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Large functional programs are often constructed by de-

composing each big task into smaller tasks which can be

performed by simpler functions. This hierarchical style of

developing programs has been found to improve program-

mers’ product ivit y because smaller functions are easier to

construct and reuse. However, programs written in this

way tend to be less efficient. Unnecessary intermediate data

structures may be created. More function invocations may

be required.

To reduce such performance penalties, Wadler proposed

a transformation algorithm, called deforestation, which could

automatically jtise certain composed expressions together
in order to eliminate intermediate tree-like data structures.

However, his technique is only applicable to a subset of first-

order expressions.

This paper will generalise the deforestation technique to
make it applicable to all first-order and higher-order func-

tional programs. Our generalisation is made possible by
the adoption of a model for safe fusion which views each

function as a producer and its parameters as consumers.

Through this model, static program properties are proposed

to classify producers and consumers as either safe or unsafe.

This classification is used to identify sub-terms that can be
safely fused/eliminated. We present the generalised trans-

formation algorithm as a set of syntax-directed rewrite rules,
illustrate it with examples, and provide an outline of its ter-

mination proof.

1 Introduction

Consider an expression p(q(vl), r(vz, S(WS), t(oA))), call it e,

where WI, W2, us, V1 are variables and p, g, r,s, t are user defin-

ed functions. In this expression, VI, vz, us, V4, are inputs of

e, while p, q, r, s, t are simpler functions decomposed from

the main task of e. This modular expression may be eas-

ier to construct, with some of the functions re-used from

other programs. However, sub-terms of e, like q(vl ) or

r(vz) s(v3)) t(v4)) or s(u3) or t(u4), may be a source of large
intermediate data structures that are expensive to construct,

but may be garbage-collected later because they are not di-
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rectly referred in the final result. This is a source of ineffi-

ciency. A possible remedy is to apply unfold/fold transfor-

mation [BD77] to fuse e into a piece of more tightly woven

code, without unnecessary intermediate sub-terms.

For example, if all the sub-terms of e could be safely

fused, a new function fl could be defined (to represent e)

and transformed so that the original nesting of function calls

disappears, as shown belowl:

--- fI(VI, V2,1J3, ~4) e p(q(:;;:$:rs::\: (v4)))

+ .equivalent expression without the
original nested function calls..

However. not all sub-terms can be safelv fused with their

cent aining expression. If we can identify” those sub-terms

which are not suit able for fusion, a simple technique, called

parameter generalisation, can be used to abstract away the

unsuitable sub-t erms before fusion. For example, if the sub-

term T(WZ, s(v3), t(ul)) cannot be fused with p of e, then a

new function, fz, can be defined with the unsuitable sub-

term generalised out using a new parameter variable, w.

This can then be transformed, as follows:

---j2(q, w) e P(4J(V1), W)

transforms to

+ .equivalent expression without above
nested functions..

With the above function, the expression e is now equiva-

lent to .fz (vI, r(vz, S(VS), t(u4))), where further opportunities

for fusion may be found by similar analysis and transforma-

tion of r(w, s(v3), t(w4)). Thus, fusion can be selectively

applied, as long as sub-terms which are unsafe to fuse can

be identified.

This paper grew out of Chapters 3 and 4 of the author’s

PhD thesis [Chi90] and has been inspired primarily from

Phil Wadler’s work on deforest ation [Wad88]. A preliminary

version oft his work has appeared in [Chi91 ] where only first-

order functional programs are considered.

An overview of this paper follows. In Section 2, we briefly

describe the pure and blazed deforestation algorithms of

Wadler. In Section 3, we present the producer-consumer

model of functions and propose a new annotation scheme

based on safe/unsafe producers and consumers. (An ear-

lier annotation scheme, proposed in [Chi90, Chi91], is based

solely on consumers. This simpler scheme works by chang-

ing all unsafe producers to pseudo-safe. However, it is not

suitable for further extension of deforeetation to include the

use of laws/ axioms.) Section 4 presents the generalised de-

forestation algorithm for first-order programs, together with

formal definitions of safe/unsafe producers and consumers,

] expressed in the Hope language with equations of the form
--- LHSe RHS
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and a termination proof. Section 5 outlines our extension

of deforestation to a full higher-order functional language.

Section 6 shows how some potential problems, which arise

from the syntactic properties used to classify safe/unsafe

sub-terms, are overcome. Section 7 briefly outlines a further

extension of deforestation using laws/axioms. Section 8 de-

scribes other related work. Section 9 concludes. Throughout

this paper, we will use both the terms, deforestation and

fusion, interchangeable to mean the transformation tech-

nique for eliminating safe intermediate sub-terms from pure

functional expressions.

2 Wadler’s Deforestation

The deforestation technique was first proposed in [Wad88]

as an automatic transformation algorithm for eliminating

unnecessary intermediate data terms from a sub-set of first-

order expressions. Both a simple version, called pure defor-

estation, and its enhanced version, called blazed deforesta-

tion, were proposed.

The first-order language used to illustrate the technique

contains functions of the form:

--- f(vl,..., %) + tf;
with its RHS term, tf, described by:

t ::= ?J [ C(tl !...l~n) If(tl>. ..!tn)

I case tinp~+ t~; ..; pn+ tnend

p::= c(vl, . . ..uj)

The above grammar is actually for a restricted first-

order language because only simple patterns of the form,

p=c(vl, ..., VJ ), are allowed in the case construct. HOW-

ever, there is no loss in generality because translation meth-

ods exist [Aug85, Wad87] to translate any expression with

nested patterns (in case constructs) to an equivalent expres-

sion of the above restricted form.

