
D e t e r m i n i n g the Coverage of a Test Suite

MIT AI Laboratory
545 Technology Sq.

Cambridge MA 02139
Dick@AI.MIT.EDU

Richard C. Waters

Mitsubishi Electric Research Laboratories
201 Broadway

Cambridge MA 02139
Dick@MERL.COM

The value of a suite of test cases depends
critically on its coverage. Ideally a suite should
test every facet of the specification for a pro-
gram and every facet of the algorithms used
to implement the specification. Unfortunately,
there is no practical way to be sure that com-
plete coverage has been achieved. However,
something should be done to assess the cover-
age of a test suite, because a test suite with
poor coverage has little value.

A traditional approximate method of assess-
ing the coverage of a test suite is to check that
every condition tested by the program is exer-
cised. For every predicate in the program, there
should be at least one test case that causes the
predicate to be true and one that causes it to
be false. Consider the function ray* in Figure 1,
which uses a convoluted algorithm to compute
the product of two numbers.

The function ray* contains two predicates,
(rainusp x) and (rainusp y), which lead to four
conditions: x is negative, x is not negative, y
is negative, and y is not negative. To be at all
thorough, a test suite must contain tests exer-
cising all four of these conditions. For instance,

(defun ray* (x y)
(let ((sign I))

(when (minusp x)
(setq sign (- sign))
(setq x (- x)))

(when (rainusp y)
(setq sign (- sign))
(setq y (- x)))

(* sign x y)))

Figure 1: An example program.

any test suite that fails to exercise the condi-
tion where y is negative will fail to detect the
bug in the next to last line of the function.

(As an example of the fact that covering
all the conditions in a program does not guar-
antee that every facet of either the algorithm
or the specification will be covered, consider
the fact that the two test cases (my* 2.1 3)
and (ray* -1/2 -1/2) cover all four conditions.
However, they do not detect the bug on the
next to last line and they do not detect the fact
that ray* fails to work on complex numbers.)

The COVER system determines which con-
ditions tested by a program are exercised by a
given test suite. This is no substitute for think-
ing hard about the coverage of the test suite.
However, it provides a useful starting point and
can indicate some areas where additional test
cases should be devised.

Use r ' s M a n u a l for C O V E R

The functions, macros, and variables that
make up the COVER system are in a package
called "COVER". The six exported symbols are
documented below.

• cover:annotate t-or-nil

Evaluating (cover:annotate t) triggers the
processing of function and macro definitions by
the COVER system. Each subsequent instance
of de:fun or defmacro is altered by adding an-
fiotation that maintains information about the
various conditions tested in the body.

Evaluating (cover:annotate n i l) stops the

IV-4.33

special processing of function and macro defi-
nitions. Subsequent definitions are not anno-
tated. However, if a function or macro that is
currently annota ted is redefined, the new defi-
nition is annota ted as well.

The macro c o v e r : a n n o t a t e should only be
used as a top-level form. When annotation is
triggered, a warning message is printed, and t
is returned. Otherwise, n i l is returned.

(cover :annota te t) ~ t ; after printing:
; ; ; Warning: Coverage annotation applied.

• c o v e r : f o r g e t - a l l

This function, which always returns t, has
the effect of removing all coverage annotat ion
from every function and macro. It is appro-
priate to do this before completely recompiling
the system being tested or before switching to
a different system to be tested.

$ cover:reset

Each condition tested by an annotated func-
tion and macro is associated with a flag that
trips when the condition is exercised. The func-
tion c o v e r : r e s e t resets all these flags, and re-
turns t . It is appropriate to do this before re-
running a test suite to reevaluate its coverage.

• cove r : r epor t ~key fn out all

This function displays the information main-
tained by COVER, returning no values. Fn must
be the name of an annota ted function or macro.
If fn is specified, a report is printed showing in-
formation about that function or macro only.
Otherwise, reports are printed about every an-
nota ted function and macro.

Out, which defaults to *standard-output*,
must either be an output stream or the name
of a file. It specifies where the reports should
be printed.

If all, which defaults to n i l , is non-null then
the reports printed contain information about
every condition. Otherwise, the reports are ab-
breviated to highlight key conditions that have
not been exercised.

