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The value of a suite of test cases depends 
critically on its coverage. Ideally a suite should 
test every facet of the specification for a pro- 
gram and every facet of the algorithms used 
to implement the specification. Unfortunately, 
there is no practical way to be sure that com- 
plete coverage has been achieved. However, 
something should be done to assess the cover- 
age of a test suite, because a test suite with 
poor coverage has little value. 

A traditional approximate method of assess- 
ing the coverage of a test suite is to check that 
every condition tested by the program is exer- 
cised. For every predicate in the program, there 
should be at least one test case that causes the 
predicate to be true and one that causes it to 
be false. Consider the function ray* in Figure 1, 
which uses a convoluted algorithm to compute 
the product of two numbers. 

The function ray* contains two predicates, 
(rainusp x) and (rainusp y), which lead to four 
conditions: x is negative, x is not negative, y 
is negative, and y is not negative. To be at all 
thorough, a test suite must contain tests exer- 
cising all four of these conditions. For instance, 

(defun ray* (x y) 
(let ((sign I)) 

(when (minusp x) 
(setq sign (- sign)) 
(setq x (- x))) 

(when (rainusp y) 
(setq sign (- sign)) 
(setq y (- x))) 

(* sign x y))) 

Figure 1: An example program. 

any test suite that fails to exercise the condi- 
tion where y is negative will fail to detect the 
bug in the next to last line of the function. 

(As an example of the fact that covering 
all the conditions in a program does not guar- 
antee that every facet of either the algorithm 
or the specification will be covered, consider 
the fact that the two test cases (my* 2.1 3) 
and (ray* -1/2 -1/2) cover all four conditions. 
However, they do not detect the bug on the 
next to last line and they do not detect the fact 
that ray* fails to work on complex numbers.) 

The COVER system determines which con- 
ditions tested by a program are exercised by a 
given test suite. This is no substitute for think- 
ing hard about the coverage of the test suite. 
However, it provides a useful starting point and 
can indicate some areas where additional test 
cases should be devised. 

Use r ' s  M a n u a l  for  C O V E R  

The functions, macros, and variables that 
make up the COVER system are in a package 
called "COVER". The six exported symbols are 
documented below. 

• cover:annotate t-or-nil 

Evaluating (cover:annotate t) triggers the 
processing of function and macro definitions by 
the COVER system. Each subsequent instance 
of de:fun or defmacro is altered by adding an- 
fiotation that maintains information about the 
various conditions tested in the body. 

Evaluating (cover:annotate n i l )  stops the 
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special processing of function and macro defi- 
nitions. Subsequent definitions are not anno- 
tated.  However, if a function or macro that  is 
currently annota ted  is redefined, the new defi- 
nition is annota ted  as well. 

The macro c o v e r : a n n o t a t e  should only be 
used as a top-level form. When  annotation is 
triggered, a warning message is printed, and t 
is returned.  Otherwise, n i l  is returned.  

(cover :annota te  t )  ~ t ; after printing: 
; ; ; Warning: Coverage annotation applied. 

• c o v e r  : f o r g e t - a l l  

This function, which always returns t, has 
the effect of removing all coverage annotat ion 
from every function and macro. It is appro- 
priate to do this before completely recompiling 
the system being tested or before switching to 
a different system to be tested. 

$ cover:reset 

Each condition tested by an annotated func- 
tion and macro is associated with a flag that  
trips when the condition is exercised. The func- 
tion c o v e r : r e s e t  resets all these flags, and re- 
turns t .  It is appropriate to do this before re- 
running a test suite to reevaluate its coverage. 

• cove r : r epor t  ~key fn out  all 

This function displays the information main- 
tained by COVER, returning no values. Fn must  
be the name of an annota ted  function or macro. 
If fn is specified, a report  is printed showing in- 
formation about that  function or macro only. 
Otherwise, reports are printed about  every an- 
nota ted  function and macro. 

Out, which defaults to *standard-output*,  
must  either be an output  stream or the name 
of a file. It specifies where the reports should 
be printed. 

If all, which defaults to n i l ,  is non-null then 
the reports  printed contain information about 
every condition. Otherwise, the reports are ab- 
breviated to highlight key conditions that  have 
not been exercised. 

• cover:*line-limit* default value 75 

The output produced by cover:report is 

(setq cover:*line-limit* 43) :=~ 43 

(cover:reset) =¢~ T 

( cover : r epor t )  ~ ; a~er  printing: 
;- :REACH (DEFUN MY* (X Y)) <I> 

(my* 2 2) ~ 4 

( cover : r epor t )  ~ ; after printing: 
;+ :REACH (DEFUN MY* (X Y)) <I> 
; + :REACH (WHEN (MINUSP X) (SETQ S <2> 
; - :NON-NULL (MINUSP X) <4> 
; + :REACH (WHEN (MINUSP Y) (SETQ S <6> 
; - :NON-NULL (MINUSP Y) <8> 

(my* -2 2) ~ -4 

(cover : repor t )  :::¢~ ; after printing: 
;+ :REACH (DEFUN MY* (X Y)) <I> 
; + :REACH (WHEN (MINUSP Y) (SETQ S <6> 
; - :NON-NULL (MINUSP Y) <8> 

(cover:report :all t) ~ ; a~er pdnting: 
;+ :REACH (DEFUN MY* (X Y)) <I> 
; + :REACH (WHEN (MINUSP X) (SETQ S <2> 
; + :NON-NULL (MINUSP X) <4> 
; + :NULL (MINUSP X) <5> 
; + :REACH (WHEN (MINUSP Y) (SETQ S <6> 
; - :NON-NULL (MINUSP Y) <8> 
; + :NULL (MINUSP Y) <9> 

Figure 2: Example COVER reports. 

t runcated  to ensure that  it is no wider than 
cover : *line-limit*. 