In a reformulation of pure deforestation, a slightly differ-

ent language was adopted in [FW88] where each case con-

struct is replaced by an equivalent g-type pattern-matching

function of the form:
---g(pl, Al,...,%) + tg,;

--- 9(PT, W,... ,rJn) + L,;

This new language helps to simplify the deforestation al-

gorithm. Its adoption also results in smaller transformed

programs. We shall adopt this simple but complete first-

order language to describe both Wadler’s work and our ex-

tension.

Pure deforestation is a transformation algorithm, formu-

lated using define, unfold and fold rules. It is applicable

to all expressions which are composed solely from a spe-

cial type of functions, called pure treeless functions. A pure

treeless function is a function whose RHS terms satisfy the

grammar form:

tt::=vl c(ttl, ,.!, ttn)lf(v], . . ..on)lg(vo .vl, ... ,vn)
WHERE j and g are pure treeless -functions and each

variable, o, occurs only once in the expression.

Terms of this grammar form are known as pure treeless

terms because they do not contain nested applications of

functions. Hence, they are free of all intermediate data

structures, including tree-like ones. An example of pure

treeless function is:

--- append(nil,ys) + ys;

--- append (cons(x,m),ys) ~ cons(x, append(xs,ys));

The pure deforestation algorithm can transform any ex-

pression, which uses only pure treeless functions, to an equiv-

alent expression that is pure treeless. For example, the

expression append(append(xs, ys),zs) uses only pure treeless

functions. It can be transformed by Wadler’s algorithm to

a pure treeless expression, apptree(xs,ys,zs), as shown in Fig-

ure 1.
Blazed deforest ation is an extension of pure deforestation

to cater for functions which are not pure-treeless because of

atomic-type sub-terms (e.g. integer, char). Two examples

are:

--- double(nil) ~ niJ;
. . . double(cons(a,as)) ~ cons(~”a,double(as));

--- sum(nil) -e o;

--- sum(cons(a, as)) e a+sum(as);

The sub-expressions which do not conform to pure tree-

less form are shown underlined. Blazed deforestation han-

dles such functions by using an annotation scheme which

marks each atomic-type sub-term with e, and each tree-type

sub-term with @. Periodical y, before each fusion sequence,

all sub-terms annotated as R are abstracted usirw the let

constructs to prevent them ~rom being fused. A; a con-

sequence, atomic-type sub-terms are allowed to be nested,

and their variables be non-linear. This type-based an not a-

tion scheme is very simple but it cannot be used to extend

deforestation to all first-order expressions.

In the next section. we rxoDo~e a new model for safe fu-,..
sion which can differentiate more accurately sub-terms that

can be fused, from those that cannot. This model will be

used to generalise deforestation to all first-order and higher-

order programs.

3 Producer-Consumer Model

For the purpose of determining where fusion is possible in

an expression, we propose the use of a model which views

each function as both a producer of data through its r-estdt,

and a consumer of data through its parameter.

3.1 Conditions for Safe Fusion

Consider a nested application of two functions: p(q(x)).

In this nested application, the sub-term q(x) is used to

produce an intermediate data which is to be consumed by the

sole parameter of p. An important question to raise is under

what conditions can this nested application be safely and

eflectivelg fused. We distinguish between safe and effective

fusion2. A nested application is said to be sajelg fnsed if

the transformation sequence which follows does not go into

a loop and there is no loss of efficiency experienced by the

transformed expression (when compared with the original

expression). A nested application is eflecttuel~ fused if the

need for its intermediate data disappears and there is a gain

in efficiency.

Ideally, we would like to know exactly when safe and ef-

fective fusion can take place. However, in this paper, we

shall present a more modest result outlining su~cient cr-ite-

ria which conservatively determine when safe fusion is pos-

sible. If the safe fusion happens also to be effective, then a

gain in efficiency will result.

In our proposed model, we will classify producers and

consumers as either safe or unsafe with respect to their

2 My thanks to Phil Wadler for pointing out the need to different.

ate between the notions of safe, as opposed to, real/e ffectxue fusion
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append(append(xs ,ys),zs) + appthree(xs,ys,zs) ;fold appthree

Define & transform function, appthree
--- appthree(xs,ys,zs) + append(append(xs,ys), zs) ;unfold append

Above unfold (with instantiation) resultsin two equations:

--- appthree(nil,ys, zs) + append(ys,zs)

---appthree(cons(x, xs),ys,zs) ~ append(cons(x,append(x.s,ys)),zs) ;unfold append
~ cons(x,append(append(xs, ys),zs)) ;foldappthree

= cons(x,appthree(xs,ys, zs))

Figure 1: Transformation Steps Applied by Pure Deforestation

amenability to safe fusion. The static properties used to

determine whether a given producer orconsumer is safe (or

unsafe) will be given later in Section 4. For the moment, we

propose that any expression, p(q(x)), can be safely fused

if

(i) q(x)isa sa~eproducer, and

(ii) theparameter ofpisasaje consumer.

Conversely, if either pis an unsafe consumer and/or qis

an unsafe producer, then fusion may fail. Using this model,

thepure treeless functions from Wadler’s Pure Deforestation

can be viewed as functions which are both safe produc-

ers and safe consumers, with any expression composed from

them being totally fusable. Ourmodel is more general. This

is because it can tolerate q as an unsafe consumer and/or p

as an unsafe producer for p(q(x))to be still fusable. (Also,

blazed deforestation treats all atomic-type sub-terms asun-

safe, but this does not imply that all tree-like sub-terms are

safe. )

3.2 Double Annotation Scheme for Safe Fusion

With the need totake into account the fusibility properties

of producers and consumers, we propose a double annota-

tion scherneto help identify sub-terms that could be fused.

We shall use the same basic annotation symbols of blazed

deforestation, @and @, but augment them with appropriate

subscripts. In this scheme, each sub-term is either marked

as a 6P if it is an unsafe producer, or a @ if it is not an un-

safe producer. In addition, the same sub-term may inherit

a @c annotation if it presently lies within a safe consumer,

or a OC annotation if it lies within an unsafe consumer.