• cover:*line-limit* default value 75

The output produced by cover:report is

(setq cover:*line-limit* 43) :=~ 43

(cover:reset) =¢~ T

(cover : r epor t) ~ ; a~er printing:
;- :REACH (DEFUN MY* (X Y)) <I>

(my* 2 2) ~ 4

(cover : r epor t) ~ ; after printing:
;+ :REACH (DEFUN MY* (X Y)) <I>
; + :REACH (WHEN (MINUSP X) (SETQ S <2>
; - :NON-NULL (MINUSP X) <4>
; + :REACH (WHEN (MINUSP Y) (SETQ S <6>
; - :NON-NULL (MINUSP Y) <8>

(my* -2 2) ~ -4

(cover : repor t) :::¢~ ; after printing:
;+ :REACH (DEFUN MY* (X Y)) <I>
; + :REACH (WHEN (MINUSP Y) (SETQ S <6>
; - :NON-NULL (MINUSP Y) <8>

(cover:report :all t) ~ ; a~er pdnting:
;+ :REACH (DEFUN MY* (X Y)) <I>
; + :REACH (WHEN (MINUSP X) (SETQ S <2>
; + :NON-NULL (MINUSP X) <4>
; + :NULL (MINUSP X) <5>
; + :REACH (WHEN (MINUSP Y) (SETQ S <6>
; - :NON-NULL (MINUSP Y) <8>
; + :NULL (MINUSP Y) <9>

Figure 2: Example COVER reports.

t runcated to ensure that it is no wider than
cover : *line-limit*.

A n e x a m p l e . Suppose that the function
m y * in Figure 1 has been annotated and that no
other functions or macros have been annotated.
Figure 2 illustrates the operation of COVER and
the reports printed by cover : repor t .

Each line in a report contains three pieces of
information about a point in a definition: +/ -
specifying that the point either has (+) or has
not (-) been exercised, a message indicating the
physical and logical placement of the point in
the definition, and in angle brackets < >, an in-
teger that is a unique identifier for the point.
Indentat ion is used to indicate that some points
are subordinate to others in the sense that the
subordinate points cannot be exercised without
also exercising their superiors. The order of the
lines of the report is the same as the order of
the points in the definition.

Each message contains a label (e.g., :REACH,
:NULL) and a piece of code. There is a point la-
beled : REACH corresponding to each definition as

IV-4.34

a whole and each conditional form within each
definition. Subordinate points corresponding
to the conditions a conditional form tests are
grouped under the point corresponding to the
form. As discussed in detail in the next subsec-
tion, the messages for the subordinate points
describe the situations in which the conditions
are exercised. Lines that would otherwise be
too long to fit on one line have their messages
truncated (e.g., points <2> and <e> in Figure 2).

The first three reports in Figure 2 are ab-
breviated based on two principles. First, if a
point p and all of its subordinates have been
exercised, then p and all of its subordinates are
omitted from the report. This is done to focus
the user's attention on the points that have not
been exercised.

Second, if a point p has not been exercised,
then all of the points subordinate to it are omit-
ted from the report. This reflects the fact that
it is not possible for any of these subordinate
points to have been exercised and one cannot
devise a test case that exercises any of the sub-
ordinate points without first figuring out how
to exercise p.

An additional complicating factor is that
COVER operates in an incremental fashion and
does not, in general, have full information about
the subordinates of points that have not been
exercised. As a result, it is not always possible
to present a complete report. However, one can
have total confidence that if the report says that
every point has been exercised, this statement
is based on complete information.

The first report in Figure 2 shows that none
of the points within my* has been exercised. The
second report displays most of the points in my.,
to set the context for the two points that have
not been exercised. The third report omits <2>
and its subordinates, since they have all been
exercised. The fourth report shows a complete
report corresponding to the third abbreviated
report.

• cover:forget ~rest /ds

This function gives the user greater con-
trol over the reports produced by cover:report .
Each id must be an integer identifying a point.

All information about the specified points (and
their subordinates) is forgotten. From the point
of view of cover:report , the effect is as if the
points never existed. (A forgotten point can
be retrieved by reevaluating or recompiling the
function or macro definition containing it.) The
example below, which follows on after the end
of Figure 2, shows the action of cover:forget .

(cover : forget 6) ~ T

(cover:report : a l l t) ==> ; after printing:
;+ :REACH (DEFUN MY* (X Y)) <1>
; + :REACH (WHEN (MIIOJSP X) (SETQ S <2>
; + :NON-NULL (MINUSP X) <4>
; + :NULL (MINUSP X) <S>

(cover:report) ~ ; after printing
;All points exercised.

The abbreviated report above does not de-
scribe any points, because every point in my*
that has not been forgotten has been exercised.
It is appropriate to forget a point if there is
some reason that no test case can possibly ex-
ercise the point. However, it is much better to
write your code so that every condition can be
tested.

(Point numbers are assigned based on the
order in which points are entered into COVER's
database. In genera], whenever a definition is
reevaluated or recompiled, the numbers of the
points within it change.)

T h e w a y condi t iona l s a re a n n o t a t e d .
Figure 3 shows a file that makes use of COVER.
Figure 4 shows the kind of report that might be
produced by loading the file. Because, maybe-
and g are the only definitions that have been
annotated, these are the only definitions that
are reported on. The order of the reports is
the same as the order in which the definitions
were compiled. The report on g indicates that
the tests performed by run- tes t s exercise most
of the conditions tested by g. However, they
do not exercise the situation in which the case
statement is reached, but neither of its clauses
is selected.

There are no points within maybe-, because
the code for maybe- does not contain any con-
ditiona] forms. It is interesting to consider the
precise points that COVER includes for g.