A n  e x a m p l e .  Suppose that  the function 
m y *  in Figure 1 has been annotated and that  no 
other functions or macros have been annotated.  
Figure 2 illustrates the operation of COVER and 
the reports printed by cover : repor t .  

Each line in a report  contains three pieces of 
information about a point in a definition: +/ -  
specifying that  the point either has (+) or has 
not (-) been exercised, a message indicating the 
physical and logical placement of the point in 
the definition, and in angle brackets < >, an in- 
teger that  is a unique identifier for the point. 
Indentat ion is used to indicate that  some points 
are subordinate to others in the sense that  the 
subordinate points cannot be exercised without 
also exercising their superiors. The order of the 
lines of the report  is the same as the order of 
the points in the definition. 

Each message contains a label (e.g., :REACH, 
:NULL) and a piece of code. There is a point la- 
beled : REACH corresponding to each definition as 
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a whole and each conditional form within each 
definition. Subordinate points corresponding 
to the conditions a conditional form tests are 
grouped under the point corresponding to the 
form. As discussed in detail in the next subsec- 
tion, the messages for the subordinate points 
describe the situations in which the conditions 
are exercised. Lines that would otherwise be 
too long to fit on one line have their messages 
truncated (e.g., points <2> and <e> in Figure 2). 

The first three reports in Figure 2 are ab- 
breviated based on two principles. First, if a 
point p and all of its subordinates have been 
exercised, then p and all of its subordinates are 
omitted from the report. This is done to focus 
the user's attention on the points that have not 
been exercised. 

Second, if a point p has not been exercised, 
then all of the points subordinate to it are omit- 
ted from the report. This reflects the fact that 
it is not possible for any of these subordinate 
points to have been exercised and one cannot 
devise a test case that exercises any of the sub- 
ordinate points without first figuring out how 
to exercise p. 

An additional complicating factor is that 
COVER operates in an incremental fashion and 
does not, in general, have full information about 
the subordinates of points that have not been 
exercised. As a result, it is not always possible 
to present a complete report. However, one can 
have total confidence that if the report says that 
every point has been exercised, this statement 
is based on complete information. 

The first report in Figure 2 shows that none 
of the points within my* has been exercised. The 
second report displays most of the points in my., 
to set the context for the two points that have 
not been exercised. The third report omits <2> 
and its subordinates, since they have all been 
exercised. The fourth report shows a complete 
report corresponding to the third abbreviated 
report. 

• cover:forget  ~rest  /ds 

This function gives the user greater con- 
trol over the reports produced by cover:report .  
Each id must be an integer identifying a point. 

All information about the specified points (and 
their subordinates) is forgotten. From the point 
of view of cover:report ,  the effect is as if the 
points never existed. (A forgotten point can 
be retrieved by reevaluating or recompiling the 
function or macro definition containing it.) The 
example below, which follows on after the end 
of Figure 2, shows the action of cover:forget .  

(cover : forget  6) ~ T 

(cover:report  : a l l  t )  ==> ; after printing: 
;+ :REACH (DEFUN MY* (X Y)) <1> 
; + :REACH (WHEN (MIIOJSP X) (SETQ S <2> 
; + :NON-NULL (MINUSP X) <4> 
; + :NULL (MINUSP X) <S> 

(cover:report)  ~ ; after printing 
;All points exercised. 

The abbreviated report above does not de- 
scribe any points, because every point in my* 
that has not been forgotten has been exercised. 
It is appropriate to forget a point if there is 
some reason that no test case can possibly ex- 
ercise the point. However, it is much better to 
write your code so that every condition can be 
tested. 

(Point numbers are assigned based on the 
order in which points are entered into COVER's 
database. In genera], whenever a definition is 
reevaluated or recompiled, the numbers of the 
points within it change.) 

T h e  w a y  condi t iona l s  a re  a n n o t a t e d .  
Figure 3 shows a file that makes use of COVER. 
Figure 4 shows the kind of report that might be 
produced by loading the file. Because, maybe- 
and g are the only definitions that have been 
annotated, these are the only definitions that 
are reported on. The order of the reports is 
the same as the order in which the definitions 
were compiled. The report on g indicates that 
the tests performed by run- tes t s  exercise most 
of the conditions tested by g. However, they 
do not exercise the situation in which the case 
statement is reached, but neither of its clauses 
is selected. 

There are no points within maybe-, because 
the code for maybe- does not contain any con- 
ditiona] forms. It is interesting to consider the 
precise points that COVER includes for g. 
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(in-package "USER") 

(require "COVER" ...) 