Producer-based annotation is considered a static prop-

erty of the sub-terms, and can be formally described by the

following annotated grammar:

t ::= ’u@p I C(t], . . . ,t~)@” I sa$ePl unsafeP

safeP ::=g(tcl,..., tn)@’ If(t,,..., tn)@’

WHERE~,g are safe producers

tinsafeP ::=g(to ,.. .,tn)e= Ii(tl, . . ..tn)e’

WHEREf,g are unsafe producers

Consumer-based annotation is a dynamic property of the

sub-terms because it is dependent on the parameter posi-

tions that the sub-terms are presently located. Sub-terms

which lie in the saje parameters (consumers) of function calls

will be annotated with a @.; while those which lie in unsafe

parameters will be annotated with a 0.. Other sub-terms,

not lying in the parameters of ~ or g-type functions (e.g.

arguments of constructors), will not be provided with any

consumer-based annotations.

with this scheme, each su~-term is either annotated once

or twice. Sub-terms which are also arguments of function

calls are annotated twice, while the rest of the sub-terms are

annotated only once. For fusion purpose, we are primarily

concerned with sub-terms which are also arguments of func-

tion calls. For these sub-terms, we mark each of them with

either a @ if it is safe to eliminate, or a G if it is not safe to

eliminate; according to the following combined annotations:

@Pcombines with fB~to give @

@Pcombines with ectogivee

OPcombines with &to give 0

OPcombines with Octo give e

In the next section, we present appropriate syntactic

properties - static ones determinable at compile-time - for

this double annotation scheme. We shall also present the

transformation algorithm for safe fusion. Initially, we con-

sider only first-order programs. Later, we extend the trans-

formation algorithm toall higher-order programs.

4 Fusion of First-Order Programs

This section describes how safe fusion can be achieved for

all first-order functional programs. We present our result

as a gradual extension of Wadler’s deforestation algorithm

through three steps. Firstly, unsajeconsumers are handled,

then unsafe producers are handled, followed by first-order

functions.

4.1 Step 1- Handling Unsafe Consumers

Parameters of functions are classified as either safe or un-

safe consumers of data. A parameter is classified as a safe

consumer if it is linear and non-accumulating otherwise

it is classified as an unsafe consumer. A parameter is

linear if its variable(s) occurs only once in each RHS term

of its function. This criterion helps avoid loss of efficiency

by not duplicating large non-linear arguments during de-

forest ation. Also, roughly speaking, a parameter is non-

accumulating if the corresponding arguments in successive

recursive calls of its function will not get (syntactically) big-

ger during transformation. This criterion is needed because

accumulating parameters may result in successively larger

expressions, which can cause non-termination in transfor-

mation. Non-accumulating parameters do not cause this

problem.

Consider the function, revtit:

--- rev-it (nil, w) + w;

--- rev-it (cons (a,as], w) ~ revit (as,cons[a, w));

which cannot be handled by either pure of blazed deforesta-

tion. The first parameter of this function is a safe con-

sumer because it is linear and non-accumulating. (It is
non-acczmzu(at!ng because the argument, as, of its recursive

call is not bigger than the original parameter cons(a,as). )

However, the second parameter is accumulating because the
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recursive call, rev-it (as,cons(a, w)), takes a larger sub-term,

cons(a, w), as its argument. As a consequence, the expression,

rev-it(double(as), w) can be fused but not revit(as,double(w)).

Formally, the non-accumulating criterion can be defined

as follows:

Given a set of mutually recursive functions,

hi,..., hk, where k > 1. The jth parameter, Wj,

of the ith function, h,, with definition:

---ht(o,,..., w,, vn), vn) -+= tht

is considered to be non-accumulating if each

recursive call of the form h,(tl, . . . . tj, . . . . t~) in

the RHS of functions, hl, . . . . h~, have the jth-

argument, tj, as a variable or a constant term.

Also, all parameters of non-recursioe functions

are trivially regarded as non-accumulating, since

there are no recursive calls in their definitions.

Hence, linear and non-accumulating parameters, which

are regarded as safe consumers, will have their arguments

(sub-terms) annotated with @.. Correspondingly, unsafe

parameters will have their arguments annotated with 0..

Now, if we initially assume that all functions used are sate

producers, then whether a sub-term is safe or unsafe is de-

pendent solely on its consumer-based annotation.

With the above assumption, the generalised transforma-

tion algorithm that is capable of handling unsafe consumers

need only consists of six syntax-directed rules, as given in

Figure 2. The first rule, dealing with a variable, has nothing

to fuse. The second rule, dealing with a constructor as the

outermost term, has to skip over the constructor because it

is not able to use the constructor as a consumer.

The next four rules deal with expressions in which there

may be a nesting of function calls that could be fused. We

use a context notation, . . . C. . . . to identify an inner call, C,

which is about to be unfolded by normal-order reduction.

This inner call lies within a nesting of @ pattern-matching

arguments of g-type calls, as specified by the grammar for

this context notation:

. .. C....:= clg(... ~,t,,,,tn)..,tn)

Four rules are used to transform expressions of the form

. . . C . . . . Depending on appropriate conditions, these rules

use one of four different steps to transform. They are either

(i) a direct unfold (T3a, 4a), (ii) a define followed by an un.

fold (T6b, 4c, 5b, 6b), (iii) a fold step (74b, 5a, 6a), or (iv) a

skip over step (T4d, 5c, 6c), as shown in Figure 2.

A fold step is taken if a previously defined function

matches the current expression. All previously defined func-

tions are stored in a data structure, called defset. A di-

rect unfold step is taken if the inner call is of the form

g(c, (t’l, . . ..j)o. tl,l, t~), t~) or f(tl, . . ..tn) where~is non-

recursive and only variables appear in unsafe consumers.

