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A major obstacle in partial evaluation (program specializa-

tion) is the need for binding time improvements [HH90]. BY

reorganizing a source program, the residual programs ob-

tained by specializing the source program may be improved:

more computations can be done statically, that is, at spe-

cialization time.

One well-known effective reorganization is (manual or

automatic) conversion into continuation Passing styie (cps)

[Dan91, Jor90, HG91, KS91, CD91, Bon91b, Jor92]. This
conversion allows data consumers to be propagated through

frozen expressions to the data producers. In this paper we

show how such improvements can be obtained without af-

fecting the source program: by writing the program special-
ize itself in cps; traditionally, specialization has been for-

mulated in direct style.

The advantages of avoiding cps-converting source pro-

grams are: (1) no cps-conversion phase is needed; (2) the

generated residual programs are not in cps; (3) since no

source level continuations are added, there is no overhead of

manipulating closure representations in the generating ex-

tensions (e.g. compilers) obtained by self-application; (4)

manual “binding time debugging” is easier since binding

time analysis is done on a non-converted program.

We have implemented a cps-based program specialize;

it is integrated in the partial evaluator Similix 4.o [Bon91 b].

Using a cps-specializer, partially static data structures

[Mog88] can be handled safely in a straightforward way. The

difficulty is to ensure automatically that residual expressions

that become part of a partially static data structure are nei-

ther duplicated nor discarded. This is achieved by binding

such residual expressions in automatically inserted frozen

let-expressions; cps is needed to propagate operations on

the partially static data structure through these frozen let-

expressions. Based on this idea, we have implemented an

extension of Similix 4.0 that handles partially static data

structures.
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1 Introduction

When using a partial evaluator, a small seemingly innocent

change in a source program may have severe effects on the

quality of the residual programs obtained by partially eval-

uating the source program. It thus often occurs that if the

source program is written in one way, the specialize hap-

pily performs some computation statically — while if the

program is formulated in a slightly different way, the spe-

cialize has to suspend that computation, leaving it in the

residual program.

For an example, consider the following typical piece of

code (written in Scheme syntax):

(f (~ ((val (evalu E . ..))) (1)

(lambda (nanre) (. . . val . . .))))

Such a code piece could for instance appear in an interpreter

where a value val is computed and bound to a name in an

environment represented as function. Assume that val is

dynamic (its value unavailable at specialization time). Then

the specialize should not unfold the let-expression: due to

the occurrence of val under a lambda, unfolding might du-

plicate (or discard) the residual version of the expression

(evalu E . ..). This is unacceptable: for linear time source

programs, duplication may lead to exponential time residual

programs [Ses88]. Also, discarding a possibly side effecting

residual expression is unacceptable [BD91].

We have therefore, using t we-level syntax [NN88,

GJ91b], annotated the let-expression as “to be frozen” by

underlining the keyword let in the source code. In a typical

specialize [G J91b, BD91, Bon91a], freezing a let-expression
implirs freezing its body expression. Consequently, the

lam bda-expression becomes frozen (hence the underlined

lambda). Function f therefore gets a dynamic argument,

that is, a piece of residual code: reductions in the definition

of f depending on f’s argument thus cannot be performed

(concretely: applications of f’s argument cannot be beta

reduced by the specialize).

Now let us consider an equivalent piece where f is applied

directly to the body of the Iet-expression:

(W ((val (evalu E . ..))) (2)

(f (lambda (name) (.. . val . ..))))

The result of specializing the whole body expression

(f (lambda . . . ) ) must be a piece of residual code (a frozen
expression), but the frozen let-expression no longer forces
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the lambda-expression itselj to be frozen. Hence f now gets

a non-frozen argument rather than a piece of code, and

therefore reductions that depend on f’s argument can be

performed in f’s body. (Note: the lambda-expression may

still become frozen due to f’s internal operations. When

that happens, the expressions (1) and (2) give equally bad

results. )

The problem with version (1) is that the let-expression

blocks the consumer f from being propagated to the pro-

ducer, the lambda-expression. Rewriting programs to prop-

agate consumers to producers in general requires more com-

plex non-locrd rewritings. This can be illustrated by the

following only slightly more complex example:

. . . (f(g E...)) . . . (3)

(define (g E . ..)

(~ ((val (evaluE . ..)))

(lambda (name) (... val . ..))))

Propagating the consumerf to the lambda-expression now

cannot be done locally: it requires changing the definition

of g, for instance by passing f as an argument:

. . . (gE... f) . . .

(define (g E . . . f)

(~ ((val (evaluE . ..)))

(f (lambda (name) (... val . ..))))

Other places calling g then of course also have to be taken

into account.

The problem of propagating consumers through frozen

let-expressions often appears in practice. A typical exam-

ple is interpreters that iteratively compute a number of val-

ues and store these in an environment, for instance when

interpreting function callsin interpreters for functional lan-

guages.

Improving binding times by manual cps-conversion of

parts of programs has been studied by several authors

[Dan91, Jor90, HG91, KS91, Bon91b, Jor92]. It was pro-

posed in[CD91] to automatically transform source programs

into cps, to maximally propagate consumers through frozen

expressions. Weshall referto (both manual and automatic)

source program cps-conversion as explicit cps-conversion.

The key idea of this paper is, instead of explicitly cps-

converting source programs, to write the specialize in cps.