(defmacro maybe+ (x y) 
'(if (numberp ,x) (+ ,x ,y))) 

(cover:annotate t) 

(defmacro maybe- (x y) 
' ( i f  (numberp ,x) (-  ,x , y ) ) )  

(defun g (x y) 
(cond ((and (null x) y) y) 

(y (case y 
(I (maybe- x y)) 
(2 (maybe+ x y)))))) 

(cover:annotate nil) 

(defun h (x y) ...) 

( c o v e r : r e s e t )  

(run-tests) 

(cover:report :out "report" :all t) 

Figure 3: Example of a file using COVER. 

When  COVER processes a definition, a clus- 
ter of points is generated corresponding to each 
conditional form (i.e., i f ,  when, u n t i l ,  c o n d ,  

c a s e ,  typecase ,  and, and or) tha t  is literally 
present in the program. In addition, points are 
generated corresponding to conditional forms 
that  are produced by  macros that  are annotated 
(e.g., the i f  produced by the maybe- in the first 
c a s e  clause in g). However, annotat ion is not 
applied to conditionals that  come from other 
sources (e.g., from macros that  are defined out- 
side of the system being tested).  These condi- 
tionals are omit ted,  because there is no reason- 
able way for the user to know how they relate 
to the code, and therefore there is no reason- 
able way for the user to devise a test case that  
will exercise them. 

The messages associated with a point 's  sub- 
ordinates describe the situations under which 
the subordinates  are exercised. The pat tern  of 
messages associated with case and typecase  is 
i l lustrated by  the port ion (reproduced below) 
of Figure 4 that  describes the case in g. 

; + :REACH (CASE Y (1 (MAYBE- X Y 
; + :SELECT 1 <15> 
; + :SELECT 2 <16> 
; - :SELECT-NONE <17> 

<13> 

;+ :REACH (DEFMACRO MAYBE- (X Y)) <I> 
;+ :REACH (DEFUN G (X Y)) <2> 
; + :REACH (COND ((AND # Y) Y) (Y ( <3> 
; + :REACH (AND (NULL X) Y) <9> 
; + :FIRST-NULL (NULL X) <11> 
; + :EVAL-ALL Y <12> 
; + :FIRST-NON-NULL (AND (NULL X) <5> 
; + :FIRST-NON-NULL Y <7> 
; + :REACH (CASE Y (I (MAYBE- X Y <13> 
; "+ :SELECT 1 <15> 
; + :REACH (IF (NUMBERP X) (- X <18> 
; + :NON-NULL (NUMBERP X) <20> 
; + :NULL (NUMBERP X) <21> 
; + :SELECT 2 <16> 
; - :SELECT-NONE <17> 
; + :ALL-NULL <8> 

Figure 4: The report  created by  Figure 3. 

There are two subpoints corresponding to the 
two clauses of the c a s e .  In addition, since the 
last clause does not begin with t or otherwise,  
there is an additional point corresponding to 
the situation where none of the clauses of the 
c a s e  are executed. 

The pa t te rn  of messages associated with a 
c o n d  is i l lustrated by the portion (reproduced 
below) of Figure 4 that  describes the cond in g. 

; + :REACH (C0ND ((AND # Y) Y) (Y ( <3> 
; + :REACH (AND (NULL X) Y) <9> 
; + :FIRST-NON-NULL (AND (NULL X) <5> 
; + :FIRST-NON-NULL Y <7> 
; + :ALL-NULL <8> 

There are subordinate points corresponding to 
the two clauses and the situation where neither 
clause is executed. There is also a point <9> 
corresponding to the and that  is the predicate 
of the first coati clause. This point is placed 
directly under <3>, because it is not subordinate 
to any of the individual cond clauses. 

The t rea tment  of and (and or) is particu- 
larly interesting. Sometimes and is used as a 
control construct on a par with cond. In that  
situation, it is clear that  and should be treated 
analogously to cond. However, at other times, 
and is used to compute a value that  is tested 
by another conditional form. In that  situation, 
COVER could choose to treat  and as a simple 
function. However, it is nevertheless still rea- 
sonable to think of an and as having conditional 
points that  correspond to different reasons why 
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the and  returns a true or false value. It is wise 
to include tests corresponding to each of these 
different reasons. 

The pat tern of messages associated with an 
a n d  is illustrated by the portion (reproduced 
below) of Figure 4 that  describes the and in g. 

( c o v e r : r e p o r t  : a l l  t )  
; + :REACH (AND (NULL X) Y) <9> 
; + :FIRST-NULL (NULL X) <11> 
; + :EVAL-ALL Y <12> 

The final subpoint corresponds to the situation 
where all of the arguments of the and have been 
evaluated. The and then returns whatever the 
final argument returned. 

Figure 3 illustrates a batch-oriented use of 
cover t .  However, cover t  is most effectively 
used in an interactive way. It is recommended 
that  you first create as comprehensive a test 
suite as you can and capture it using a tool such 
as rtW [1]. The tests should then be run in con- 
junction with cover t  and repeated reports from 
COVErt generated as additional tests are created 
until complete coverage of conditions has been 
achieved. To robustly support  this mode of op- 
eration, COVErt has been carefully designed so 
that  it will work with batch-compiled defini- 
tions, incrementally-compiled definitions, and 
interpreted definitions. 