(With only variables in unsafe consumers, there is no possi-

bility of large arguments being duplicated by direct unfold-

ing. ) A skip over step is taken if the outermost function call

contains no safe sub-terms to remove. If none of these situ-
ations are met, then a define .!4 unfold step is taken. In this

step, the expression to be transformed is first generalised

by replacing all arguments of unsafe consumers (unsafe sub-

terms) with new variables. In addition, all other variables

not extracted are renamed. Such a procedure ensures that

(i) no unsafe sub-terms are fused, and (ii) the expression

is linear. This procedure helps avoid successively larger ex-

pressions from being formed during deforestation. This, in

turn, ensures transformation algorithm’s termination.

A procedure, called ~, is used to generalise out unsafe

sub-terms and rename all variable occurrences which do not

lie in unsafe sub-terms. Given an expression, t,the ~ pro-

cedure will return a tuple of five items:

(tA, tel,... ,tes, Vt?l, . . .. V6?s. VOl, . . ., VOk, Vnl, . . ..Vnk )

where t A is the generalised expression of i; iel, . . . . te$ is a

list of unsafe sub-terms extracted from t; vel, . . . . ve. are the

new variables in tA to replace tel, . . . ,tes; VOl, . .. VOkiSia. a

list of variable occurrences in t that are not part of unsafe

sub-terms, vnl, . . . , v n k are the new unique variables in t A

to replace vol, . . . . vok.

As an illustration of the new transformation algorithm,

consider the expression revit(double(as)~ ,double(w) e).

This expression can be transformed by the new algorithm,

as shown in Figure 3. (Notice that primitive functions, like

*, are simply regarded as unsafe producers with unsafe con-

sumers. )

An important point to note is that the above algorithm

removes (either eliminates or transfers away) all safe sub-

terms. This can be verified by showing that expressions

which result from the algorithm will have a form, known as

eztended-treeless, or e-treeless, form satisfying the grammar

below:

et ::=vlc(etl, ..., etn) I J“(argl, . . . . argn)

I 9(ar90, . . . . argn)

arg ::= Ve I ete

WHERE only variables appear in arguments

annotated as @; and $, g are e-treeless functions.

Correspondingly, a function is said to be e-treeless, if its

definition’s RHS terms are e-treeless.

The above e-treeless form requires that functions used

are also e-t reeless. This can be achieved because we use

only safe producers and these are e-treeless. In fact, the

e-treeless grammar form will be used to help distinguish be-

tween safe and unsafe producers in the next sub-section. A

closer look at the e-treeless form reveals that only nested

constructor terms are produced but never nested function

calls (unless they are in uusafe consumers). Hence, when

such functions are unfolded, their intermediate construc-

tor terms can always be safely consumed by outer g-type

function calls. This helps to prevent successively larger ex-

pressions (which cause non-termination) from being formed

during fusion. Thus, if only e-treeless functions are used in

the expression to be transformed, it can be proved that the

above transformation algorithm terminates (see Section 4.4

for a proof outline).

4.2 Step 2- Handling Unsafe Producers

The definition of safe/unsafe producers is based on the e-

treeless form. However, there are some subtle issues involved

because whether an expression is e-treeless or not, is itself

dependent on how its functiom me clmmificd,

Formally, a function3 p is a safe producer if its RHS

term(s) satisfies the e-treeless form, when p has been re-

garded as a safe producer.

3 we actually consider each set of mutually recursive functions,
which may occass] onally consists of a single function
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(1) T[v] * ‘v

(2) T[c(tl, . . . . %)] + c(T[tl], . . . . T[tn])

(3) T[... g(c,(,,,, t.., t’j)@,,tn ).., tn)...]

a) IF VaC1. ..n, ta e IS A VARIABLE (direct unfold)

+’7[... tg:[t’l/Jl, . .,t’j/v’j, t]/wl, . . .,tn/%] . . .]

b) OTHERWISE (define & unfold) + f.new(vol, . . . . ?JOk, 7[te1], . . . , T[te~])

DEFINE & ADD TO defset

f_new(vn~,..., vn~, ve~, ve$)+e$)+ . ..g(c. (t’~,..., $),t~,~, t$), A$)... A

UNFOLD

+T[... tgi[t’:/w’l, . . .,t’:/v’j, t:/vl, . . . . t$/vn] . . . ‘1
WHERE (... g(ct(~,~, t.., t’jA),,t$ ).. ,t$). ..A, tel, . . ..t.vel,l, veg, veg

> Vol, . . . ,Vok, zm], . . ..vnk)==g[. ..g(c, (t’l, . . ..j). tl,l, tn), tn) . ..]

(4)7-[... j(t,,., tn)n] ...]

a) IF ~ is not recursive and Vu c 1 . . . n, tae IS A VARIABLE (direct unfold)

* 7[. . tf[tl/vl, . . .,tn/vn] . . .]

b) IF f-old(vnl,..., vnk, vel, . . ..ve.)+ . . .f(t~,. ... t$)...A G def~et (fold)

+ f_old(vol , . . . . ‘UOk, 7[tel], . . . . 7[te~])

WHERE (... $(t~, t~), A,)... A, tel,..., te~, vel, ve,, ve,, VO1,..., Vok, vn,,..., vnk)==j (tl, t,tn). ]tn)... ]
c) SIMILAR TO (dejine U unfold) OF T3b

d) IF ...f(tl.....tn)...= f(tl,...,tn)and Va~ I.,, n,tao IS AVARIABLE (skip over)

+ f(7[tl],....T[tn])

(5) T[... g(vo@, tl, tn), ]n)...]

a) SIMILAR TO (fold) of T4b

b) SIMILAR TO (define & unfo~d) OF T36

c) SIMILAR TO (skip over) OF 74d

(6) T[... g(tOO, tl, tn), ]n)...]