What weshall do is the following:

1. Define a traditional direct style specialize D.

2. Define acpsspecializer Canal showit eguiualentto D.

3. Obtain C2, unimproved version of C.

Obtaining (!2 will be done by modifying Cin order to prop-

agate consumers through frozen let-expressions to prOdUC-
..s. TL. rnc.dX.a&n i= b-.-d on th.fellow:n5=Fez*t;~n*l

Scheme equivalence N: for all variables V, all expressions

El, E2, and allcontexts which are “safe” (defined in section

4) E[_]:

E[(let ((VEI)) Ez)]~(let ((VEI)) E[E2])

Being an equivalence based on distributing contexts, it is not

surprising that continuations corneint othepicture: indirect

style, there is no explicit context that can be manipulated; in

cps, however, the continuation (context) can bemanipulated

explicitly.

1.1 Prograndngkmguage

Aprogramis a set ofrecursive procedures (functions) writ-

ten in a subset of Scheme [IEE90], see figure 1 (essentially

the Similix core language [Bon91b]). An expression is a

constant (atomic value or quoted expression), a variable, a

conditional, a let-expression, a primitive operation, acallto

a named procedure, a lambda-abstraction, or an application

(of an expression evaluating to the value of an anonymous

lambda-abstraction). Forconvenience, the three application

forms (O E*), (P E*), and(A E*) arekept syntactically dis-

tinct (the distinction is made automatically during parsing).

We do not consider side-effects in this paper. However, the

ideas presented here are not restricted to side-effect free lan-

guages. The Similix system indeed does treat a limited class

of s~de-effects [Bon91b].

IIe Program; De Definition; E, B, AG Expression;

Cc Constant; VeVariable; OEPrimopName;

P 6 ProcName;

II ..—..— D*

D ::= (define (P V*) B)
E, B, A::= Cl VI (if EIE2ES) I

(let (( VEI)) E2.) [(O E*) I(P E*) I

(lambda (V*) B) I (A E*)

Figurel: Scheme Subset

We shall write annotated source programs to be spe-

cialized in a two-level notation, see figure 2. Each com-

pound expression construct thus existsin two forms, as “to

be performed” and as “to be frozen” (underlined). We do

not in this paper discuss how to annotate a program: this

is done automatically by a binding time analysis (see e.g.

[JSS89, NN88, BD91]). When a program is safely annotated,

no tag projection error can ever occur [G J91b]; injection tags

can therefore safely be omitted, one of the main motivations

for doing separate binding time analysis.

II c Progrsm ; D G Definition ; E, B, AG Expression;

C 6 Constant; V, W ●Variable; O G PrimopName;

P< ProcName; Me Lam bdald

n ..—..—
D ..—..—

E, B, A ::=

D*

(define (P V*) B)

CIVl(ifEIEzE~) I

(let ((V EI)) E2) I (O E*) I (P E*)

(lambda-M (V*) BIW*I) I (A E*) I

(W E) I (H EI E2 E3) I

(~ ((V E,)) E,) I (O-E*) I (P-E*)

(lambda-M (V*) BIW*I) I (A-E*)

Figure 2: Two-Level Scheme Subset

The ~-form allows static first order values to be co-

erced into residual expressions [G J91b]. This is done by

“adding a quote”. The syntax of lambda-abstractions is
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augmented: each lambda-expression in a program has a
unique identification M, and W* is a list of the free vari-
ables in the body B.

2 Direct Style Specialization

We now define a direct style memoizing specialize D, see

figure 3. Many of the details are not important for un-

derstanding the points of this paper, but we have included

the full specialize for completeness. The specialize is the

one from (the older direct style version of) Similix, but the

points we “make when improving binding times in section 5

are not specific to Similix.

A residual program is a set of recursive specialized pro-

cedures, as described in e.g. [J SS89]. During specialization,

procedure calls (P E*) are either unfolded or, if the an-

notation is underlined, a residual call is generated. When a

residual call (P’ E’* ) is generated, a residual procedure defi-

nition (define (P’ . ..) . . . ) is added to the residual program

by memo~. Procedure P’ is a specialized version of proce-

dure P. To generate the specialized procedure P’, memo~

performs a recursive D-call D B p where B is the body of

procedure definition P.

However, it can happen that P is called with values that

are equivalent to values seen in a previous call to P: then

the previously generated residual procedure P’ is reused

[JSS89, Bon91a] (mernoization/function caching). The spe-

cialization process is initiated by processing an initial “goal”

call (P_E* ). The details of memorization are of no impor-

tance here except for one point: to enable the specialize

to recognize functional values equivalent to those seen in a

previous call, functional values must be represented as first

order data objects (closures). Details on when values are

considered equivalent are described in [Bon91a] for Similix.

Consel’s Schism system [Con90b] uses similar representa-

tions. Lambda-mix performs no memorization and so can

represent functional values by functions [GJ91b].

2.1 Notation

D is written in a functional style in a completely call-by-

value (strict) meta-language. D is written operationall~

there is no value representing non-termination, and hence

all functions are partial: an expression V E p may not eval-

uate to any value. The text of the source program is a

global constant II which it is accessible everywhere. The

residual program is stored in a globalized “invisible” vari-

able II’ which is accessed and updated only by memo~. We

could have written the specialize in a completely functional

way by passing II’ around, letting D take II’ as an addi-

tional parameter and letting D return II’ as an additional

result (packaged in a tuple, for inst ante), but for expository

(and implementational) reasons, we prefer to keep II’ global-

ized. One more non-functional feature is used: the function

gen-var which simply generates a fresh residual variable.