H o w  C O V E R  W o r k s  

The code for cover t  is shown in Figures 5, 
7, 8, and 10. Figure 5 shows the definition of 
the primary data structure used by COVErt and 
some of the central operations. A point  struc- 
ture contains five pieces of information about a 
position in the code for a definition. 

hit 

id 
status 

name 

s u b s  

Flag indicating whether the point 
has been exercised. 
Unique integer identifier. 
Flag that  controls reporting. 
Logical name. 
List of subordinate points. 

The h i t  f lag operates as a "time stamp". 
When a point  is exercised, this is recorded by 
storing the current value of the variable *hi t* 

in the h i t  field of the point. This method of op- 
eration makes it possible to reset the h i t  flags 
of all the points currently in existence with- 
out visiting any of them (see the definition of 
cover : reset). 

The id is printed in reports and used to 
identify points when calling cover: :forget. The 
variable *count* is used to generate the values. 

The s ta tus  controls the reporting of a point. 
It is either :SHOW (shown in reports), :HIDDEN 
(not shown in reports, but its subordinates may 
be), or :FORGOTTEN (neither it nor its subor- 
dinates are shown in reports). (cover : forget  
changes the status of the indicated points to 
: FORGOTTEN.) 

The name of a point p describes its position 
in the definition containing it. A n a m e  has the 
form: (label code . superior-name) where la- 
bel is an explanatory label such as :REACH or 
:NULL, code is a piece of code, and superior- 
name is the n a m e  of the point containing p (if 
any). Taken together, the label and code in- 
dicate the position of p in a definition and the 
condition under which it is exercised (see the 
discussion of Figure 4). 

At any given moment ,  the variable * p o i n t s *  

contains a list of points corresponding to the 
annotated definitions known to cover t .  (The 
function c o v e r : f o r g e t - a l l  resets * p o i n t s *  to 
n i l . )  As an illustration of the point data struc- 
ture, Figure 6 shows the contents of * p o i n t s *  

corresponding to the second report in Figure 2. 
It is assumed that  *hi t* has the value 1. 

The function a d d - t o p - p o i n t  adds a new top- 
level point corresponding to a definition to the 
list *.points*. If there is already a point for 
the definition, the new point is put  in the same 
place in the list. 

The function record -h i t  records the fact 
that  a point has been exercised. This may 
require locating the point in *points* using 
l o c a t e  or adding the point into * p o i n t s *  us- 

ing a d d - p o i n t ,  r eco rd -h i t  is optimized so that  
it is extremely fast when the point has already 
been exercised. This allows COVErt to run with 
relatively little overhead. (The details of the 
way record-hit and add-point operate are dis- 
cussed further in conjunction with Figure 10.) 
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(in-package "COVER" :use '("LISP")) 

(provide "COVER") 

(shadow '(defun defmacro)) 

(export ' (annotate  report  rese t  forget  
forget-all *line-limit*)) 

(defstruct (point (:conc-name nil) 
(:type list)) 

(hit O) 
(id nil) 
(s ta tus  :show) 
(name nil) 
(subs nil)) 

(defvar *count* O) 
(defvar *hit* 1) 
(defvar *points* nil) 
(defvar *annotating* nil) 
(defvar *testing* nil) 

(lisp:defun forget (krest ids) 
(forgetl ids *points*) 
t) 

(lisp:defun forgetl (names ps) 
(dolist (p ps) 

(when (member (id p) names) 
(setf (status p) :forgotten)) 

(forgetl names (subs p)))) 

(lisp:defun forget-all () 
(setq *points* nil) 
(setq *hit* 1) 
(setq *count* O) 
t) 

(lisp:defun reset () (incf *hit*) t) 

(lisp:defun add-top-point (p) 
(setq p (copy-tree p)) 
(let ((old (find (fn-name p) *points* 

:key #'fn-name))) 
(cond (old (serf (id p) (id old)) 

(nsubstitute p old *points*)) 
(t (setf (id p) (incf *count*)) 

(setq *points* 
(nconc *points* 

(list p))))))) 

(lisp:defun record-hit (p) 
(unless (= (hit p) *hit*) 

(setf (hit p) *hit*) 
(let ((old (locate (name p)))) 

(if old 
(serf (hit old) *hit*) 
(add-point p))))) 

(lisp:defun locate (name) 
(find name 

(if (not (cdr name)) 
*points* 
(let ((p (locate (cdr name)))) 

(if p (subs p)))) 
:key #'name :test #'equal)) 

(lisp:defun add-point (p) 
(let ((sup (locate (cdr (name p))))) 

(when sup 
(setq p (copy-tree p)) 
(serf (subs sup) 

(nconc (subs sup) (list p))) 
(setf (id p) (incf *count*)) 
(dolist (p (subs p)) 

(serf (id p) (incf *count*)))))) 

Figure 5: The basic data structure used by COVER. 