IV-4.35

(in-package "USER")

(require "COVER" ...)

(defmacro maybe+ (x y)
'(if (numberp ,x) (+ ,x ,y)))

(cover:annotate t)

(defmacro maybe- (x y)
' (i f (numberp ,x) (- ,x , y)))

(defun g (x y)
(cond ((and (null x) y) y)

(y (case y
(I (maybe- x y))
(2 (maybe+ x y))))))

(cover:annotate nil)

(defun h (x y) ...)

(c o v e r : r e s e t)

(run-tests)

(cover:report :out "report" :all t)

Figure 3: Example of a file using COVER.

When COVER processes a definition, a clus-
ter of points is generated corresponding to each
conditional form (i.e., i f , when, u n t i l , c o n d ,

c a s e , typecase , and, and or) tha t is literally
present in the program. In addition, points are
generated corresponding to conditional forms
that are produced by macros that are annotated
(e.g., the i f produced by the maybe- in the first
c a s e clause in g). However, annotat ion is not
applied to conditionals that come from other
sources (e.g., from macros that are defined out-
side of the system being tested). These condi-
tionals are omit ted, because there is no reason-
able way for the user to know how they relate
to the code, and therefore there is no reason-
able way for the user to devise a test case that
will exercise them.

The messages associated with a point 's sub-
ordinates describe the situations under which
the subordinates are exercised. The pat tern of
messages associated with case and typecase is
i l lustrated by the port ion (reproduced below)
of Figure 4 that describes the case in g.

; + :REACH (CASE Y (1 (MAYBE- X Y
; + :SELECT 1 <15>
; + :SELECT 2 <16>
; - :SELECT-NONE <17>

<13>

;+ :REACH (DEFMACRO MAYBE- (X Y)) <I>
;+ :REACH (DEFUN G (X Y)) <2>
; + :REACH (COND ((AND # Y) Y) (Y (<3>
; + :REACH (AND (NULL X) Y) <9>
; + :FIRST-NULL (NULL X) <11>
; + :EVAL-ALL Y <12>
; + :FIRST-NON-NULL (AND (NULL X) <5>
; + :FIRST-NON-NULL Y <7>
; + :REACH (CASE Y (I (MAYBE- X Y <13>
; "+ :SELECT 1 <15>
; + :REACH (IF (NUMBERP X) (- X <18>
; + :NON-NULL (NUMBERP X) <20>
; + :NULL (NUMBERP X) <21>
; + :SELECT 2 <16>
; - :SELECT-NONE <17>
; + :ALL-NULL <8>

Figure 4: The report created by Figure 3.

There are two subpoints corresponding to the
two clauses of the c a s e . In addition, since the
last clause does not begin with t or otherwise,
there is an additional point corresponding to
the situation where none of the clauses of the
c a s e are executed.

The pa t te rn of messages associated with a
c o n d is i l lustrated by the portion (reproduced
below) of Figure 4 that describes the cond in g.

; + :REACH (C0ND ((AND # Y) Y) (Y (<3>
; + :REACH (AND (NULL X) Y) <9>
; + :FIRST-NON-NULL (AND (NULL X) <5>
; + :FIRST-NON-NULL Y <7>
; + :ALL-NULL <8>

There are subordinate points corresponding to
the two clauses and the situation where neither
clause is executed. There is also a point <9>
corresponding to the and that is the predicate
of the first coati clause. This point is placed
directly under <3>, because it is not subordinate
to any of the individual cond clauses.

The t rea tment of and (and or) is particu-
larly interesting. Sometimes and is used as a
control construct on a par with cond. In that
situation, it is clear that and should be treated
analogously to cond. However, at other times,
and is used to compute a value that is tested
by another conditional form. In that situation,
COVER could choose to treat and as a simple
function. However, it is nevertheless still rea-
sonable to think of an and as having conditional
points that correspond to different reasons why

IV-4.36

the and returns a true or false value. It is wise
to include tests corresponding to each of these
different reasons.

The pat tern of messages associated with an
a n d is illustrated by the portion (reproduced
below) of Figure 4 that describes the and in g.

(c o v e r : r e p o r t : a l l t)
; + :REACH (AND (NULL X) Y) <9>
; + :FIRST-NULL (NULL X) <11>
; + :EVAL-ALL Y <12>

The final subpoint corresponds to the situation
where all of the arguments of the and have been
evaluated. The and then returns whatever the
final argument returned.

Figure 3 illustrates a batch-oriented use of
cover t . However, cover t is most effectively
used in an interactive way. It is recommended
that you first create as comprehensive a test
suite as you can and capture it using a tool such
as rtW [1]. The tests should then be run in con-
junction with cover t and repeated reports from
COVErt generated as additional tests are created
until complete coverage of conditions has been
achieved. To robustly support this mode of op-
eration, COVErt has been carefully designed so
that it will work with batch-compiled defini-
tions, incrementally-compiled definitions, and
interpreted definitions.