The value error is used to represent all kinds of errors

(type errors, tag projection errors, division by zero, etc.).

We use De-r to denote the domain D U {error}. The or-

dering of all domains (also domains of form Derror) is the

flat one; domains are thus simply sets. All functions with an

argument domain .Derror are error-preserving: when given

the value error, they return error. All non-error-values are

called m-o~er values.. .
Index ranges are implicitly defined by the context, see

e.g. the rule for (O E*) where Ei is an expression in the list

E*. We use [_++-]_ to denote function updating, and [-I+-]

to denote updating the “initial” function that maps every-

thing to error. Subscripted function updating abbreviates

nested function updating, see e.g. the rule for (P E*). (-)_

creates a list (cf. list comprehensions); see e.g. the rule for

(O E*): the list generated there has the same length as the

length of E*. -t _ and J_ are used for injecting into and
projecting out from tagged sum domains. Projecting with

a wrong tag gives error; errorJ _ gives error. Precedence:

application binds stronger than T and J. Residual sYntax

domains are denoted by ‘-symbols; these domains are iden-

tical to source syntax domains. The function arrow + de-

notes the domain of (partial error-preserving call-by-value)

functions.

OBSERVATION 1 Inspecting the j.e&rule in the definition

of D, we observe that specializing the body expression EZ

must result in a piece of residual code. This was exactly

the problem pointed out in the introduction: “freezing a

let-expression implies freezing its body expression”. ❑

3 Continuation Passing Style Specialization

Figure 4 defines C, a cps-version of ‘D. Although we wrote C

by hand, cps-versions of direct style programs can be derived

automatically [Ste78].

The identity continuation (Av. v) is denoted by t,. Func-

tion memoc is identical to memon, except that memo~ per-

forms a call ‘D B p; memoc instead performs a call C B p L.

Notice that C’s continuation parameter IC thus is initialized

to t when initiating generation of a new residual procedure.

3.1 Equivalence with direct style

The cps specialize can be proved equivalent to the direct

style specialize: whenever V gives a proper result, C gives

the same result and vice versa.

DEFINITION 2 For all expressions Expl and Expz we use

Expl z Expz to denote that if Expl evaluates to a proper

value V then Expz also evaluates to V. We write Expl s

Exp2 iff Expl z Exp2 A Expl z Exp2. We say that Exp

is proper iff Exp evaluates to a proper value. ❑

Correctness of C with respect to D can then be stated as

VE, p : D E p ~ C E p L; this follows from the following more

general theorem by inserting L for x.:

THEOREM3 VE, p, K: K(DEp)-CEptc.

PROOF Follows from lemma 4 and lemma 5. ❑

LEMMA4 VE, p, K: K(DEp) ~ CEp K.

PROOF The proof is by induction on the structure of evalu-

ation trees. We have to prove that if R(D E p) evaluates to a

proper value v (the assumption), then C E p ~ also evaluates

to v. Since R is strict and error-preserving, the assumption

implies that 2) E p is proper.

Transform each right-hand side of the C-rules to a form

identical to the corresponding D-rule, with the only excep-

tions that it contains recursive calls of form C Ei p L rather

than D Ei p and that N is applied to the result. The trans-

formation is done by using corollary 7 (going from right to

left) to move continuations out from argument to apply po-

sitions and then beta-reducing the generated applications
(AVi . . ..)(CEi Pt).
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u, v, w G 2Val = Ba + Cl -t Co — two-level values

pc 2Env = Variable + 2Val — two-level environments

ba c Ba =... — base values (integers, booleans, etc.)

cl c cl = 2Val* x Lam bdald — closures

co e co = Expression’ — residual code expressions

D : Expression --+ 2Env ~ 2Valerror

Dcp = C}&

DVp = p(v)

D(if El Ez E3)p = if DE1 plBa then DEz p eise DE3 p

D(let (( VEI)) E2)P = DE2 [VI+DEI P]P

D(O E*)P = 00 (~ Ei P~B.)itB.

D(P E“)p = DB[ViwDEip]i where If = . . . (define (P V“) B). . .

D (lambda-Nl (V*) BIVV*I) P = ((p(wj))j, M)tc~

‘D(AE*)p = ‘DB [Viw’DEi p]i[Wj++wJ]j

where (w*j M) = DApJcl, If = . . . (lambda-M (V”) B[W*] ).. .

D(ME)P = bld-cst(D E PIBa)t Co

D(s El E2 E3)p = bld-i[DEl PIcO, ~E2 ,o~co, ~E3 P~CO)TCO

D(M (( VEI)) E2)P = bld-let(V’ , D El pjco, D Ej pIICo)~co where V’ = gen-varo , PI = [VI-+V’]p

~ (O_E*) p = bld-primop(O , (D Ei Pjco)i)tco

ZJ(P-E*)p = Md-pcall(P’ , u“)tco where (P’, u*) = memon P (DEi P)i

‘D (lambda-M (V*) B [W*]) p = Md-lam((V~)i , D B [Vi~V/]ipl Co)TCo where v; = gen-varo

D (A_E*) p = bld-app(DAp , (D Ei PICo)i)TCo

@ : PrimopName + 13a*error + 13aer-ror

IZIemov : ProcName + 2Va~*error. + (ProcName’ x CO*) CXTOr

bJd-cst : Ba -+ Co

bid-if: (CO x CO X Co)err-or + Coerror

—
Figure 3: Direct Style Specialize

Then apply lemma 4 inductively to each occurrence of

expressions of form ‘D Ei p in the right-hand sides of the def-

inition of D (and to the expression D B p inside memOZJ).

