [1]. The facility
described here is based on explicit renaming of identifiers, and was developed for
the first implementation of the hygienic macro expansion algorithm described
in [2]. It was the first low-level macro facility to be designed for compatibility
with a high-level hygienic macro system, and it remains one of the easiest to
understand.

Whereas the low-level macro facility described in the Revised 4 Report re-
names identifiers automatically, so that hygienic macros are obtained by default,
the facility described here requires that identifiers be renamed explicitly in order
to maintain hygiene.

Another difference is that , as originally implemented and as described here,
there is no way to define certain hygienic macros that define other hygienic
macros. The problem is that the transformation procedure for the defined macro
may need to compare pieces of its first argument with the denotation of an
identifier, but the only way for the defining macro to pass that denotation along
to the defined macro is as part of the code for the defined macro. This problem
can be solved by introducing syn tax expressions as in the Revised 4 Report.
Syntax is like quote, except that the denotation of an identifier quoted by
syn tax is preserved as part of the quoted value.

As with the low-level macro facility based on syntactic closures [3], the ex-
plicit renaming facility adds a new production for (transformer spec>:

(transformer> , (t r a n s f o r m e r (expression>)

The (expression / is expanded in the syntactic environment of the t r a n s f o r m e r
expression, and the expanded expression is evaluated in the standard trans-
former environment to yield a transformation procedure. The transformation
procedure takes an expression and two other arguments and returns a trans-
formed expression. For example, the transformation procedure for a c a l l macro
such that (c a l l proc arg . . .) expands into (proc arg . . .) can be written
a s

IV-4.25

(lambda (exp rename compare)
(cdr exp))

Expressions ate represented as lists in the traditional manner, except that
identifiers may be represented by objects other than symbols. Transformation
procedures may use the predicate i d e n t i f i e r ? to determine whether an object
is the representation of an identifier.

The second argument to a transformation procedure is a renaming procedure
that takes the representation of an identifier as its argument and returns the
representation of a fresh identifier that occurs nowhere else in the program. For
example, the transformation procedure for a simplified version of the l e t macro
might be written as

(lambda (exp rename compare)
(l e t ((v a r s (map car (cadr exp)))

(i n i t s (map cadr (cadr exp)))
(body (caar exp)))

' ((l ambda ,va r s ,@body)
, @ i n i t s)))

This would not be hygienic, however. A hygienic l e t macro must rename
the identifier lambda to protect it from being captured by a local binding. The
renaming effectively creates an fresh alias for lambda, one that cannot be cap-
tured by any subsequent binding:

(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))

(±nits (map cadr (cadr exp)))
(body (cddr exp)))

' ((, (r e n a m e ' lambda) , va r s ,@body)
,@inits)))

The expression returned by the transformation procedure will be expanded in
the syntactic environment obtained from the syntactic environment of the macro
application by binding any fresh identifiers generated by the renaming procedure
to the denotations of the original identifiers in the syntactic environment in
which the macro was defined. This means that a renamed identifier will denote
the same thing as the original identifier unless the transformation procedure
that renamed the identifier placed an occurrence of it in a binding position.

The renaming procedure acts as a mathematical function in the sense that
the identifiers obtained from any two calls with the same argument will be the
same in the sense of eqv?. It is an error if the renaming procedure is called after
the transformation procedure has returned.

IV-4.26

The third argument to a transformation procedure is a comparison predicate
that takes the representations of two identifiers as its arguments and returns
true if and only if they denote the same thing in the syntactic environment
that will be used to expand the transformed macro application. For example,
the t ransformation procedure for a simplified version of the cond macro can be
written as

(lambda (exp rename compare)
(let ((clauses (cdr exp)))

(if (null? clauses)
'(,(rename 'quote) ,(rename 'unspecified))
(let* ((first (car clauses))

(rest (cdr clauses))
(test (car first)))

(cond ((and (identifier? test)
(compare test (rename 'else)))

'(,(rename 'begin) ,@(cdr first)))
(else '(,(rename 'if)

,test
(,(rename 'begin) ,@(cdr first))
(cond ,@rest))))))))

In this example the identifier e l s e is renamed before being passed to the
comparison predicate, so the comparison will be true if and only if the test
expression is an identifier that denotes the same thing in the syntactic envi-
ronment of the expression being transformed as e l s e denotes in the syntactic
environment in which the cond macro was defined. If e l s e were not renamed
before being passed to the comparison predicate, then it would match a local
variable that happened to be named e l s e , and the macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following defines
a l o o p macro tha t implicitly binds e x i t to an escape procedure. The binding
of e x i t is intended to capture flee re~rences to e x i t in the body of the loop,
so e x i t is not renamed.

(define-syntax loop
(transformer
(lambda (x r c)

(let ((body (cddr x)))
t(,(r 'call-with-current-continuation)

(,(r 'lambda) (exit)
(,(r 'let) ,(r 'f) () ,@body (,(r 'f)))))))))

Suppose a while macro is implemented using loop, with the intent that
exit maybe used to escape ffomthe while loop. The while macro cannot be

IV-4.27

written as

(deTine-syntax while
(syntax-rules ()

((while test body ...)
(loop (if (not test)

body . . .))))
(e x i t \ s c h f a l s e))

because the reference to e x i t that is inserted by the while macro is intended
to be captured by the binding of e x i t that will be inserted by the loop macro.
In other words, this whi le macro is not hygienic. Like loop, it must be written
using the t r a n s f o r m e r syntax:

(define-syntax while
(transformer
(lambda (x r c)

(let ((test (cadr x))
(body (cddr x)))

'(,(r 'loop)
(, (r 'if) (,(r 'not)
,©body)))))

,test) (exit \schfalse))

Bibliography

[1] William Clinger and Jonathan Rees, editors.
Revised 4 report on the algorithmic language Scheme.
To appear in the previous issue of Lisp Pointers.

[2] William Clinger and Jonathan Rees.
Macros that work.
1991 ACM Conference on Principles of Programming Languages.

[3] Chris Hanson.
A syntactic closures macro facility.
To appear in this issue of Lisp Pointers.

IV-4.28