((1 :SHOW 1 (#1=(:REACH (DEFUN MY* (X Y))))  
((2 :SHOW I (#2=(:REACH (WHEN (MINUSP X) (SETQ SIGN (- SIGN)) (SETQ X .(- X)))) #I#) 

((3 :HIDDEN I ((:REACH (MINUSP X)) #2# #I#) NIL) 
(4 :SHOW 0 ((:NON-NULL (MINUSP X)) #2# #I#) NIL) 
(5 :SHOW I ((:NULL (MINUSP X)) #2# #1#) NIL))) 

(6 :SHOW I (#6=(:REACH (WHEN (MINUSP Y) (SETQ SIGN (- SIGN)) (SETQ Y (- X)))) #i#) 
((7 :HIDDEN I ((:REACH (MINUSP Y)) #6# #i#) NIL) 
(8 :SHOW 0 ((:NON-NULL (MINUSP Y)) #6# #I#) NIL) 
(9 :SHOW I ((:NULL (MINUSP Y)) #6# #I#) NIL)))))) 

Figure 6: The contents of *points* corresponding to the second report in Figure 2. 

Figure 7 shows the code that prints reports. 
As can be seen by a comparison of Figures 2 and 
6, reports are a relatively straightforward print- 
out of parts of *points* with nesting indicated 
by indentation and only the first part of each 
point's name shown. The function report2 sup- 
ports the abbreviation described in conjunction 
with Figure 2. 

A n n o t a t i n g  def ini t ions .  Figure 8 shows 
the code that controls the annotation of defini- 
tions by COVER. The first time cover:annotate 
is called, it uses shadowing-import to install new 
definitions for defun and defmacro. Whether or 
not annotation is in effect is recorded in the 
variable *annotate*. The variable *testing* 
is used to make it easier to test COVER using 
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(defvar *line-limit* 75) 

(proclaim '(special *depth* *all* 
*out* *done*)) 

(lisp:defun report 
(~key (fn nil) 

(out *standard-output*) 
(a l l  nil)) 

( let (p) 
(cond 

((not (streamp out)) 
(with-open-f i le  

(s out :d i rec t ion  :output) 
(report  :fn fn :a l l  a l l  :out s ) ) )  

( (nul l  *points*) 
(format out 

"'%No definitions annotated.")) 
((not fn) 

( repor t l  *points* a l l  out)) 
( (se tq  p (f ind fn *points* 

:key #'fn-name)) 
(reportl (list p) all out)) 

(t (format out "'~'A is not annotated." 
fn ) ) ) )  

(values)) 

( l i sp :defun fn-name (p) 
( l e t  ((form (cadr (car (name p) ) ) ) )  

(and (consp form) 
(consp (cdr form)) 
(cadr form))))  

(lisp:defun reportl (ps *all* *out*) 
( l e t  ((*depth* O) (*done* t ) )  

(mapc # ' repor t2  ps) 
(when *done* 

(format *out* 
"'%;All points exercised.")))) 

(lisp:defun report2 (p) 
(case (status p) 

(:forgotten nil) 
(:hidden (mapc #'report2 (subs p))) 
(:show 
(cond ((reportable-subs p) 

(report3 p) 
(let ((*depth* (I+ *depth*))) 

(mapc #'report2 (subs p)))) 
((reportable p) 
(report3 p ) ) ) ) ) )  

( l i sp:defun reportable (p) 
(and (eq (status p) :show) 

(or *all* 
(not (= (hit p) *hit*))))) 

(lisp:defun reportable-subs (p) 
(and (not (eq (status p) :forgotten)) 

(or *a11. (not (reportable p))) 
(some #'(lambda (s) 

(or (reportable s) 
(reportable-subs s))) 

(subs p)) ) )  

(lisp:defun report3 (p) 
(setq *done* nil) 
(let* ((*print-pretty* nil) 

(*print-level* 3) 
(*print-length* nil) 
(m (format nil 

" ; ' V E T ' : [ - ' ; + ' ] ' {  "S'}" 
*depth* 
(= (hit p) *hit*) 
(car (name p)) ) )  

(limit (- *line-limit* 8))) 
(when (> (length m) limit) 

(setq m (subseq m 0 limit))) 
(format *out* "'~'A <'S>" m (idp)))) 

Figure 7: The code for the part of COVER that prints reports. 

RT [1]. 
Redefining defun and defmacro is a conve- 

nient approach to use for supporting COVER, 
however, it is in general a rather dangerous 
thing to do. One problem is that for COVER 
to operate correctly, cover:annotate must be 
executed before any of the definitions you wish 
to annotate are read. For instance, Figure 3 
would not work if an eval-when were wrapped 
around the top-level forms as a group. 

When annotation is in effect, the new def- 
initions of defun and defmacro use sublis to 
replace every instance of i f ,  tend, etc. with spe- 
cial macros c - i f ,  c-tend, etc. (see Figure 10). 
Defining forms created by the user (e.g., clef 
in Figure 10) are typically macros that expand 

into defmacro. They are indirectly supported 
by COVER, as long as their definitions are read 
after cover: annotate has been evaluated. 

On the face of it, it is not correct to use 
sublis to rename forms in code, because every 
instance of the indicated symbols is changed, 
whether or not they are actually uses of the 
indicated forms and whether or not they are in 
quoted lists. Nevertheless, COVER uses sublis 
for two reasons. 

First, in contrast to a code walker, sublis is 
very simple. (The only understanding of Lisp 
structure that COVER needs is how to separate 
the declarations from the body of a definition, 
see the function parse-body.) 