Validity of induction: by assumption, ‘DE p is proper; hence,

for any evaluation tree, any expression of the form D Ei p in

the evaluation subtree is proper. Thus lemma 4 can be ap-

plied. !2

LEMMAS VE, p,~:K(DEp) ~ CEp K.

PROOF By induction on the structure of evaluation trees,
assuming that C E p K is proper. The proof is similar to the

proof of lemma 4. ❑

PROPOSITION 6 VE, p,K, p : p(CEp~) = CEp Porc.

PMOF Follows from lemma 8 and lemma 9. ❑

COROLLARY7 VE, P, K : K(CEPL) = CEPK.

PROOF Follows from proposition 6 by inserting L for rc. ❑

LEMWA8 VE, p, K,jL:p(CEp K) z CEppOK.

PROOF By induction on the structure of evaluation trees,

assuming that P(C E p K) is proper. From the assumption,

it follows that C E p K is proper since p is strict and error-

preserving. For each right-hand side in the definition of C,

propagate ~ inwards so that it is applied to the results of

the recursive C-calls. Then use lemma 8 inductively. ❑

LEMMA9 VE, p, K,p:p(CEp K) z CEPUOK.

PROOF By induction on the structure of evaluation trees,
assuming that C E p poK is proper. Similar to the proof of

lemma 8. ❑

4 Well-behaved continuations

Some of the continuations in figure 4 turn out to be of a

form not well-suited for the transformations we shall per-

form to improve binding times. In this section we rewrite

the definition of C to bring the continuations on the needed

form.
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2Val, 2Env, Ba, Cl, and Co as in figure 3

%, p C 2Cont = 2Valerr0r -+ 2Va&rur — continuations

C : Expression + 2Env e 2Cont e 2Valemr

ccp K = 14cTBa)

cvp~ = WV))

C(if El Ez E3)p K = CEIp (~V1.~,fVIl& then CE2p K eke CE3p K)

C(let (( VEI)) E2)PK = CE1 p (~VI .CE2[VI+V11PK)

C(O E*)p K =CEIp(Avl . . . . CEn p (~VII . K(OO (vilBa)iTBa)) . ..)

C(PE*)p K . CElgI(AVl . . . .CEn P (Avn .CB[Vi~vi]i /i). ..) where II = . . . (define (P V*) B)...

C (lambda-M (V*) BIW*I) PK = fi(((p(wj))j, M)rc~)

C(AE*)p K =CAp(Au .CElp(/lvl . . .. CE~p(ACB plK)l ))...))

where (w*, M) = U$cl, pl = [Vi+vi]i[Wj+Wj]j , II = . . . (kmbda-M (V*) BIW” I). . .

C(W E)p IG = c E p (~V. K(bkf-f3t(vlBa) tCo))

C(M EI E2 E3)p K = CEI p (~vl . CE2 p (~v2 . CE3 P (~v3 . K(bM-i{vllCo , v21co > vdCo)tCo))))

C(M (( VEI)) E2)p K = CEI p (AVI. CEZ PI (Av2. ~(bld-let(V’, VI} CO, vd.c~)fco)))

where V’ = gen-varo , pI = [VWV’]p

C (O-E*) pK = CElp(Avl . . . . CEn p (Avn . ~(bld-primop(O, (filCo)i)tCo)). ..)

C(P-E*) pK = CE1p(Avl . . . . CEn p (Avn . K(b]d-pcaH(p’ , u“)tco)) . ..)

where (P’, u*) = memoc P (V*)i

c (lambda-hl (W) B[W*] ) p K = C B [Vi+ V[]ip (Av. rc(bM-lam((V/)i , VI CO) TCO)) where v{ = gen-varo

C(A_E*)p K =CAp(Au .CElp(Avl, .,. CE~ p (Avn . ~(bld-app(u , (Vilco)i)tco)) . . .))

Figure 4: Continuation Passing Style Specialize

DEFINITION 10 E [_] denotes a conted: an expression with

one missing sub expression. E [El] denotes the expression ob-

tained by filling the hole in the context expression E [_] with

expression El. E [_] may be the empty contest [_] in which

case EIE1] = EI. ❑

DEFINITION 11 We define the safe contexts recursively: if

E [_] is safe, then the following contexts are also safe:

[-.]; (if E[_] E2 E); (let ((V E[-])) E2) ;

(O E, ,.. ., E],], En),En) ; (P El,.. ., E[_], En),En) ;

(A[-] El,... ,En) ; (A El,. ... E[_],...,En)

We define: safe(E [_]) u E [_] is safe. ❑

It follows from this definition that the unsaje contexts are

those that contain a (sub-) context of one of the forms

(if E] E[-] Es) ; (if El Ez E[_]) ;

(let ((V E,)) E[_]) ; (lambda (V*) B[_])

Thus, if the hole in a context E [_] lies in some sub-context

that is the then- or else-branch of a conditional, the body of

a let-expression, or the body of a lambda-expression, then

E [_] is unsafe.