H o w C O V E R W o r k s

The code for cover t is shown in Figures 5,
7, 8, and 10. Figure 5 shows the definition of
the primary data structure used by COVErt and
some of the central operations. A point struc-
ture contains five pieces of information about a
position in the code for a definition.

hit

id
status

name

s u b s

Flag indicating whether the point
has been exercised.
Unique integer identifier.
Flag that controls reporting.
Logical name.
List of subordinate points.

The h i t f lag operates as a "time stamp".
When a point is exercised, this is recorded by
storing the current value of the variable *hi t*

in the h i t field of the point. This method of op-
eration makes it possible to reset the h i t flags
of all the points currently in existence with-
out visiting any of them (see the definition of
cover : reset).

The id is printed in reports and used to
identify points when calling cover: :forget. The
variable *count* is used to generate the values.

The s ta tus controls the reporting of a point.
It is either :SHOW (shown in reports), :HIDDEN
(not shown in reports, but its subordinates may
be), or :FORGOTTEN (neither it nor its subor-
dinates are shown in reports). (cover : forget
changes the status of the indicated points to
: FORGOTTEN.)

The name of a point p describes its position
in the definition containing it. A n a m e has the
form: (label code . superior-name) where la-
bel is an explanatory label such as :REACH or
:NULL, code is a piece of code, and superior-
name is the n a m e of the point containing p (if
any). Taken together, the label and code in-
dicate the position of p in a definition and the
condition under which it is exercised (see the
discussion of Figure 4).

At any given moment , the variable * p o i n t s *

contains a list of points corresponding to the
annotated definitions known to cover t . (The
function c o v e r : f o r g e t - a l l resets * p o i n t s * to
n i l .) As an illustration of the point data struc-
ture, Figure 6 shows the contents of * p o i n t s *

corresponding to the second report in Figure 2.
It is assumed that *hi t* has the value 1.

The function a d d - t o p - p o i n t adds a new top-
level point corresponding to a definition to the
list *.points*. If there is already a point for
the definition, the new point is put in the same
place in the list.

The function record -h i t records the fact
that a point has been exercised. This may
require locating the point in *points* using
l o c a t e or adding the point into * p o i n t s * us-

ing a d d - p o i n t , r eco rd -h i t is optimized so that
it is extremely fast when the point has already
been exercised. This allows COVErt to run with
relatively little overhead. (The details of the
way record-hit and add-point operate are dis-
cussed further in conjunction with Figure 10.)

IV-4.37

(in-package "COVER" :use '("LISP"))

(provide "COVER")

(shadow '(defun defmacro))

(export ' (annotate report rese t forget
forget-all *line-limit*))

(defstruct (point (:conc-name nil)
(:type list))

(hit O)
(id nil)
(s ta tus :show)
(name nil)
(subs nil))

(defvar *count* O)
(defvar *hit* 1)
(defvar *points* nil)
(defvar *annotating* nil)
(defvar *testing* nil)

(lisp:defun forget (krest ids)
(forgetl ids *points*)
t)

(lisp:defun forgetl (names ps)
(dolist (p ps)

(when (member (id p) names)
(setf (status p) :forgotten))

(forgetl names (subs p))))

(lisp:defun forget-all ()
(setq *points* nil)
(setq *hit* 1)
(setq *count* O)
t)

(lisp:defun reset () (incf *hit*) t)

(lisp:defun add-top-point (p)
(setq p (copy-tree p))
(let ((old (find (fn-name p) *points*

:key #'fn-name)))
(cond (old (serf (id p) (id old))

(nsubstitute p old *points*))
(t (setf (id p) (incf *count*))

(setq *points*
(nconc *points*

(list p)))))))

(lisp:defun record-hit (p)
(unless (= (hit p) *hit*)

(setf (hit p) *hit*)
(let ((old (locate (name p))))

(if old
(serf (hit old) *hit*)
(add-point p)))))

(lisp:defun locate (name)
(find name

(if (not (cdr name))
points
(let ((p (locate (cdr name))))

(if p (subs p))))
:key #'name :test #'equal))

(lisp:defun add-point (p)
(let ((sup (locate (cdr (name p)))))

(when sup
(setq p (copy-tree p))
(serf (subs sup)

(nconc (subs sup) (list p)))
(setf (id p) (incf *count*))
(dolist (p (subs p))

(serf (id p) (incf *count*))))))

Figure 5: The basic data structure used by COVER.