Most problems can easy be avoid by resist- 
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(lisp:defmacro annotate ( t - o r - n i l )  
'(eval-when ( e v a l  load compile) 

( a n n o t a t e l  ,t-or-nil))) 

(lisp:defun annotatel (flag) 
(shadowing-import 
(set-difference '(defun defmacro) 

(package-shadowing-symbols *package*))) 
(when (and flag (not *testing*)) 

(warn "Coverage annotation applied.")) 
(setq *annotating* (not (null flag)))) 

(lisp:defmacro defun (n argl ~body b) 
(process 'defun 'lisp:defun n argl b)) 

(lisp:defmacro defmacro (n a ~body b) 
(process 'defmacro 'lisp:defmacro n a b)) 

(lisp:defun parse-body (body) 
(let ((decls nil)) 

(when (stringp (car body)) 
(push (pop body) decls)) 

(loop (unless (and (consp (car body)) 
(eq (caar body) 

'declare)) 
(return nil)) 

(push (pop body) decls)) 
(values (nreverse decls) body))) 

(defvar *check* 
'((or . c-or) (and . c-and) 

(if . c-if) (when . c-when) 
(unless . c-unless) 
(cond . c-cond) (case . c-case) 
(typecase . c-typecase))) 

(lisp:defun process (cdef def fn argl b) 
(if (not (or *arunotating* 

(find fn 
*points* 
:key #'fn-name))) 

'(,def ,fn ,argl., b) 
(multiple-value-bind (decls b) 

(parse-body b) 
(setq b (sublis *check* b)) 
(let ((name 

'((:reach 
(,cdef ,fn ,argl))))) 

'(eval-when (eval load compile) 
(add-top-point 

',(make-point :name name)) 
(,def ,fn ,argl ,~ decls 

,(cO (make-point :name 
name) 

name b))))))) 

Figure 8: The code for the part of COVER that annotates definitions. 

(EVAL-WHEN (EVAL LOAD COMPILE) 
(COVER::ADD-TOP-POINT '(NIL :SNOW 0 (#i=(:REACH (DEFUN MY* (X Y)))) NIL)) 

(LISP:DEFUN MY* (X Y) 
(COVER::RECO~-HIT '(NIL :SNOW 0 (#i#) NIL)) 
(LET ((SIGN I)) 

(COVER::RECORD-HIT 
'(NIL :SHOW 0 (#2=(:REACH (WHEN (MINUSP X) (SETQ SIGN (- SIGN)) (SETQ X (- X)))) #I#) 

((NIL :HIDDEN 0 ((:REACH (MINUSP X)) #2# #I#) NIL) 
(NIL :SHOW 0 ((:NON-NULL (MINUSP X)) #2# #i#) NIL) 
(NIL :SHOW 0 ((:NULL (MINUSP X)) #2# #I#) NIL)))) 

(IF (PROGN (COVER::RECORD-HIT '(NIL :HIDDEN 0 ((:REACH (MINUSP X)) #2# #I#) NIL)) 
(MINUSP X)) 

(PROGN (COVER::RECORD-HIT '(NIL :SNOW 0 ((:NON-NULL (MINUSP X)) #2# #I#) NIL)) 
(SETQ SIGN (- SIGN)) (SETQ X (- X))) 

(PROGN (COVER::RECORD-HIT '(NIL :SHOW 0 ((:NULL (MINUSP X)) #2# #I#) NIL)) 
NIL)) 

. . . ) ) )  

Figure 9: Part of the annotated definition of my* from Figure 1. 

ing the temptation to u s e  i f ,  cond ,  etc. as vari- 
able names. Any remaining difficulties can be 
tolerated because COVER is merely part of scaf- 
folding for testing a system rather than part of 
the system to be delivered. A subtle difficulty 
concerns and and or. They are used as type 
specifiers as well as conditional forms. This 
difficulty is partly overcome by the type defi- 
nitions at the end of Figure 10. 

Second, the use of sublis supports two key 
features of COVER that would be very difficult 
to support using a code wa/ker. It insures that 
only conditionM forms that literally appear in 
the definition are annotated (as opposed to ones 
that come from macro expansions), and yet, 
conditionals that come from the expansion of 
annotated macros are annotated. (Note that 
the literals that turn into conditionals in the 
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(defvar *fix* 
'((c-or . or) (c-and . and) (c-if . if) 

(c-when . when) (c-unless . unless) 
(c-cond . cond) (c-case . case) 
(c-typecase . typecase))) 

(proclaim '(special *subs* *sup*)) 

(lisp:defmacro sup-mac () nil) 

(lisp:defmacro def (name args form) 
'(lisp:defmacro ,name (&whole w ,@ ares 

&environment env) 
(let* ((*subs* nil) 

(*sup* 
'((:reach ,(sublis *fix* w)) 

.,(macroexpand-i 
(list 'sup-mac) env))) 

(p (make-point :name *sup*)) 
(form ,form)) 

(ser f  (subs p) (nreverse *subs*)) 
(cO p *sup* (list form))))) 

( l isp:defmacro c (body &rest msg) 
(cl '(list ,body) msg :show)) 

(lisp:defmacro c-hide (b) 
(CI '(list ,b) (list :reach b) :hidden)) 

(eval-when (eval load compile) 

(lisp:defun ci (b m s) 
'(let ((n (cons (sublis *fix* 

(list .,m)) 
*sup*))) 