We use ~ to denote equivalence between expressions:

DEFINITION 12 VEI, EZ : El N E2 iff El and Ez are opera-

tionally equivalent. ❑

We state the following property without proof

PROPERIT 13

VV, EI, Ez, E[_] : safe(E[_.]) +-

E[(let ((V EI)) E2)] - (let ((V El)) E[E2]) ❑

It k easy to see that the equivalence does not hold

for unsafe contexts: (1) A conditional is not strict in

the then- and else-branches, so El need not be evalu-

ated in E[(let ((V El) ) E2)], but is always evaluated in

(let ((V El) ) E[Ez]). (2) A let-expression introduces a

binding that may be used in El in E[(let ((V El)) E2)];

this binding is not visible to El in (let ((V El)) E[Ez]).

(3) A lambda-expression both introduces bindings and is not

not strict in its body-expression.

That the let-equivalence only holds for safe contexts mo-

tivates the following definition to distinguish continuations

that behave like safe contexts from those that do not:

DEFINITION 14 A continuation x is well-behaved iff wb(~)

holds:

VK : wb(~) *

(Vco : fi(cotco) is not proper) V

(3 E’[_] : safe(E’[_]) A VCO : ~(cotco) = E’[co]Tco). D

Thus, when given an argument cot co, a well-behaved con-

5



C(fi El EZ E3)p K = c E, p (Avl . ~(bld-if(v, jco, CE2 pLIco, CE3 P LIG)TcO))

C(let (( VEI)) E>)pK = c E, p (Avl . ~(bld-let(V’, VIICO, cE2 PI ~lc~)lc~))—

where V’ = gen-varo, PI = [V+V’]P

C (lambda-M (V*) B [W* I ) p K = ~(bld-lam((V{)i , C B [ViwV{]i~ ~JcO)TcO) where V; = gen-varo

Figure 5: Making the Continuations Well-Behaved

C2 (W ((v El)) E2) PM = C2 EI P (AVI . bJd-kt(v’, V14c~, c2 E2 P1 dco)tco)

where V’ = gen-varo , PI = [VI+V’]p

Figure 6: Improved ~-rule

tinuation K either always fails or always generates an expres-

sion E’ which contains co as a subexpression; notice that

context E’ [_] is safe and does not depend on co. Also notice

that continuations expecting an argument batBa or c~t cl

are trivially well-behaved.

We observe from figure 4 that some of the continua-

tions are not well-behaved: the (Avz . . .)- and (Av3 . . . .)-

coutinuations in the if-rule, the (Avz . . . .)-continuation in

the I&-rule, and the (Av. . . .)-continuation in the larsbda-

rule. These continuations all “dump” their argument in an

unsafe position, the then- or else-branch of a generated con-

ditional, the body of a generated let-expression, or the body

of a generated lambda-expression.

We can make all continuations well-behaved (without

changing the meaning of C) by transforming the U-, ~-,

and lambda-rules: use corollary 7 (going from right to left)

to move the non-well-behaved continuations p out in apply-

position, then beta-reduce the application IL(. . .). This gives

the rules in figure 5. When we refer to C in the rest of this

paper, we mean the well-behaved version with the ~-, ~-,

and lambda-rules from figure 5.

5 In-proving binding times

As stated by theorem 3, we so far have not gained anything

by going from direct style to cps: D and C produce the

same results. What we shall do now is to modify C’s let-

rule, yielding an improved specialize C2. The improvem~t

is done by propagating the consumer, the continuation ~,

through the bid-let to the producer, the let-body. This is

exactly the distributive consumer-propagation discussed in

section 1.

The right-hand side of the ~-rule from figure 5 is im-

proved in two steps:

CE, p (Av, . ~(bld-let(V’, VI JCO, C Ez pi ~JcO)~cO)) ‘%1

C’ El p (Avl . bJd-let(V’ , VIJCO , K(C1 E2 PI ~)~co)tco) ‘~

C2 El p (AVI . bld-let(V’ , VIICO, C2 E2 PI K~co)tc’0)

The improved ~-rule is given in figure 6. All other C2-rules
are identical to those of C, except that all recursive C-calls
should be replaced by C2-calls. In section 5.2 we come back
to why the two steps improve the binding times.

The improved ~-rule looks very natural, resembling the
rule for the non-underlined let a lot. If one had originally
formulated specialization in cps, not having an equivalent
direct style style specialize in mind as we did, it is most

likelv that one would have written the imDroved ~-rule in

the first place.

5.1 Correctness of the steps

In this section we show correctness of C2 with respect to C

(and thus also with respect to D). Correctness is expressed

by corollary 18, which is an instance of theorem 17: when-

ever C gives a proper result, C2 gives an equivalent result.

We need to extend definition 12 to handle values from

2Val, not just from Co:

DEFINITION 15

‘v’Col , co” : cO1tco - co2~co if COI w 032

Vvl , V2 : vl~vzifvl=vz ❑

The equivalence CO1 ~ C02 is defined in definition 12; recall

that Co = Expression. We also need a slightly modified

version of definition 2:

DEFINITION 16 For all expressions Expl and Exp2 we use

Expl < Exp2 to denote that if Expl evaluates to a proper

value V1 then Exp2 evaluates to a proper value V2 such that

VI - v’. ❑

Notice that VI and Vz need not be equal, they need only

be equivalent according to the definitions 12 and 15. Also

notice that ~ is transitive.