((1 :SHOW 1 (#1=(:REACH (DEFUN MY* (X Y))))
((2 :SHOW I (#2=(:REACH (WHEN (MINUSP X) (SETQ SIGN (- SIGN)) (SETQ X .(- X)))) #I#)

((3 :HIDDEN I ((:REACH (MINUSP X)) #2# #I#) NIL)
(4 :SHOW 0 ((:NON-NULL (MINUSP X)) #2# #I#) NIL)
(5 :SHOW I ((:NULL (MINUSP X)) #2# #1#) NIL)))

(6 :SHOW I (#6=(:REACH (WHEN (MINUSP Y) (SETQ SIGN (- SIGN)) (SETQ Y (- X)))) #i#)
((7 :HIDDEN I ((:REACH (MINUSP Y)) #6# #i#) NIL)
(8 :SHOW 0 ((:NON-NULL (MINUSP Y)) #6# #I#) NIL)
(9 :SHOW I ((:NULL (MINUSP Y)) #6# #I#) NIL))))))

Figure 6: The contents of *points* corresponding to the second report in Figure 2.

Figure 7 shows the code that prints reports.
As can be seen by a comparison of Figures 2 and
6, reports are a relatively straightforward print-
out of parts of *points* with nesting indicated
by indentation and only the first part of each
point's name shown. The function report2 sup-
ports the abbreviation described in conjunction
with Figure 2.

A n n o t a t i n g def ini t ions . Figure 8 shows
the code that controls the annotation of defini-
tions by COVER. The first time cover:annotate
is called, it uses shadowing-import to install new
definitions for defun and defmacro. Whether or
not annotation is in effect is recorded in the
variable *annotate*. The variable *testing*
is used to make it easier to test COVER using

IV-4.38

(defvar *line-limit* 75)

(proclaim '(special *depth* *all*
out *done*))

(lisp:defun report
(~key (fn nil)

(out *standard-output*)
(a l l nil))

(let (p)
(cond

((not (streamp out))
(with-open-f i le

(s out :d i rec t ion :output)
(report :fn fn :a l l a l l :out s)))

((nul l *points*)
(format out

"'%No definitions annotated."))
((not fn)

(repor t l *points* a l l out))
((se tq p (f ind fn *points*

:key #'fn-name))
(reportl (list p) all out))

(t (format out "'~'A is not annotated."
fn))))

(values))

(l i sp :defun fn-name (p)
(l e t ((form (cadr (car (name p)))))

(and (consp form)
(consp (cdr form))
(cadr form))))

(lisp:defun reportl (ps *all* *out*)
(l e t ((*depth* O) (*done* t))

(mapc # ' repor t2 ps)
(when *done*

(format *out*
"'%;All points exercised."))))

(lisp:defun report2 (p)
(case (status p)

(:forgotten nil)
(:hidden (mapc #'report2 (subs p)))
(:show
(cond ((reportable-subs p)

(report3 p)
(let ((*depth* (I+ *depth*)))

(mapc #'report2 (subs p))))
((reportable p)
(report3 p))))))

(l i sp:defun reportable (p)
(and (eq (status p) :show)

(or *all*
(not (= (hit p) *hit*)))))

(lisp:defun reportable-subs (p)
(and (not (eq (status p) :forgotten))

(or *a11. (not (reportable p)))
(some #'(lambda (s)

(or (reportable s)
(reportable-subs s)))

(subs p))))

(lisp:defun report3 (p)
(setq *done* nil)
(let* ((*print-pretty* nil)

(*print-level* 3)
(*print-length* nil)
(m (format nil

" ; ' V E T ' : [- ' ; + '] ' { "S'}"
depth
(= (hit p) *hit*)
(car (name p))))

(limit (- *line-limit* 8)))
(when (> (length m) limit)

(setq m (subseq m 0 limit)))
(format *out* "'~'A <'S>" m (idp))))

Figure 7: The code for the part of COVER that prints reports.

RT [1].
Redefining defun and defmacro is a conve-

nient approach to use for supporting COVER,
however, it is in general a rather dangerous
thing to do. One problem is that for COVER
to operate correctly, cover:annotate must be
executed before any of the definitions you wish
to annotate are read. For instance, Figure 3
would not work if an eval-when were wrapped
around the top-level forms as a group.

When annotation is in effect, the new def-
initions of defun and defmacro use sublis to
replace every instance of i f , tend, etc. with spe-
cial macros c - i f , c-tend, etc. (see Figure 10).
Defining forms created by the user (e.g., clef
in Figure 10) are typically macros that expand

into defmacro. They are indirectly supported
by COVER, as long as their definitions are read
after cover: annotate has been evaluated.

On the face of it, it is not correct to use
sublis to rename forms in code, because every
instance of the indicated symbols is changed,
whether or not they are actually uses of the
indicated forms and whether or not they are in
quoted lists. Nevertheless, COVER uses sublis
for two reasons.

First, in contrast to a code walker, sublis is
very simple. (The only understanding of Lisp
structure that COVER needs is how to separate
the declarations from the body of a definition,
see the function parse-body.)