a) SIMILAR TO (fold) OF 74b

b) SIMILAR TO (dejine & unjoid) OF T3b

c) SIMILAR TO (skip over) OF 74d

Figure 2: Transformation Algorithm for Safe Fusion of First-Order Expressions

T[revit(double(as), double(w,)) ] ; ‘T5b define revdb

+ revdb(as,T[double(w) ]) ; ‘T5c skip over

+ revdb(as,double(w))
Define a new function, revdb

--- revdb(as, ws) + rev-it (double(as), w.) ; unfold double(as)
--- revdb(nil, WS) + ‘T[revit (nil, ws) ] ; T3a unfold revit

-4= l-[ws ] ; 71 skip
* Ws

--- revdb(cons(a,as), WS) ~ ‘T[rev~’t (cons (2*a,doub1e(as)), WS) ] ; T3a unfold revit

+ T[revit (double(as),cons (2*a, ws)) ] ; T5a fold revdb
-+= revdb{T[as ], T[cons(2*a, w.) ]) ; 71,72 skip

= revdb(as,cons(T[2*a ],T[ws ])) ; T4d,Tl Skip

+ revdb(as,cons@[2 ]*T[a 1,WS)) ; T2,’TI skip

+ revdb(as,cons(2*a, WS))

Figure 3: An Application of Generalised Deforestation Algorithm T
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Not all functions are safe producers. An example is the

function, rev flatten:

--- revff at ten (nil) + nil;

--- revfiatten(cons(as, ass)) + append(rev_flatten( ass)@c

,LM@.);

This function is not e-treeless when it is regarded as

a safe producer. This is because revfiatten(ass), its recur-

sive call, is presently lying in a safe consumer of the append

function. In contrast, e-treeless form has only variables (or

unsafe producers) in the positions of safe consumers. How-

ever, if rev-%tten is regarded as an unsafe producer, then its

RHS terms would be e-treeless. Note that this only happens

after rev-tlatten has been regarded as an unsafe producer.

Through this circular definition, unsafe producers can

also be made e-treeless, and thus be handled by our gen-

eralised deforestation algorithm. The way to handle unsafe

producers is never to unfold them, as producers, during fu-

sion. The reason is that unsafe producers can be seen as

producing or generating function terms, in addition to con-

structor terms. For example, the revfiatten function can

be viewed as a recursive function which produces append

function calls. These generated functions cannot be readily

consumed bythe pattern-matching equations ofouter g-type

functions.

In the combined annotation scheme, all unsafe producers

in both safe or unsafe consumers are generalised out prior

to each fusion sequence. This (conservatively) prevents all

unsafe producers from being unfolded, as producers. Notice

that our algorithm does not prevent unsafe producers (like

revfiatten) from being unfolded in fusion as sate consumers.

4.3 Step 3- Handling Each Function

Presently, the transformation algorithm is formulated to

transform expressions which are composed from e-treeless

functions. However, our real aim is to use it to transform all

first-order functions. To do that, the transformation algo-

rithm can be applied to each RHS term of first-order func-

tions, but two additional issues need to be considered.

Firstly, our algorithm must be applied in a bottoms-

Up order where each chdd (or auxiliary) function is trans-

formed before its parent function(s). A function, jl, is con-

sidered to be a child function of another function, ~2, if

~z calls jl but not vice-versa. If ~1 also calls ~2, then we

have sibltng or mutually recursive functions. Bottoms-up

order ensures that child functions are always converted to

e-t reeless form before their parent functions (as required by

T),

Secondly, each set of sibling (mutually recursive) func-

tions must be simultaneously transformed and regarded as

potentially unsafe producers and unsafe consumers. As po-

tentially unsafe functions, the sibling calls will not be un-

folded during their functions’ transformation. After the set

of sibling functions have been transformed to e-treeless form,
we can use the static analyses of Section 4,1 and 4.2 to de-

termine if the transformed functions are safe or unsafe pro-

ducers, and their parameters are safe or unsafe consumers.

It is better to apply static analyses after transformations

because syntactic properties often change (from unsafe to

safe) during transformation.

4.4 Outline of Termination Proof

In this section, we outline the termination proof of the gen-

eralised deforestation algorithm for first-order programs. A

more detailed proof is available in [Chi90] for the interested

reader. There are two steps in our ‘proof.-

Firstly, we need to show that the number of define steps

by T4c, 5b, 6b in any application of our algorithm is finite,

This can be proved by showing that there exists an up-

per bound on the size of expressions used for defining new

functions. The presence of an upper bound indicates that

there could only be finitely many different new functions

(formed from a fix set of function and constructor symbols)

that could be introduced. As a result, the number of de-

jine steps will be finite because expressions which re-occur

will be folded, rather than result in another new function

definition.

Secondly, we need to show that the number of the other

steps between each pair of define steps is finite. This can be

proved by showing that there is a well-founded decreasing

measure among the non-define steps. These non-define steps

include T2, 3,4a, 4b, 4d, 5a, 5c,6a, 6c.

With these two proof steps, the proposed algorithm is

terminating because a finite number of non-define steps, be-

tween a finite number of dejine steps, implies that the total

number of steps needed to transform each expression is also

finite.

5 Fusion of Higher-Order Programs

Higher-order functional languages treat functions as first-

class citizens where they are allowed to be passed as argu-

ments and be returned as resrh, This facility increases the

expressive power of the language and permits more succint

and modular programs to be written. However, the facil-

ity comes at a price. Higher-order programs, being more

general, are more difficult to analyse for optimisations and

transformations.