The following theorem expresses correctness of C2 with

respect to C:

T’REOREM17 VE, p,~:wb(K) + CEp K ~ C2Ep K.

PROOF Follows from lemma 21, lemma 23, and transitivity

of<. ❑

C!0ROLLARY18 VE, p:c EpL ~ C2Ep L.

PROOF Follows from theorem 17 by inserting L for R. L is

trivially well-behaved. ❑

The central lemma is lemma 19:

LEMMA 19

Vtc : wb(tc) A (Vco : ~(cotco) k proper) +

(VV’, El, Ej : ~(bld-let(V’ , Ej , Ej)TCo) N

bkl-let(V’ , E; , ~(E\tCo)~Co)TCo).

PROOF If the condition holds, then, since R is well-behaved,

there exists a safe context E’ [_] such that ~(cot co) =

E’[co]t co for any co. We therefore have to prove
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VV’, E~, EL, E’[_] : safe(E’[_]) + E’[(let ((V’ E;)) E;)]*

(let ((V’ Ei ) ) E’[E4])

which is stated by property 13. •1

The following lemma expresses that C’s continuation argu-

ment is never discarded, but always applied:

LEMMA 20

VE, p, K : wb(~) A CEp K k proper +

~ is always applied and the result of the application is

proper.

PrwoF By induction on the structure of evaluation trees.

For any evaluation tree, K is eventually applied to some argu-

ment (by induction, the continuations of form (Av. . . . ~. . .)

are applied, so eventually K is also applied); the result of this

application must be proper, otherwise the inductive assump-
tion would be contradicted. ❑

LEMMA21 VE, p, K: Wb(K) + CEp K s CIEp K

PRQOF By induction on the structure of evaluation trees,

assuming that C E p K is proper. For each syntactic case, in-

duction is valid because if ~ is well-behaved then the continu-

ations supplied in the recursive C-calls are also well-behaved

(C only introduces well-behaved continuations, cf. section 4).

The only non-trivial case is then the one for ~. Here

lemma 19 is used to rewrite the right hand side of C’s ~-

rule, moving R inside of bkl-let. The condition of lemma 19

is fulfilled because (1) ~ is well-behaved by the inductive

assumption; (2) by the inductive assumption, by lemma 20,

because K is well-behaved, and by the fact that E is applied

to an argument of form cotco, it holds that VCO : ~(cotco)

is proper. ❑

The converse of lemma 21 (C E p ~ ~ Cl E p K) does not hold.

If we were to prove it, we would need to use lemma 19 “the

other way around” to move ~ outside of Md-let. But this is

not possible in general: in C1’s ~-~ule, ~’s argument can

be of a form different from . . . Tco whale Cl may still produce

a proper result.

For the same reason, the equivalent of proposition 6 does

not hold for Cl. However, we do not need proposition 6 in

full generality anymore, a weakened “one-way” form will

suffice:

LEMMA 22 VE, p, K, p : wb(p) a A(C] E pK) ~ Cl Ep poK

PROOF By induction on the structure of evaluation trees,

assuming that P(C1 E p K) is proper. From the assumption,

it follows that C1 E p K is proper since ,a is strict and error-

preserving. All generated continuations are well-behaved,

so induction is always valid. The proof is similar to the

proof of lemma 8, but everywhere N is used instead of =,

and lemma 19 is needed additionally for the ~-case to

propagate p through bid-let. The condition of lemma 19 is

fulfilled by a reasoning similar to the one used in the proof

of lemma 21. ❑

LEMMA23 VE, p,~:wb(~) + CIEp K s C2Ep K

PROOF By induction on the structure of evaluation trees,

assuming that Cl E p R is proper. The proof is similar to the

proof of lemma 21, except that lemma 22 is used for the

~-case instead of lemma 19. ❑

5.2 What is the it-rqxovernent?

As indicated by theorem 17, there exist expressions for which

C2 produces a proper result while C does not. This happens
when processing~-expressions there is no requirement to

freeze the body eqwession of u M in C2 ! This is different

from C (and the equivalent D), cf. observation 1.

When using C2, we may choose to freeze the bodies of

~’s (in which case we get residual programs equivalent to

those produced by C, cf. theorem 17), but we do not have to

do so. By choosing not to freeze, we get exactly the binding

time improvements we are looking for: a consumer can be

propagated through ~’s to a producer. Thus, to obtain

such a propagation, d is not necessary to convert source

programs-. For example, specializing the example expressions

(1) and (2) from section 1 (with expression (1)’s lambda non-

underlined) now gives equally good results. Also, example

(3) from section 1 can now be specialized with the lambda

non-underlined; reductions that depend on f‘s argument can

now be performed by the specialize.

5.3 Inq.hnentation

We have integrated a C2-based specialize in the Similix sys-

tem (the specialize of Similix 4.o is thus directly based on

C2). Compared to the earlier D-based specialize, the C2-

based specialize allows source programs to be expressed in

a much more natural and readable way. Major examples

are the Similix specialize itself and the BAWI,-interpreter

(an interpreter for an Orwell-like lazy functional language)

from which a compiler was generated by partial evaluation

[Jor92].