Most problems can easy be avoid by resist-

IV-4.39

(lisp:defmacro annotate (t - o r - n i l)
'(eval-when (e v a l load compile)

(a n n o t a t e l ,t-or-nil)))

(lisp:defun annotatel (flag)
(shadowing-import
(set-difference '(defun defmacro)

(package-shadowing-symbols *package*)))
(when (and flag (not *testing*))

(warn "Coverage annotation applied."))
(setq *annotating* (not (null flag))))

(lisp:defmacro defun (n argl ~body b)
(process 'defun 'lisp:defun n argl b))

(lisp:defmacro defmacro (n a ~body b)
(process 'defmacro 'lisp:defmacro n a b))

(lisp:defun parse-body (body)
(let ((decls nil))

(when (stringp (car body))
(push (pop body) decls))

(loop (unless (and (consp (car body))
(eq (caar body)

'declare))
(return nil))

(push (pop body) decls))
(values (nreverse decls) body)))

(defvar *check*
'((or . c-or) (and . c-and)

(if . c-if) (when . c-when)
(unless . c-unless)
(cond . c-cond) (case . c-case)
(typecase . c-typecase)))

(lisp:defun process (cdef def fn argl b)
(if (not (or *arunotating*

(find fn
points
:key #'fn-name)))

'(,def ,fn ,argl., b)
(multiple-value-bind (decls b)

(parse-body b)
(setq b (sublis *check* b))
(let ((name

'((:reach
(,cdef ,fn ,argl)))))

'(eval-when (eval load compile)
(add-top-point

',(make-point :name name))
(,def ,fn ,argl ,~ decls

,(cO (make-point :name
name)

name b)))))))

Figure 8: The code for the part of COVER that annotates definitions.

(EVAL-WHEN (EVAL LOAD COMPILE)
(COVER::ADD-TOP-POINT '(NIL :SNOW 0 (#i=(:REACH (DEFUN MY* (X Y)))) NIL))

(LISP:DEFUN MY* (X Y)
(COVER::RECO~-HIT '(NIL :SNOW 0 (#i#) NIL))
(LET ((SIGN I))

(COVER::RECORD-HIT
'(NIL :SHOW 0 (#2=(:REACH (WHEN (MINUSP X) (SETQ SIGN (- SIGN)) (SETQ X (- X)))) #I#)

((NIL :HIDDEN 0 ((:REACH (MINUSP X)) #2# #I#) NIL)
(NIL :SHOW 0 ((:NON-NULL (MINUSP X)) #2# #i#) NIL)
(NIL :SHOW 0 ((:NULL (MINUSP X)) #2# #I#) NIL))))

(IF (PROGN (COVER::RECORD-HIT '(NIL :HIDDEN 0 ((:REACH (MINUSP X)) #2# #I#) NIL))
(MINUSP X))

(PROGN (COVER::RECORD-HIT '(NIL :SNOW 0 ((:NON-NULL (MINUSP X)) #2# #I#) NIL))
(SETQ SIGN (- SIGN)) (SETQ X (- X)))

(PROGN (COVER::RECORD-HIT '(NIL :SHOW 0 ((:NULL (MINUSP X)) #2# #I#) NIL))
NIL))

. . .)))

Figure 9: Part of the annotated definition of my* from Figure 1.

ing the temptation to u s e i f , cond , etc. as vari-
able names. Any remaining difficulties can be
tolerated because COVER is merely part of scaf-
folding for testing a system rather than part of
the system to be delivered. A subtle difficulty
concerns and and or. They are used as type
specifiers as well as conditional forms. This
difficulty is partly overcome by the type defi-
nitions at the end of Figure 10.

Second, the use of sublis supports two key
features of COVER that would be very difficult
to support using a code wa/ker. It insures that
only conditionM forms that literally appear in
the definition are annotated (as opposed to ones
that come from macro expansions), and yet,
conditionals that come from the expansion of
annotated macros are annotated. (Note that
the literals that turn into conditionals in the

IV-4.40

(defvar *fix*
'((c-or . or) (c-and . and) (c-if . if)

(c-when . when) (c-unless . unless)
(c-cond . cond) (c-case . case)
(c-typecase . typecase)))

(proclaim '(special *subs* *sup*))

(lisp:defmacro sup-mac () nil)

(lisp:defmacro def (name args form)
'(lisp:defmacro ,name (&whole w ,@ ares

&environment env)
(let* ((*subs* nil)

(*sup*
'((:reach ,(sublis *fix* w))

.,(macroexpand-i
(list 'sup-mac) env)))

(p (make-point :name *sup*))
(form ,form))

(ser f (subs p) (nreverse *subs*))
(cO p *sup* (list form)))))

(l isp:defmacro c (body &rest msg)
(cl '(list ,body) msg :show))

(lisp:defmacro c-hide (b)
(CI '(list ,b) (list :reach b) :hidden))

(eval-when (eval load compile)

(lisp:defun ci (b m s)
'(let ((n (cons (sublis *fix*

(list .,m))
sup)))

(push (make-point :name n : s t a tus ,s)
subs)

(cO (make-point :name n :status ,s)
n ,b)))