(push (make-point :name n : s t a tus  ,s) 
*subs*) 

(cO (make-point :name n :status ,s) 
n ,b))) 

(lisp:defun cO (p sup b) 
' (macrolet  ((sup-mac () ' , sup) )  

( r ecord -h i t  ' ,p )  
.,b)) ) 

(def c-case (key &rest cs) 
'(case ,(c-hide key) 

.,(c-caseO cs))) 

(def c-typecase (key &rest cs) 
'(typecase ,(c-hide key) 

.,(c-caseO cs))) 

(lisp:defun c-caseO (cs) 
(let ((stuff (mapcar #'c-casel cs))) 

(when (not (member (caar (last cs)) 
'(t otherwise))) 

(setq stuff 
(nconc s tu f f  

' ( ( t  , (c  n i l  : s e l ec t -none ) ) ) ) ) )  
stuff)) 

(lisp:defun c-casel (clause) 
' ( , ( c a r  clause) 

,(c '(progn., (cdr clause)) :select 
(car c lause) ) ) )  

(def c - i f  (pred then &optional (else  n i l ) )  
' ( i f  , (c -h ide  pred) 

, (c  then :non-null  pred) 
, (c  e lse  :nu l l  pred)))  

(def c-when (pred &rest ac t ions)  
' ( i f  , (c -h ide  pred) 

, (c  ' ( p r o g n . ,  act ions)  
:non-null  pred) 

,(c n i l  :nu l l  pred)))  

(def c-unless  (pred &rest ac t ions)  
' ( i f  (not , (c -h ide  pred))  

, (c  ' ( p r o g n . ,  act ions)  :nu l l  pred) 
, (c  n i l  :non-null  pred)))  

(def c-cond (&rest cs) 
(c-condO (gensym) cs)) 

(lisp:defun c-condO (var cs) 
(cond ((null cs) (c nil :all-null)) 

((eq (caar cs) t) 
(c (if (cda_r cs) 

'(progn .,(cdar cs)) 
t) 

:first-non-null t)) 
((cdar cs) 

' ( i f  , (c -h ide  (caar cs)) 
, (c  ' (progn . , ( cda r  cs)) 

: f i r s t - n o n - n u l l  
(caar cs)) 

,(c-condO var (cdr cs)))) 
(t ' ( l e t  ( ( ,v~ 

, (c -h ide  (caar cs ) ) ) )  
(if ,vax 

, (c  var : f i r s t - n o n - n u l l  
(caar cs)) 

,(c-condO vat 
(cdr cs))))))) 

(def c-or  (&rest ps) (c-orO ps))  

( l i sp :de fun  c-orO (ps) 
(if (null (cdr ps)) 

(c (car ps) :eval-all (car ps)) 
(let ((var (gensym))) 

'(let ((,var ,(c-hide (car ps)))) 
( i f  ,var 

,(c vat  :first-non-null 
(car ps) )  

,(c-orO (cdr ps))))))) 

(def c-and (&rest ps) 
'(cond .,(maplist #'c-andO 

(or ps ( l i s t  t ) ) ) ) )  

( l i sp :de fun  c-andO (ps) 
( i f  (nul l  (cdr ps)) 

' ( t  , (c  (car ps) : e v a l - a l l  (car ps)))  
' ( (no t  , (c-h ide  (car ps)))  

, (c  n i l  : f i r s t - n u l l  (car p s ) ) ) ) )  

(deftype c-and (&rest b) ' ( a n d . ,  b)) 

(deftype c-or  (&rest b) ' ( o r . ,  b)) 

Figure 10: The code for the part of COVER that  annotates conditionals. 
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code generated by a macro are quoted in the 
body of the macro.) 

Figure 9 shows part of the results of an- 
notat ing the function my* from Figure 1. The 
annotated definition is preceded by a call on 
add-top-poin% which enters a point describing 
the definition into *points*. Within the def- 
inition, calls on r eco rd -h i t  are introduced at 
strategic locations. Each call contains a quoted 
point that  is essentially a template for what 
should be introduced into *points*. The first 
w h e n  in my* is converted into an i f  that  has 
cases corresponding to the success and failure 
of the predicate tested by the when .  The call 
on r eco rd -h i t  that  precedes this i f  contMns a 
point with subpoints that  establishes the cases 
of the i f .  This ensures that  both cases of the 
i f  will be present in *points* as soon as the 
i f  is exercised, even if only one of the cases is 
exercised. 

The hidden point associated with the predi- 
cate tested by the when establishes an appropri- 
ate context for points within the predicate it- 
self. It is unnecessary in this example, because 
there are no such points. In the cond in the 
function g in Figure 3, a similar hidden point 
associated with the first predicate tested serves 
to correctly position the points associated with 
the and (see Figure 4). 

For the most part,  the macros in Figure 10 
operate in straightforward ways to generate an- 
notated conditionals. However, clef, c, cl,  and 
cO interact in a somewhat subtle way using 
m a c r o l e t  to communicate the name of a su- 
perior point to its subordinates. This could 
have been done more simply with compi le r - le t ;  
however, compi l e r - l e t  is slated to be removed 
from Common Lisp. 