6 fi:e:j: and Comparison with Explicit CPS-

6.1 Residual progrants

When specializing explicitly cps-converted source programs,

residual programs will always be in cps. This is not al-

ways desirable as pointed out in [Dan92] in which automatic

transformation back to direct style is described. A special-

ize written in cps such as C2 does not generate residual

programs in cps (unless of course the source programs are

in cps in the first place).

6.2 Generating extensions

Explicit cps-conversion of source programs has negative

effects on the “generating extensions” generated by self-

applying the specialize mix, for instance the compilers

generated by specializing mix with respect to interpreters:

comp = mix(mix, int). In a memoizing specialize, functions

in in t, including continuations, must be represented as clo-

sures by mix (cf. section 2). Operations on these closures

are dynamic at self-application time and thus cannot be re-

duced when generating com p; these relatively costly opera-

tions therefore remain in the code of com p.

These problems do not occur with our approach: since

there is no cps-conversion of source programs, in t contains

no additional continuations that would give an overhead in

the code of com p. Note: compared to a direct style mix,

we do get an overhead in the compiler generator cogen =

mix(mix, mix) since the second mix is in cps.

Compiler comp is a specialized version of mix (which is
in cps) and so will itself be written in cps; but since the
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continuations in com p are not represented as closures, this

is not a problem. In [CD91], the mix being specialized to

generate com p need not be cps-converted (mix is a special

case there since it only operates on cps-programs, not ar-
bitrary programs); hence their generated compilers will not

themselves be written in cps.

6.3 Manual debugging of binding time malysed source
code

It is being considered increasingly important in the par-

tial evaluation community to provide useful feedback from
the binding time analysis. With explicit cps-conversion, the
user sees a binding time analysed converted program which

he/she then has to relate to the hand-written input code (un-

less the binding time analysed program is converted back to

direct style [Dan92]). With our approach there is no conver-

sion into cps, so binding time analysis is done on the user

written code (modulo other source transformations such as

macro-expansion). Hence the user sees his/her own hand-

written code with added binding time information.

6.4 Specialization points

Explicit cps-conversion allows context information to be

propagated through specialization points (calls (P_E* ) to

be specialized), but our memoc (see figure 4) does not spe-

cialize with res~ect to K. Instead. ~ is amlied in the (P E*)-. . -.
rule. This means that C (and C2 as well) does not propagate
context information through specialization points!

There is nothing that prevents us from rewriting C/C2
to propagate context information through specialization

points: rather than applying K in the (P_E* ) -rule, we could

give it as an argument to memoc. Then memoc should per-

form a recursive call C B p N instead of the current C B p 1 (cf.

the beginning of section 3).

However, there would be some disadvantages with this

approach. In addition to identifying when values are equiv-

alent to values seen in an earlier call (cf. section 2), memoc

should now also identify when the continuation K were equiv-

alent to a continuation seen in an earlier call. In order to

perform such a comparison, ~ would need to be represented

explicitly as a first order data structure, a closure; ~ could

no longer simply be a function in the implementation lan-

guage (in our case Scheme). Representing R as a closure

would have negative effects on the efficiency of mix, and the

code of the generating extensions would be severely wors-

ened: there would be a large overhead of code for closure

manipulations.

Specializing with respect to continuations also increases

termination problems: explicit cps-conversion introduces an

additional source of non-terminating specialization [GD91];

continuations sometimes need to be generrdized to ensure

termination. Similarly, if memoc always memoized with

respect to ~, specialization would hardly ever terminate:

larger and larger continuations ~ would be built during spe-

cialization. Therefore, to ensure termination, R would some-

times need to be reset, for instance by using the (P_E* ) -rule
of figure 4; resetting ~ parallels the effect of generalizing

continuations in explicitly cps-converted source programs

[CD91].

6.5 Dynm”c choice of static values

We can binding time improve the treatment of ~ by us-

ing the following distributive S theme equivalence: for all

expressions El, E2, E3, and all safe contexts E[_]:

E[(if El Ez Es)] N (if El E[E2] E[E~])

By rewriting the right-hand side of the ~-rule in figure 5

using steps similar to step 1 and step 2 m section 5, we

obtain

C2 El p (AVI . Md-if(vllco, C2 E2 PKICO , C2 E3 P dco)tco)

Now C2 supports dynamic choice of static values [Mog89]:
even though the test El is frozen, the branches E2 and E3

need not be frozen. Notice a problem of code duplication,

though: K is duplicated in the above expression (~ is dupli-

cated nowhere else in C2 , cf. figure 4).

Dynamic choice of static values is needed to handle the

pattern matcher example of [CD91]. Another “classical” ex-

ample of dynamic choice of static values is dynamic indexing

in a static environment (called “finitely dynamic values” in

[GJ91a]; see also [HH90, HG91, Bon91b]):

. . . (f (lookup n ns VS)) . . .

(define (lookup n ns values)

(if (null? ns)

error

(U (equal?_n_(car ns) )
(car ve.)

(lookup n (cclr ns) (cclr VS)))))

Assume that na and vs are static, but n dynamic. Since

the static ns decreases for every recursive caII to lookup,

it is safe to unfold completely; termination is guaranteed.

The result will be a piece of non-recursive residual code,

essentially a case-expression that compares n to all values

in ns and in each case returns the corresponding value in

vs. Function f will be propagated through the tests and

is applied to each of the possible (static) values in VS: f’s

argument becomes static.