(lisp:defun cO (p sup b)
' (macrolet ((sup-mac () ' , sup))

(r ecord -h i t ' ,p)
.,b)))

(def c-case (key &rest cs)
'(case ,(c-hide key)

.,(c-caseO cs)))

(def c-typecase (key &rest cs)
'(typecase ,(c-hide key)

.,(c-caseO cs)))

(lisp:defun c-caseO (cs)
(let ((stuff (mapcar #'c-casel cs)))

(when (not (member (caar (last cs))
'(t otherwise)))

(setq stuff
(nconc s tu f f

' ((t , (c n i l : s e l ec t -none))))))
stuff))

(lisp:defun c-casel (clause)
' (, (c a r clause)

,(c '(progn., (cdr clause)) :select
(car c lause))))

(def c - i f (pred then &optional (else n i l))
' (i f , (c -h ide pred)

, (c then :non-null pred)
, (c e lse :nu l l pred)))

(def c-when (pred &rest ac t ions)
' (i f , (c -h ide pred)

, (c ' (p r o g n . , act ions)
:non-null pred)

,(c n i l :nu l l pred)))

(def c-unless (pred &rest ac t ions)
' (i f (not , (c -h ide pred))

, (c ' (p r o g n . , act ions) :nu l l pred)
, (c n i l :non-null pred)))

(def c-cond (&rest cs)
(c-condO (gensym) cs))

(lisp:defun c-condO (var cs)
(cond ((null cs) (c nil :all-null))

((eq (caar cs) t)
(c (if (cda_r cs)

'(progn .,(cdar cs))
t)

:first-non-null t))
((cdar cs)

' (i f , (c -h ide (caar cs))
, (c ' (progn . , (cda r cs))

: f i r s t - n o n - n u l l
(caar cs))

,(c-condO var (cdr cs))))
(t ' (l e t ((,v~

, (c -h ide (caar cs))))
(if ,vax

, (c var : f i r s t - n o n - n u l l
(caar cs))

,(c-condO vat
(cdr cs)))))))

(def c-or (&rest ps) (c-orO ps))

(l i sp :de fun c-orO (ps)
(if (null (cdr ps))

(c (car ps) :eval-all (car ps))
(let ((var (gensym)))

'(let ((,var ,(c-hide (car ps))))
(i f ,var

,(c vat :first-non-null
(car ps))

,(c-orO (cdr ps)))))))

(def c-and (&rest ps)
'(cond .,(maplist #'c-andO

(or ps (l i s t t)))))

(l i sp :de fun c-andO (ps)
(i f (nul l (cdr ps))

' (t , (c (car ps) : e v a l - a l l (car ps)))
' ((no t , (c-h ide (car ps)))

, (c n i l : f i r s t - n u l l (car p s)))))

(deftype c-and (&rest b) ' (a n d . , b))

(deftype c-or (&rest b) ' (o r . , b))

Figure 10: The code for the part of COVER that annotates conditionals.

IV-4.41

code generated by a macro are quoted in the
body of the macro.)

Figure 9 shows part of the results of an-
notat ing the function my* from Figure 1. The
annotated definition is preceded by a call on
add-top-poin% which enters a point describing
the definition into *points*. Within the def-
inition, calls on r eco rd -h i t are introduced at
strategic locations. Each call contains a quoted
point that is essentially a template for what
should be introduced into *points*. The first
w h e n in my* is converted into an i f that has
cases corresponding to the success and failure
of the predicate tested by the when . The call
on r eco rd -h i t that precedes this i f contMns a
point with subpoints that establishes the cases
of the i f . This ensures that both cases of the
i f will be present in *points* as soon as the
i f is exercised, even if only one of the cases is
exercised.

The hidden point associated with the predi-
cate tested by the when establishes an appropri-
ate context for points within the predicate it-
self. It is unnecessary in this example, because
there are no such points. In the cond in the
function g in Figure 3, a similar hidden point
associated with the first predicate tested serves
to correctly position the points associated with
the and (see Figure 4).

For the most part, the macros in Figure 10
operate in straightforward ways to generate an-
notated conditionals. However, clef, c, cl, and
cO interact in a somewhat subtle way using
m a c r o l e t to communicate the name of a su-
perior point to its subordinates. This could
have been done more simply with compi le r - le t ;
however, compi l e r - l e t is slated to be removed
from Common Lisp.

U n d e r l y i n g a p p r o a c h . The annotation
scheme used by COVER is designed to meet two
goals. First, it must introduce as little over-
head as possible when the annotated function
runs. (It does not mat ter if the process of in-
serting annotation is expensive and it does not
mat ter if the process of printing reports is ex-
pensive. It does not even matter if processing is
relatively expensive the first t ime a point is ex-

ercised. However, it is essential that processing
be very fast when an exercised point is exercised
a second time.)