Our approach to handling higher-order programs is to

use another transformation technique, called higher-order

removal [Chi90, CD92], which is capable of converting most

higher-order expressions to either first or lower order. Some

residual higher-order features may remain, but the new ex-

rnession form is simrier than the full higher-order exrmession

~orm, with the resi~ual features easily ~andled. ‘

Consider the following extended grammar for higher.

order expressions:

t ::=~14~1~...)tn) lK~l)...)tn)lfl9
I lambda (VI,..., on)+ t end

Compared to the grammar for first-order expressions,

some new (higher-order) features which need to be taken

care of includes, applications, t(il,....tn),lambda abstrac-

tions, lambda (VI, . . . . vn)+ t end, and in general, junction-
type arguments and function-type results. Of particular in-

terest are two specific classes of higher-order expressions

that can be eliminated, namely: curried applications and in-

stantiated function-type arguments which are non-accumul-

ating.

Curried applications are all those applications, except

function calls, ~(tl, . . . . tn) or g(tO, . . . . t~), and variable ap-

plications, va(tl, . . . . t~), where:

va::=vl va(t~, . . ..tn)

Curried applications can always be eliminated by a tech-

nique, called lump uncurr ying, which replaces each cur-

ried application by an equivalent uncurried function call.

Instantiated function-type non-accumulating arguments, on

the other hand, can be eliminated by a function speciah-

sation transformation which works in a similar way to de-

forestation’s elimination of safe sub-terms. Both techniques
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can be combined into a higher-order removal algorithm, nam-

ed ‘R [Chi90], which has been proved terminating, as long

as well-typed higher-order programs are used.

Using ‘R, each higher-order expression can be transform-

ed to an equivalent expression of the following restricted

higher-order form:

t

r app

::=rJ\C(tI, . . ..tn) lwwl.f19

I lambda (VI, .i~, vn)+ :,nd

::=va(tl, . . .. in) lj(il,...,t~,vm+l ,.. .,v~ )

19(~o,..., Ln,v Rtl, d?h)d?h)

WHERE V~+l ,..., V:’ are the non-accumulating

function-type arguments annotated with oh.

Some residual higher-order sub-terms may remain in ex-

pressions of the above restricted form. However, they are

easier to consider (for extending the deforestation algorithm)

than the full higher-order form.

Firstly, in each of the function calls of the form:

j(tl,..., tm, vfi+l,..., v%~)org(tO,..., tm, v~+l,..., v%h)

we may have either function-type sub-terms or variable ap-

plications as arguments. As these higher-order arguments

are not required to be removed by deforestation, they can

be marked as either unsafe consumers or unsafe producers.

Secondly, four additional T rules (shown in Figure 4 as

77 – 10) are needed to directly handle the residual higher-

order features. These rules simply skip over the residual

higher-order features.

Lastly, during deforestation, it is possible for new higher-

order expressions to re-appear. These occur as side-effects

of eliminating constructor terms with function-type argu-

ments. The rule for eliminating new higher-order expres-

sions which re-appear is ‘TI I of Figure 4.
The above set of new rules have been shown in [Chi90]

not to affect the termination property of T. As an illustra-

tion of this extended set of ‘T rules, the following higher-

order program:

--- main(x,y) + map-ho(addAve(x),y};
--- map-ho(nil,y) -@ nil;
--- map-ho(cons(fjfs),y) * cons(f(y),mapho( fs,y));
--- add-five(nil) + nil;
--- add-ii ve[cons(x,xs)) < cons(lambda z + z +5 *x end

,adddive(xs)};

can be transformed to its equivalent first-order program:

--- main (nil,y) ~ nil;
--- main (cons (x,xs),y) ~ c0ns(y+5 *x,main(xs,y));

Wadler has also considered higher-order extension for de-

forestation in [Wad88]. However, his solution is not general,

as it relies on a restricted higher-order facility - called higher-

order macro - whose use can always be converted to first-

order equivalent before deforest ation. Higher-order macros

essentially correspond to higher-order functions with jired

function-type parameters (i.e. do not change across recur-

sion). They can neither return function-type results, nor

support constructor terms with function-type arguments.

The advantage of the higher-order macro scheme is its sim-

plicity, but it requires the user to adopt a restricted higher-

order language.

6 Pseudo Safe/Unsafe Consumers and Producers

Our generalisation of the deforestation technique relies pri-

marily on (sufficient) synt attic properties for classifying pro-

ducers and consumers as either safe or unsafe. The advan-

tage of using syntactic (as opposed to semantic) properties

is that they are simple. However, there is also a potential

danger that these properties can be easily changed via seem-

ingly harmless syntactic manipulations!

In fact, in earlier work by the author [Chi90, Chi91],

unsafe producers were syntactically changed to pseudo-safe

equivalent. This was done by using the let construct to ab-

stract out each sub-term (unsafe recursive call) that did not

conform to the e-treeless form. Similarly, let constructs can

also be used to (trivially) convert non-linear and/or accumu-

lating parameters to linear and non-accumulating parame-

ters to obtain pseudo-safe consumers. These pseudo-safe

producers and consumers do not result in real fusion, as

their corresponding pseudo-safe sub-terms are merely tram-

ferred to the Iet constructs, rather than eliminated, during

transformation. They are harmless because they do not af-

fect termination, nor result in loss of efficiency. However, a

minor problem is that they tend to result in larger trans-

formed programs.

Simple syntactic changes can also convert safe consumers

or producers to equivalent pseudo-unsafe ones. This is more

alarming because less fusion than ought to, may occur! A

very simple syntactic change is to use the identity function,
--- id(z) + z, to wrap around appropriate sub-terms; so

that safe producers become pseudo-unsafe, or non-accumul-

ating parameters become accumulating. Fortunately, our

generalised deforestation algorithm is able to remove these

simple wrapping functions by direct unfoldings (using T4a).

This is done during the transformation of each of the func-

tions. As the static properties are analysed after each func-

tion’s transformation, these simple wrapping functions do

not cause any real problem.