U n d e r l y i n g  a p p r o a c h .  The annotation 
scheme used by COVER is designed to meet two 
goals. First, it must introduce as little over- 
head as possible when the annotated function 
runs. (It does not mat ter  if the process of in- 
serting annotation is expensive and it does not 
mat ter  if the process of printing reports is ex- 
pensive. It does not even matter  if processing is 
relatively expensive the first t ime a point is ex- 

ercised. However, it is essential that  processing 
be very fast when an exercised point is exercised 
a second time.) 

Second, the scheme must  work reliably with 
interpreted code, with compiled code loaded 
from files, and with code that  is incrementally 
compiled on the fly. This introduces a num- 
ber of strong constraints. In particular, you 
cannot depend on using some descriptive data 
structure built up during compilation, because 
you cannot assume that  compilation will oc- 
cur. On the other hand, if you use quoted data 
structures as in Figure 9, you cannot make any 
assumptions about what sharing will exist or 
whether they will be copied, because some Lisp 
compilers feel free to make major changes in 
quoted lists. 

To achieve high efficiency, r e c o r d - h i t  (see 
Figure 5) alters its argument by side-effect to 
mark it exercised. Side-effecting a compiled 
constant is inherently dangerous, but  is rela- 
tively safe here, because the changed value is 
an integer, and the point data structure cannot 
be shared with any other point data structure, 
because no two points can have the same name.  

The first time a given call on record -h i t  
is encountered, it enters the point which is its 
argument into *points*. This is done by first 
looking to see if the point is already there (e.g., 
because it was entered by an add-top-point  or 
is a subordinate point that  was explicitly en- 
tered as part  of its superior point). If it is not 
there, it is copied and inserted as a subordi- 
nate point of the appropriate superior point. 
(By this process, *points* is dynamically built 
up in exactly the same way when executing in- 
terpreted and compiled code.) If the superior 
point cannot be found, nothing is done. (This 
can only happen when the annotation of the 
currently executing function has been forgot- 
ten.) 

The second time a call on record -h i t  is en- 
countered the only thing it has to do is check 
that  the point has been exercised. If it has, 
nothing needs to be done. If a c o v e r : r e s e t  has 
been done, then the check will fail, and record-  
h i t  relocates the point in *points*, and sets the 
h i t  flag. (This second lookup could be avoided 
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if the quoted point had been directly inserted 
into *points* instead of copied. However, this 
is unsafe for two reasons. First, the sharing 
would mean that  side-effects to *points* would 
translate into side-effects to compiled list con- 
stants. This will cause many Lisp systems to 
blow up in unexpected ways. Second, in some 
Lisp systems compiling an interpreted function 
can cause the quoted lists in it to be copied. 
As a result, you cannot depend that  any shar- 
ing set up between a global data  structure and 
quoted constants will be preserved.) 

The operation of COVER requires that  each 
point be given a unique identifying name. The 
naming scheme used assumes that  a given con- 
ditional form will not have two predicates that  
are equal and that  a chunk of straightline code 
will not contain two conditional forms that  are 
equal. If this assumption is violated, COVER 
will merge the two resulting points into one. 

T h e  p o w e r  o f  Lisp.  COVER is a good ex- 
ample of the power of Lisp as a tool for build- 
ing programming environments. Because Lisp 
contains a simple representation for Lisp pro- 
grams, it is easy to write systems that  con- 
vert programs into other programs. Because 
Lisp encompasses both the language definition 
and the run-time environment,  it is easy to 
write systems that  both  manipulate the lan- 
guage and extend the run-time environment. 
Systems like covER are regularly written for 
c and other Algol-like languages; however, this 
is much harder to do than in Lisp. 
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Obtaining C O V E R  

COVER is written in portable Common Lisp 
and has been tested in several different Com- 
mon Lisp implementations. The full source for 
COVER is shown in Figures 5, 7, 8, and 10. In 
addition, the source can be obtained over the 
INTERNET by using FTP. Connection should 
be made to FTP. AI. HIT. EDU (INTEKNET number 
128.52.32.6). Login as "anonymous" and copy 
the files shown below. 

In the directory / p u b / l p t r s /  

c o v e r ,  lisp source code 
c o v e r - t e s t ,  lisp test suite 
cover -doc ,  t x t  brief documentation 

The contents of  Figures 5, 7, 8, and 10 and 
the files above are copyright 1991 by the Mas- 
sachusetts Institute of Technology, Cambridge 
MA. Permission to use, copy, modify, and dis- 
tribute this software for any purpose and with- 
out fee is hereby granted, provided that this 
copyright and permission notice appear in all 
copies and supporting documentation, and that 
the names of MIT  and~or the author are not 
used in advertising or publicity pertaining to 
distribution of the software without specific, 
written prior permission. MIT  and the author 
make no representations about the suitability 
of this software for any purpose. It is provided 
"as is" without express or implied warranty. 

MIT  and the author disclaim all warranties 
with regard to this software, including all im- 
plied warranties of merchantability and fitness. 
In no event shall MIT  or the author be liable 
for any special, indirect or consequential dam- 
ages or any damages whatsoever resulting from 
loss of use, data or profits, whether in an action 
of co.ntract, negligence or other tortious action, 
arising out of or in connection with the use or 
performance of this software. 
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