Second, the scheme must work reliably with
interpreted code, with compiled code loaded
from files, and with code that is incrementally
compiled on the fly. This introduces a num-
ber of strong constraints. In particular, you
cannot depend on using some descriptive data
structure built up during compilation, because
you cannot assume that compilation will oc-
cur. On the other hand, if you use quoted data
structures as in Figure 9, you cannot make any
assumptions about what sharing will exist or
whether they will be copied, because some Lisp
compilers feel free to make major changes in
quoted lists.

To achieve high efficiency, r e c o r d - h i t (see
Figure 5) alters its argument by side-effect to
mark it exercised. Side-effecting a compiled
constant is inherently dangerous, but is rela-
tively safe here, because the changed value is
an integer, and the point data structure cannot
be shared with any other point data structure,
because no two points can have the same name.

The first time a given call on record -h i t
is encountered, it enters the point which is its
argument into *points*. This is done by first
looking to see if the point is already there (e.g.,
because it was entered by an add-top-point or
is a subordinate point that was explicitly en-
tered as part of its superior point). If it is not
there, it is copied and inserted as a subordi-
nate point of the appropriate superior point.
(By this process, *points* is dynamically built
up in exactly the same way when executing in-
terpreted and compiled code.) If the superior
point cannot be found, nothing is done. (This
can only happen when the annotation of the
currently executing function has been forgot-
ten.)

The second time a call on record -h i t is en-
countered the only thing it has to do is check
that the point has been exercised. If it has,
nothing needs to be done. If a c o v e r : r e s e t has
been done, then the check will fail, and record-
h i t relocates the point in *points*, and sets the
h i t flag. (This second lookup could be avoided

IV-4.42

if the quoted point had been directly inserted
into *points* instead of copied. However, this
is unsafe for two reasons. First, the sharing
would mean that side-effects to *points* would
translate into side-effects to compiled list con-
stants. This will cause many Lisp systems to
blow up in unexpected ways. Second, in some
Lisp systems compiling an interpreted function
can cause the quoted lists in it to be copied.
As a result, you cannot depend that any shar-
ing set up between a global data structure and
quoted constants will be preserved.)

The operation of COVER requires that each
point be given a unique identifying name. The
naming scheme used assumes that a given con-
ditional form will not have two predicates that
are equal and that a chunk of straightline code
will not contain two conditional forms that are
equal. If this assumption is violated, COVER
will merge the two resulting points into one.

T h e p o w e r o f Lisp. COVER is a good ex-
ample of the power of Lisp as a tool for build-
ing programming environments. Because Lisp
contains a simple representation for Lisp pro-
grams, it is easy to write systems that con-
vert programs into other programs. Because
Lisp encompasses both the language definition
and the run-time environment, it is easy to
write systems that both manipulate the lan-
guage and extend the run-time environment.
Systems like covER are regularly written for
c and other Algol-like languages; however, this
is much harder to do than in Lisp.

Acknowledgments

The concept of code coverage is an old one,
which is used by many (if not most) large pro-
gramming organizations. COVER is the result
of several years of practical use and evolution.

This paper describes research done at the
MIT AI Laboratory. Support was provided by
DAlZPA, NSF, IBM, NYNEX, Siemens, Sperry, and
MCC. The views and conclusions presented here
are those of the author and should not be inter-
preted as representing the policies, expressed or
implied, of these organizations.

Obtaining C O V E R

COVER is written in portable Common Lisp
and has been tested in several different Com-
mon Lisp implementations. The full source for
COVER is shown in Figures 5, 7, 8, and 10. In
addition, the source can be obtained over the
INTERNET by using FTP. Connection should
be made to FTP. AI. HIT. EDU (INTEKNET number
128.52.32.6). Login as "anonymous" and copy
the files shown below.

In the directory / p u b / l p t r s /

c o v e r , lisp source code
c o v e r - t e s t , lisp test suite
cover -doc , t x t brief documentation

The contents of Figures 5, 7, 8, and 10 and
the files above are copyright 1991 by the Mas-
sachusetts Institute of Technology, Cambridge
MA. Permission to use, copy, modify, and dis-
tribute this software for any purpose and with-
out fee is hereby granted, provided that this
copyright and permission notice appear in all
copies and supporting documentation, and that
the names of MIT and~or the author are not
used in advertising or publicity pertaining to
distribution of the software without specific,
written prior permission. MIT and the author
make no representations about the suitability
of this software for any purpose. It is provided
"as is" without express or implied warranty.

MIT and the author disclaim all warranties
with regard to this software, including all im-
plied warranties of merchantability and fitness.
In no event shall MIT or the author be liable
for any special, indirect or consequential dam-
ages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action
of co.ntract, negligence or other tortious action,
arising out of or in connection with the use or
performance of this software.

R e f e r e n c e s

[1] R.C. Waters, "Supporting the Regression
Testing of Lisp Programs7 A CM Lisp
Pointers, 4(2):47-53, June 1991.

IV-4 • 43