However, more elaborate wrapping functions, using g-

type functions, such as:

--- id(nil,) -& nil;
--- id(cons(x,xs),) ~ cons(x,xs);

can cause problem to our algorithm. This is because our

present algorithm do not perform direct unfolds on g-type

functions, Given the rather contrived technique used to de-

ceive the algorithm, this is a shortcoming we could tolerate.

7 Further Improvements

Further improvements to our generalised deforestation are

possible. These improvements can help remove more inter-

mediate data structures from user programs. Two possible

improvements are briefly proposed below.

~irstly, some of the non-llnear pattern-matching param-

eters could be linearised with the help of the let construct.

This can be used to convert unsafe consumers to equivalent

safe ones. Consider the function:

--- square(ni~c ) + nil;

--- square(cons(x, xs)ec )+ cOns(x*x,square(xs));

The parameter of this function is presently unsafe be-

cause the auxiliary variable, x, occurs twice in the RHS

of the second equation. This makes the whole pattern-

matching parameter unsafe (accordingly annotated above),

even t bough the main recursive variable, XS, is linear and

non-accumulating. A simple technique which can be used

to make such a pattern-matching parameter safe (or linear)

is to abstract out the non-linear auxiliary variable, as fol-

lows:

--- square((cons(x, xs)ec) + Iet V=X in cOns(v*v,square(xs));
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[:] ;~f] *f
*g

(9) Zqva(tl, . ~~, h)] + T[va](T[tl], ..., T[t~])

(10) T[larrdda (WI,... , v~)> t end]> lambda (WI, . . . . vn)+ ‘T[t] end

(11) 7[ .ho-ezp .] * 7[.. . R.[ho.ezp] ...]

WHERE ho.exp is either a curried application or a function call

with non-accumulating non-variable function-type arguments

Figure 4: Additional T rules for fusing higher-order programs

This linearisation techniclue can be applied to each non- those unsafe producers which lie in consumers, which can. .
accumulating pattern-matching parameter that is non-linear

because of auxiliary variables. Once linearised, the pattern-

matching parameter can be classified as a safe consumer for

fusion purpose.

A second possible way to improve deforestation is to

make use of laws, in addition to the equations of user-defined

functions. Laws can help improve fusion by allowing some of

the unsafe producers to be successfully fused as producers.

Consider the program:

---sizet(t@c,) + length (ffatten(t));
--- Iength(ni@c ) * o;

--- Iength(cons(x, xs)””) ~ I +Iength(xs));

--- flatten(leaf(a)@c) ~ cons(a,nil);

--- ffatten(node(lt, rt)””) + append(flatten(lt), ffatten(rt);

Presently, the expression length(flat ten(t)) cannot be

fused because the inner function flatten is an unsafe pro-

ducer. In fact, the main reason why flatten is considered as

an unsafe producer is that it produces append function calls

(whilst safe producers produces only constructors). These

produced function calls cannot be safely consumed using the

pattern-matching equations of length. Note that pattern-

matching equations can consume constructors (from safe

producers) but not junctzons (from unsafe producers). How-

ever, laws do not have this inhibition. In fact, most laws (on

user-defined functions) can be viewed as rewrite rules which

happily consume functions! An example is the following dis-

tributive law of length

length (append(xs,ys)) = length(xs) +length(ys)

This law can be viewed as an equation of length whose

linear and non-accumulating parameter, append(xs,ys), is a

safe consumer of append function calls. Consequently. it can

be used to successfully fuse expressions which contain unsafe

producers of append calls. In particular, this law can be used

to help transform function sizet to the following function

(without its unnecessary intermediate data structure):

--- sizet (leaf(a)) + 1+0;
--- sizet(node(lt,rt)) ~ sizet(h)+sizet(rt);

Laws on user-defined functions can either be provided by
..I.V,. (in tll . same way a. .cluahons -.. ~rc.v;ded) &nd/nr

be derived via some synthesis techniques (see [Chi90] for a

method to synthesize distributive laws). Given that these

laws can be made available, there is still a need to integrate

their use into the generalised deforest ation algorithm. Fur-

ther work is in progress to provide this integration. In this

paper, we shall briefly suggest the main changes needed.

Initially, the double annotation scheme has to be en-

hanced to indicate what functions (if any) can be consumed

by parameters (through laws), and what functions are pro-

duced by the unsafe producers. With this enhancement, all

consume their produced functions, will be classified aa safe

sub-terms. These new safe sub-terms are fused with the help

of laws. The transformation algorithm must be accordingly

modified to apply the appropriate laws when fusing these

new category of safe sub-terms.

8 Other Related Work

Over the years, there have been a number of different pro-

posals for techniques which can remove unnecessary inter-

mediate sub-terms from user programs. These proposals

differ in name, scope, sophistication and the extent of their

automation. Some of these techniques are briefly described

and compared below.

One of the earliest proposal is given in the seminal pa-

per by Burstall and Darlington [BD77] where loop com-

bination (fusion) of programs was illustrated as a trans-

formation encompassed under the unfold/fold framework

for optimizing functional programs. The unfold/fold frame-

work is very general but the transformation examples given

(at the time) are largely handcrafted. Subsequently, Mar-

tin Feather [Fea82] build a system, called ZAP, which was

able to derive low-level unfold/fold transformation sequences

from higher-level pattern-directed transformation given by

the users. The pattern-directed transformation contains a

number of ways for expressing the desired target program

form. They can be used to express the transformations

needed by the tupling, genemhsation and composition (fu-

sion) tactics. One large example illustrated was the trans-

formation of a multi-pass compiler into a two-pass compiler

for a toy language. However, pattern-directed transforma-

tions have to be individually specified. Our work is based on

the same unfold/fold framework but we have now developed

a transformation algorithm for the fusion tactic.