We have not included dynamic choice of static values in

the Similix 4.o implementation of C2. The reason is that Si-

milix 4.0 uses a simpIe specialization point insertion strategy

that inserts specialization points at all dynamic conditionals

[BD91]. Similix 4.o does not propagate m though special-

ization points (because of the negative effects described in

section 6.4), so any dynamic conditional effectively bIocks

propagation of M. To obtain dynamic choice of static val-

ues when using Similix 4.o, explicit cps-conversion of source

program as described in e.g. [HG91] is therefore needed. A

better, less conservative, specialization point insertion strat-

egy could be imagined: it would for instance neither insert
the unneeded specialization points in the pattern matcher

example of [CD91] nor in the dynamic indexing example.

Given such a specialization point insertion strategy, Similix

would be able to support dynamic choice of static values.

6.6 Other expression forms

Could we hope to propagate contexts through other under-

lined expression forms than & and U? The answer is no:

let and if are the only expression forms in our Scheme

subset which have distributive equivalences that allow us
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to propagate the context into the subexpressions, and thus

these expression forms are the only ones that allow us to

propagatett through the corresponding bid-... form.

7 Pwtially Static Data Structures

Treating partially static data structures [Mog88] safely is

difficult due to the risk of duplicating/discarding residual

code expressions that become part of a partially static data

structure. Discarding is generally unsafe for languages with

side-effects [B D91]; it is also unsafe for side-effect free lan-

guages due to the risk of not preserving termination prop-

erties [BD91].

For instance, consider the expression Eo=

(let ((v (cons El E,))) E,)

where El is static and E2 dynamic. Partially static data

structures enable operations on the data structure created

by the cons, so the result ofspecializing Eo willforinstance

be

E; if Es= (car V)

and
(+ E~ EL) i~Es=(+ (cdr V) (cdrV))

(we use E: to denote the result of specializing EX).

However, notice that these reductions unfortunately re-

spectively discard and duplicate EL! We can get around

this problem by rewriting constructor expressions, wrapping

thernint olet-expression sthat bind the arguments:

(COrlS EI E2) ==+

(let ((VI EI)) (let ((V2 Ez)) (cons VI V2)))

Note: cons evaluates itsarguments inanarbitrary order; in

the transformation, we have arbitrarily chosen left-to-right

evaluation. Rewriting the example expression E. would thus

give Eoo =

(let ((V (let ((VI EI))

(W ((v2 E,))

(cons VI V2)))))

E3 )

The binding of thedynamic E2 has been underlined topre-

vent unfolding.

Specializing EOO with a traditional direct style special-

ize such as D (extended to handle operations on partially

static data structures such as constructors and selectors)

will give poor results: V becomes dynamic due to the frozen

let-expression binding v2. Hence operations in E3 on the

data structure created by the cons will not be performed at

partial evaluation time: the cone will be frozen and so will

the car and cdr operationsin Es that operation V.

But with acpsspecializer such asC2 (extended tohan-

dle operationson partially static data structures), the con-

text is propagated through the frozen let-expression binding

v2. The frozen let-expression does notcause the cons to be

frozen. Operations such as car and cdrin the context can

nowbe reduced at partial evaluation time. For example, the

result of specializing EOO will be

(let ((v2 E;)) Ej) i.f E.=(car W

and

(let ((W E:)) (+ W W)) i.f E.=(+ (cdrV) (cdrV))

Thus we can at the same time provide partially static data

structures and still preserve safety: no residual expression

that becomes part ofa partially static data structure is ever

duplicated or discarded!

Based onthis idea, we haveimplemented an extensionof

Similix 4. Othathandles partially static data structures. In-

stead of rewriting the source program, the extension inserts

the needed additional let-expressions during specialization,

thus not burdening the user with transformed source code

(cf. section 6.3).

The extension handles arbitrary n-ary user defined con-

structors, not just cons. This enables handling “disjoint

sum of product” values where the binding times of argu-

mentsto different constructors do not get intermingled: the

tag of a constructed value determines the binding times of

the components. This kind of binding time information is

also treated in [Lau91], but not in [Mog88, Con90a] where

only the constructor cons is handled.

7.1 Related work

In [Mog88], safety (ensuring that no residual expression that

becomes part of a partially static data structure is ever du-

plicated or discarded) was obtained bykeeping let-bindings

in the partially static structures. Manipulating these let-

bindings was extremely complex, and the operations were

all dynamic when self-applying the specialize. Hence, the

operations remained in the generated generating extensions.

In Fuse [WCRS91], the specialize generates residual

code graphs rather than residual code expressions; a post-

phase generates code expressions from the graph. Safety is

obtained by inserting appropriate bindings during the post-

phase. Generating residual code graphs works well for a

non-self-applicable specialize such as Fuse, but is not well-

-suited for self-applicable specializes (such as Similix): the

(costly) operation of generating code from the graph would

be completely dynamic at self-application time and so would

be present in all generated generating extensions.

The safety problem is not addressed in [Lau91, Con90a].

8 conclusion

We have shown how one of the most important binding time

improvement problems, that of propagating consumers to

producers, can be solved by using a cps-based specialize.

There is still a need for addressing binding time improve-

ments, for instance polyvariant closure and binding time

analyses.
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