The predecessor of Wadler’s deforestation is the listless

transformer [Wad84, Wad85]. The initial fistless transformer

[Wad84] is a semi-decision procedure which could convert

recursive programs with bounded ezmkmtion4 property to

equivalent listless machines (cf. flowchart schemata with

finite number of states). This transformer was able to elim-

inate intermediate lists (including list of lists) and achieve

the effect of tupling transformation to eliminate multiple

traversals of lists (from non-linear parameters). A subse-

quent modification to obtain a decision procedure [Wad85],

requires programs to be also pre- o rder (single traversal of

inputs and production of outputs in a left-to-right manner).

Given two pre-order listless functions g and j_, the new list-

less transformer is able to automatically generate a new pre-

order listless function for their composition, g o ~ where o is

*needs bounded internal storage to perform computation
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the function composition operator. The pre-order require-

ment rules out certain programs which return more than one

lists. As a result, tupling transformation (possible in the ear-

lier listless transformer) is now prevented from happening.

The generalised deforestation algorithm presented in this pa-

per is also a decision procedure. It is able to eliminate data

structures apart from lists (e.g. trees) and selectively apply

generrdisation to avoid subterms which are unsafe to fuse. In

addition, the transformed program is in the source language

and can thus be more easily subjected to further transforma-

tion. However, t upling capability (which requires non-linear

parameters to be handled) is not present in deforestation.

This is not necessary a bad thing if one considers the ad-

vantages of modularisation for program transformation. In

[Chi90], we presented a range of transformation tactics (e.g

higher-order removal, tupling and fusion) which are more

convenient to specify individually. Some of these tactics

have been appropriately combined (e.g. fusion and higher-

order removal) to achieve better transformation. However,

further work is still needed to develop a more general frame-

work for combining t attics.

Another work closely related to the listless transformer

is Turchin’s supercompder [Tur86]. Here, driving (unfold

using normal-order strategy) and generakmtion techniques

are used to obtain finite graphs of configurations (or states)

from the symbolic evaluation of user programs. The graphs

of configurations obtained can then be used to compile more

efficient programs. Turchin’s supercompiler is basically a

program specialiser which can perform both fusion and par-

tial evaluation transformations. It is based on the REFAL

language which is first-order and uses a data structure sim-

ilar to the s-expression of Lisp. While we relied on a sim-

ple ofl-hne generalisation technique (using an annotation

scheme which is able to identify unsafe sub-terms), Turchin

made use of sophisticated techniques which look back at the

history of configurations in order to perform on-the-fly gen-

eralisation.

Recently, Richard Waters proposed a new transforma-

tion technique [Wat 9 I] for fusing expressions using series

(various sequences, e.g. vectors, lists, which may be un-

bounded) so that unnecessary intermediate series data struc-

t ures could be eliminated. He identified a sub-class of ex-

pressions which could be transformed, namely those which

are statically analyzable, pre-order and on-line cyclic. Wa-

ter’s technique cannot handle tree-like structures (including

sequence inside sequence). However, the on-line cycle re-

striction allows fusion of functions which take multiple in-

puts originating from common variables (thus, forming cy-

cles) with the on-line characteristic (lockstep production of

one output for every input consumed). This has the same

effect as fusing rntdtiple-inputs functions composed with tu-

pled function. The pre-order restriction is more limiting that

the safe-unsafe criteria of our generalised deforestation, but

the on-line cycle restriction is something new. In our case,

this can only be achieved by combining fusion with the tu-

pling tactic.

Another related area is partial evaluation [Con90, BEJ88,

JSS89]. The primary mechanism used in partial evaluation

is the specialisation of function calls which have some or

all of its arguments knoum5 (or partially known). Such calls

can be transformed to equivalent but more efficient functions

which exploit the context of their known arguments. Tra-

ditionally, an analysis technique called binding-time ana/y-

sis [Jon88] has been used to analyse (recursive) functions

to find out which of the arguments are known or unknown

(also known as static vs dynamic). However, this analysis

cannot be used to guarantee the termination of the partial

evaluation process itself. Lately, Hoist has proposed an ad-

ditional analysis, called finiteness analysis [H0191], to deter-

mine which known arguments can preserve the termination

property of partial evacuation. This analysis is used to iden-

tify in-situ non-increasing parameters which can be viewed

as a semantic derivative of our syntactic non-accumulating

criterion. Presently, Hoist’s analysis is applicable to strict,

first-order functional languages. Whilst partial evaluation

specialises known or partially known arguments, our defor-

estation technique appears to be more general as it also spe-

cialises symboiic arguments which are unknown. However,

partial evaluation also employs reduction and simplification

techniques which are currently ignored by deforestation.

9 Conclusion

The basic idea of annotating sub-terms, to distinguish be-

tween those sub-terms which can be eliminated from those

sub-terms which cannot, is essentially similar to Wadler’s

blazing technique. Our main contribution is the extension

of deforestation so that it is applicable to a much wider

range of expressions. This extension is made possible by

the adoption of the producer-consumer view of functions to-

gether with the discovery that it is possible to characterise,

using syntactic properties, functions and their parameters

into either safe or unsafe producers and consumers. This

discovery led us to the use of a double annotation scheme to

identify safe sub-t erms which could be fused. It allowed us

to extend deforestation to all first-order programs. In ad-

dition, with the help of another transformation technique,

called higher-order removal, we are able to extend deforesta-

tion to all well-typed higher-order programs, and thus have

more intermediate terms eliminated. Furthermore, we are

also able to improve deforestation even further by linearing

certain pattern-matching parameters and handling certain

unsafe producers with the help of laws.

Like Wadler’s originaJ deforestation algorithms, our ex-

tension remains fully automatic and is guaranteed to ter-

minate. As a result, it is very suitable for adoption in the

optimisation phase of any purely functional language com-

piler.
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